1
|
Huber JH, Hsiang MS, Dlamini N, Murphy M, Vilakati S, Nhlabathi N, Lerch A, Nielsen R, Ntshalintshali N, Greenhouse B, Perkins TA. Inferring person-to-person networks of Plasmodium falciparum transmission: are analyses of routine surveillance data up to the task? Malar J 2022; 21:58. [PMID: 35189905 PMCID: PMC8860266 DOI: 10.1186/s12936-022-04072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inference of person-to-person transmission networks using surveillance data is increasingly used to estimate spatiotemporal patterns of pathogen transmission. Several data types can be used to inform transmission network inferences, yet the sensitivity of those inferences to different data types is not routinely evaluated. METHODS The influence of different combinations of spatial, temporal, and travel-history data on transmission network inferences for Plasmodium falciparum malaria were evaluated. RESULTS The information content of these data types may be limited for inferring person-to-person transmission networks and may lead to an overestimate of transmission. Only when outbreaks were temporally focal or travel histories were accurate was the algorithm able to accurately estimate the reproduction number under control, Rc. Applying this approach to data from Eswatini indicated that inferences of Rc and spatiotemporal patterns therein depend upon the choice of data types and assumptions about travel-history data. CONCLUSIONS These results suggest that transmission network inferences made with routine malaria surveillance data should be interpreted with caution.
Collapse
Affiliation(s)
- John H Huber
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Michelle S Hsiang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, CA, USA.,Department of Pediatrics, University of California, San Francisco,, CA, USA
| | - Nomcebo Dlamini
- National Malaria Elimination Programme, Ministry of Health, Manzini, Eswatini
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Nomcebo Nhlabathi
- National Malaria Elimination Programme, Ministry of Health, Manzini, Eswatini
| | - Anita Lerch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Rasmus Nielsen
- Department of Integrative Biology and Statistics, University of California, Berkeley, CA, USA
| | | | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Swanepoel H, Crafford J, Quan M. A Scoping Review of Viral Diseases in African Ungulates. Vet Sci 2021; 8:vetsci8020017. [PMID: 33499429 PMCID: PMC7912165 DOI: 10.3390/vetsci8020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Viral diseases are important as they can cause significant clinical disease in both wild and domestic animals, as well as in humans. They also make up a large proportion of emerging infectious diseases. (2) Methods: A scoping review of peer-reviewed publications was performed and based on the guidelines set out in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. (3) Results: The final set of publications consisted of 145 publications. Thirty-two viruses were identified in the publications and 50 African ungulates were reported/diagnosed with viral infections. Eighteen countries had viruses diagnosed in wild ungulates reported in the literature. (4) Conclusions: A comprehensive review identified several areas where little information was available and recommendations were made. It is recommended that governments and research institutions offer more funding to investigate and report viral diseases of greater clinical and zoonotic significance. A further recommendation is for appropriate One Health approaches to be adopted for investigating, controlling, managing and preventing diseases. Diseases which may threaten the conservation of certain wildlife species also require focused attention. In order to keep track of these diseases, it may be necessary to consider adding a “Wildlife disease and infection” category to the World Organisation for Animal Health-listed diseases.
Collapse
Affiliation(s)
- Hendrik Swanepoel
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (H.S.); (J.C.)
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Jan Crafford
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (H.S.); (J.C.)
| | - Melvyn Quan
- Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (H.S.); (J.C.)
- Correspondence: ; Tel.: +27-12-529-8142
| |
Collapse
|
3
|
van Dijk JGB, Iverson SA, Gilchrist HG, Harms NJ, Hennin HL, Love OP, Buttler EI, Lesceu S, Foster JT, Forbes MR, Soos C. Herd immunity drives the epidemic fadeout of avian cholera in Arctic-nesting seabirds. Sci Rep 2021; 11:1046. [PMID: 33441657 PMCID: PMC7806777 DOI: 10.1038/s41598-020-79888-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
Avian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population.
Collapse
Affiliation(s)
- Jacintha G B van Dijk
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.,Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 391 82, Kalmar, Sweden
| | - Samuel A Iverson
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.,Environment and Climate Change Canada, Canadian Wildlife Service, Gatineau, QC, K1A 0H3, Canada
| | - H Grant Gilchrist
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.,Environment and Climate Change Canada, National Wildlife Research Center, Ottawa, ON, K1S 5B6, Canada
| | - N Jane Harms
- Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.,Environment Yukon, Animal Health Unit, Whitehorse, YT, Y1A 4Y9, Canada
| | - Holly L Hennin
- Environment and Climate Change Canada, National Wildlife Research Center, Ottawa, ON, K1S 5B6, Canada.,Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - E Isabel Buttler
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Catherine Soos
- Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada. .,Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Saskatoon, SK, S7N 0X4, Canada.
| |
Collapse
|
4
|
Rostal MK, Cleaveland S, Cordel C, van Staden L, Matthews L, Anyamba A, Karesh WB, Paweska JT, Haydon DT, Ross N. Farm-Level Risk Factors of Increased Abortion and Mortality in Domestic Ruminants during the 2010 Rift Valley Fever Outbreak in Central South Africa. Pathogens 2020; 9:E914. [PMID: 33158214 PMCID: PMC7694248 DOI: 10.3390/pathogens9110914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022] Open
Abstract
(1) Background: Rift Valley fever (RVF) outbreaks in domestic ruminants have severe socio-economic impacts. Climate-based continental predictions providing early warnings to regions at risk for RVF outbreaks are not of a high enough resolution for ruminant owners to assess their individual risk. (2) Methods: We analyzed risk factors for RVF occurrence and severity at the farm level using the number of domestic ruminant deaths and abortions reported by farmers in central South Africa during the 2010 RVF outbreaks using a Bayesian multinomial hurdle framework. (3) Results: We found strong support that the proportion of days with precipitation, the number of water sources, and the proportion of goats in the herd were positively associated with increased severity of RVF (the numbers of deaths and abortions). We did not find an association between any risk factors and whether RVF was reported on farms. (4) Conclusions: At the farm level we identified risk factors of RVF severity; however, there was little support for risk factors of RVF occurrence. The identification of farm-level risk factors for Rift Valley fever virus (RVFV) occurrence would support and potentially improve current prediction methods and would provide animal owners with critical information needed in order to assess their herd's risk of RVFV infection.
Collapse
Affiliation(s)
- Melinda K. Rostal
- EcoHealth Alliance, New York, NY 10018, USA; (W.B.K.); (N.R.)
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (S.C.); (L.M.); (D.T.H.)
| | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (S.C.); (L.M.); (D.T.H.)
| | - Claudia Cordel
- ExecuVet PTY LTD., Bloemfontein 9301, Free State, South Africa; (C.C.); (L.v.S.)
| | - Lara van Staden
- ExecuVet PTY LTD., Bloemfontein 9301, Free State, South Africa; (C.C.); (L.v.S.)
| | - Louise Matthews
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (S.C.); (L.M.); (D.T.H.)
| | - Assaf Anyamba
- Universities Space Research Association, Columbia, MD 21046, USA;
- NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, USA
| | | | - Janusz T. Paweska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2192, South Africa;
| | - Daniel T. Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (S.C.); (L.M.); (D.T.H.)
| | - Noam Ross
- EcoHealth Alliance, New York, NY 10018, USA; (W.B.K.); (N.R.)
| |
Collapse
|
5
|
Estimation of Rift Valley fever virus spillover to humans during the Mayotte 2018-2019 epidemic. Proc Natl Acad Sci U S A 2020; 117:24567-24574. [PMID: 32929025 PMCID: PMC7533885 DOI: 10.1073/pnas.2004468117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever (RVF) is an emerging, zoonotic hemorrhagic fever, affecting mainly livestock and humans in Africa. Despite its growing global concern, the impact of control measures on epidemic dynamics using empirical data has not been assessed. By combining a unique RVF epidemic dataset covering both livestock and human data in a closed ecosystem (Mayotte island) with a dynamic model, we estimate viral transmission potential among livestock, and from livestock to humans. We also quantify the impact of vaccination in decreasing the epidemic size. We demonstrate that reactive livestock vaccination is key. We present a reference case study for RVF and illustrate the value of a One Health quantitative approach to surveillance and control of zoonotic infectious diseases. Rift Valley fever (RVF) is an emerging, zoonotic, arboviral hemorrhagic fever threatening livestock and humans mainly in Africa. RVF is of global concern, having expanded its geographical range over the last decades. The impact of control measures on epidemic dynamics using empirical data has not been assessed. Here, we fitted a mathematical model to seroprevalence livestock and human RVF case data from the 2018–2019 epidemic in Mayotte to estimate viral transmission among livestock, and spillover from livestock to humans through both direct contact and vector-mediated routes. Model simulations were used to assess the impact of vaccination on reducing the epidemic size. The rate of spillover by direct contact was about twice as high as vector transmission. Assuming 30% of the population were farmers, each transmission route contributed to 45% and 55% of the number of human infections, respectively. Reactive vaccination immunizing 20% of the livestock population reduced the number of human cases by 30%. Vaccinating 1 mo later required using 50% more vaccine doses for a similar reduction. Vaccinating only farmers required 10 times as more vaccine doses for a similar reduction in human cases. Finally, with 52.0% (95% credible interval [CrI] [42.9–59.4]) of livestock immune at the end of the epidemic wave, viral reemergence in the next rainy season (2019–2020) is unlikely. Coordinated human and animal health surveillance, and timely livestock vaccination appear to be key to controlling RVF in this setting. We furthermore demonstrate the value of a One Health quantitative approach to surveillance and control of zoonotic infectious diseases.
Collapse
|
6
|
Turell MJ, Cohnstaedt LW, Wilson WC. Effect of Environmental Temperature on the Ability of Culex tarsalis and Aedes taeniorhynchus (Diptera: Culicidae) to Transmit Rift Valley Fever Virus. Vector Borne Zoonotic Dis 2020; 20:454-460. [PMID: 32017863 DOI: 10.1089/vbz.2019.2554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes severe disease in domestic ungulates (cattle, goats, and sheep) and a febrile illness in humans (with ∼1% case fatality rate). This virus has been spreading geographically, and there is concern of it spreading to Europe or the Americas. Environmental temperature can significantly affect the ability of mosquitoes to transmit an arbovirus. However, these effects are not consistent among viruses or mosquito species. Therefore, we evaluated the effect of incubation temperatures ranging from 14°C to 30°C on infection and dissemination rates for Culex tarsalis and Aedes taeniorhynchus allowed to feed on hamsters infected with RVFV. Engorged mosquitoes were randomly allocated to cages and placed in incubators maintained at 14°C, 18°C, 22°C, 26°C, or 30°C. Although infection rates detected in Cx. tarsalis increased with increasing holding temperature, holding temperature had no effect on infection rates detected in Ae. taeniorhynchus. However, for both species, the percentage of mosquitoes with a disseminated infection after specific extrinsic incubation periods (4, 7, 10, 14, 17, or 21 days) increased with increasing incubation holding temperature, even after adjusting for the apparent increase in infection rate in Cx. tarsalis. The effects of environmental factors, such as ambient temperature, need to be taken into account when developing models for viral persistence and spread in nature.
Collapse
Affiliation(s)
- Michael J Turell
- Virology Division, Department of Vector Assessment, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Lee W Cohnstaedt
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas
| | - William C Wilson
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas
| |
Collapse
|
7
|
Zhang N, Zhang R, Chen T, Miao F, Du H, Zhao J. A comment on 'Seroprevalence of Rift Valley fever in South African domestic and wild suids (1999-2016)'. Transbound Emerg Dis 2020; 67:471-472. [PMID: 31898395 DOI: 10.1111/tbed.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Teng Chen
- Key Laboratory of Jilin Province Zoonoses Prevention and Control, Laboratory of Epidemiology, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Faming Miao
- Key Laboratory of Jilin Province Zoonoses Prevention and Control, Laboratory of Epidemiology, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Haijun Du
- Changchun Sci-Tech University, Changchun, China
| | | |
Collapse
|
8
|
Lubisi BA, Ndouvhada PN, Neiffer D, Penrith ML, Sibanda DR, Bastos A. Seroprevalence of Rift valley fever in South African domestic and wild suids (1999-2016). Transbound Emerg Dis 2019; 67:811-821. [PMID: 31655018 DOI: 10.1111/tbed.13402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023]
Abstract
Rift valley fever (RVF) is a vector-borne viral disease of domestic ruminants, camels and man, characterized by widespread abortions and neonatal deaths in animals, and flu-like symptoms, which can progress to hepatitis and encephalitis in humans. The disease is endemic in Africa, Saudi Arabia and Yemen, and outbreaks occur after periods of high rainfall, or in environments supporting the proliferation of RVF virus (RVFV)-infected mosquito vectors. The domestic and wild animal maintenance hosts of RVFV, which may serve as sources of virus during inter-epidemic periods (IEPs) and contribute to occurrence of sporadic outbreaks, remain unknown, although reports indicate that the African buffalo (Syncerus caffer) may play a role. Due to the close proximity of the habitats of domestic pigs and warthogs to those of known domestic and wild ruminant RVFV maintenance hosts respectively, our study investigated their possible role in the epidemiology of RVF in South Africa by evaluating RVFV exposure and seroconversion in suids. A total of 107 warthog and 3,984 domestic pig sera from 2 and all 9 provinces of South Africa, respectively, were screened for presence of RVFV neutralizing antibodies using the virus neutralization test (VNT). Sero-positivity rates of 1.87% (95% CI: 0.01%-6.9%) and 0.68% (95% CI: 0.49%-1.04%) were observed for warthogs and domestic pigs, respectively, but true prevalence rates, taking test sensitivity and specificity into account, were lower for both groups. There was a strong association between the results of the two groups (χ2 = 0.75, p = .38), and differences in prevalence between the epidemic and IEPs were non-significant for all suid samples tested (p > .05). This study, which provides the first evidence of probable exposure and infection of South African domestic pigs and warthogs to RVFV, indicates that further investigations are warranted, to fully clarify the role of suids in the epidemiology of RVF.
Collapse
Affiliation(s)
- Baratang Alison Lubisi
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa.,Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Phumudzo Nomicia Ndouvhada
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa.,Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| | - Donald Neiffer
- Wildlife Health Sciences, National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Mary Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Donald-Ray Sibanda
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| | - Armanda Bastos
- Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa.,Centre for Veterinary Wildlife Studies, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
9
|
Yu F, Adungo F, Konongoi SL, Inoue S, Sang R, Ashur S, Kwallah AO, Uchida L, Buerano CC, Mwau M, Zha Y, Nie Y, Morita K. Comparison of enzyme-linked immunosorbent assay systems using rift valley fever virus nucleocapsid protein and inactivated virus as antigens. Virol J 2018; 15:178. [PMID: 30466469 PMCID: PMC6249750 DOI: 10.1186/s12985-018-1071-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis. To detect RVF virus (RVFV) infection, indirect immunoglobulin G (IgG) and immunoglobulin M (IgM) enzyme linked immunosorbent assays (ELISAs) which utilize recombinant RVFV nucleocapsid (RVFV-N) protein as assay antigen, have reportedly been used, however, there is still a need to develop more sensitive and specific methods of detection. Methods RVFV-N protein was expressed in Escherichia coli (E. coli) and purified by histidine-tag based affinity chromatography. This recombinant RVFV-N (rRVFV-N) protein was then used as antigen to develop an IgG sandwich ELISA and IgM capture ELISAs for human sera. Ninety six serum samples collected from healthy volunteers during the RVF surveillance programme in Kenya in 2013, and 93 serum samples collected from RVF-suspected patients during the 2006–2007 RVF outbreak in Kenya were used respectively, to evaluate the newly established rRVFV-N protein-based IgG sandwich ELISA and IgM capture ELISA systems in comparison with the inactivated virus-based ELISA systems. Results rRVFV-N protein-based-IgG sandwich ELISA and IgM capture ELISA for human sera were established. Both the new ELISA systems were in 100% concordance with the inactivated virus-based ELISA systems, with a sensitivity and specificity of 100%. Conclusions Recombinant RVFV-N is a safe and affordable antigen for RVF diagnosis. Our rRVFV-N-based ELISA systems are safe and reliable tools for diagnosis of RVFV infection in humans and especially useful in large-scale epidemiological investigation and for application in developing countries.
Collapse
Affiliation(s)
- Fuxun Yu
- Guizhou Provincial People's Hospital, Medical College, Guizhou University, No. 83 Zhongshan Dong Road, Guiyang, 550002, Guizhou Province, China
| | - Ferdinard Adungo
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12- 4, Sakamoto, Nagasaki, 852-8523, Japan.,Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12- 4, Sakamoto, Nagasaki, 852-8523, Japan
| | | | - Salame Ashur
- Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Leo Uchida
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12- 4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Corazon C Buerano
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12- 4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Matilu Mwau
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Yan Zha
- Guizhou Provincial People's Hospital, Medical College, Guizhou University, No. 83 Zhongshan Dong Road, Guiyang, 550002, Guizhou Province, China
| | - Yingjie Nie
- Guizhou Provincial People's Hospital, Medical College, Guizhou University, No. 83 Zhongshan Dong Road, Guiyang, 550002, Guizhou Province, China.
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12- 4, Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
10
|
Métras R, Fournié G, Dommergues L, Camacho A, Cavalerie L, Mérot P, Keeling MJ, Cêtre-Sossah C, Cardinale E, Edmunds WJ. Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Negl Trop Dis 2017; 11:e0005767. [PMID: 28732006 PMCID: PMC5540619 DOI: 10.1371/journal.pntd.0005767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/02/2017] [Accepted: 06/30/2017] [Indexed: 11/28/2022] Open
Abstract
Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006-2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data.
Collapse
Affiliation(s)
- Raphaëlle Métras
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Guillaume Fournié
- Veterinary Epidemiology, Economics and Public Health group, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Laure Dommergues
- GDS Mayotte-Coopérative Agricole des Eleveurs Mahorais, Coconi, Mayotte, France
| | - Anton Camacho
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Epicentre, Paris, France
| | - Lisa Cavalerie
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) UMR ASTRE, Cyroi platform, Sainte Clotilde, La Réunion, France
- Institut National de Recherche Agronomique (INRA) UMR 1309 ASTRE, Montpellier, France
- Bureau de la Santé Animale, Direction Générale de l’Alimentation, Paris, France
- Université de La Réunion, Saint Denis, France
| | - Philippe Mérot
- Direction de l’Alimentation, de l’Agriculture et de la Forêt de Mayotte, Mamoudzou, France
| | - Matt J. Keeling
- WIDER, Warwick University, Coventry, United Kingdom
- Life Sciences, Warwick University, Coventry, United Kingdom
- Mathematics Institute, Warwick University, Coventry, United Kingdom
| | - Catherine Cêtre-Sossah
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) UMR ASTRE, Cyroi platform, Sainte Clotilde, La Réunion, France
- Institut National de Recherche Agronomique (INRA) UMR 1309 ASTRE, Montpellier, France
| | - Eric Cardinale
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD) UMR ASTRE, Cyroi platform, Sainte Clotilde, La Réunion, France
- Institut National de Recherche Agronomique (INRA) UMR 1309 ASTRE, Montpellier, France
| | - W. John Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Ikegami T. Rift Valley fever vaccines: an overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate. Expert Rev Vaccines 2017; 16:601-611. [PMID: 28425834 DOI: 10.1080/14760584.2017.1321482] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered: This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary: The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- a Department of Pathology, Sealy Center for Vaccine Development, Center for Biodefense and Emerging Infectious Diseases , The University of Texas Medical Branch , Galveston , TX , USA
| |
Collapse
|
12
|
Samy AM, Peterson AT, Hall M. Phylogeography of Rift Valley Fever Virus in Africa and the Arabian Peninsula. PLoS Negl Trop Dis 2017; 11:e0005226. [PMID: 28068340 PMCID: PMC5221768 DOI: 10.1371/journal.pntd.0005226] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic analyses to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We used phylogeographic approaches to infer RVFV historical movement patterns across its geographic range, and to reconstruct transitions among host species. Results revealed broad circulation of the virus in East Africa, with many lineages originating in Kenya. Arrival of RVFV in Madagascar resulted from three major waves of virus introduction: the first from Zimbabwe, and the second and third from Kenya. The two major outbreaks in Egypt since 1977 possibly resulted from a long-distance introduction from Zimbabwe during the 1970s, and a single introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between Kenya and Sudan, and CAR and Zimbabwe, was in both directions. Viral populations in West Africa appear to have resulted from a single introduction from Central African Republic. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits. Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic approaches that take sampling date into account to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We found evidence of broad circulation of the virus in East Africa, with many lineages originating in Kenya, with single and multiple introductions of RVFV among countries. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits.
Collapse
Affiliation(s)
- Abdallah M. Samy
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
- * E-mail: ,
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Matthew Hall
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Tran A, Trevennec C, Lutwama J, Sserugga J, Gély M, Pittiglio C, Pinto J, Chevalier V. Development and Assessment of a Geographic Knowledge-Based Model for Mapping Suitable Areas for Rift Valley Fever Transmission in Eastern Africa. PLoS Negl Trop Dis 2016; 10:e0004999. [PMID: 27631374 PMCID: PMC5025187 DOI: 10.1371/journal.pntd.0004999] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF), a mosquito-borne disease affecting ruminants and humans, is one of the most important viral zoonoses in Africa. The objective of the present study was to develop a geographic knowledge-based method to map the areas suitable for RVF amplification and RVF spread in four East African countries, namely, Kenya, Tanzania, Uganda and Ethiopia, and to assess the predictive accuracy of the model using livestock outbreak data from Kenya and Tanzania. Risk factors and their relative importance regarding RVF amplification and spread were identified from a literature review. A numerical weight was calculated for each risk factor using an analytical hierarchy process. The corresponding geographic data were collected, standardized and combined based on a weighted linear combination to produce maps of the suitability for RVF transmission. The accuracy of the resulting maps was assessed using RVF outbreak locations in livestock reported in Kenya and Tanzania between 1998 and 2012 and the ROC curve analysis. Our results confirmed the capacity of the geographic information system-based multi-criteria evaluation method to synthesize available scientific knowledge and to accurately map (AUC = 0.786; 95% CI [0.730-0.842]) the spatial heterogeneity of RVF suitability in East Africa. This approach provides users with a straightforward and easy update of the maps according to data availability or the further development of scientific knowledge.
Collapse
Affiliation(s)
- Annelise Tran
- CIRAD, UPR AGIRs, Ste-Clotilde, Reunion Island
- CIRAD, UMR TETIS, Ste-Clotilde, Reunion Island
| | - Carlène Trevennec
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Joseph Sserugga
- Uganda Ministry of Agriculture, Animal Industry and Fisheries, Entebbe, Uganda
| | | | - Claudia Pittiglio
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Julio Pinto
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | |
Collapse
|
14
|
Nicholas DE, Delamater PL, Waters NM, Jacobsen KH. Geographically weighted discriminant analysis of environmental conditions associated with Rift Valley fever outbreaks in South Africa. Spat Spatiotemporal Epidemiol 2016; 17:75-83. [PMID: 27246274 DOI: 10.1016/j.sste.2016.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 02/08/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
Abstract
Rift Valley fever (RVF) is a zoonotic arboviral infection that has occurred across Africa and parts of the Middle East. Geographically weighted discriminant analysis (GWDA) is a spatially-adaptive extension of traditional discriminant analysis (DA) which has rarely been applied to infectious disease epidemiology research. This study compares the classification performance of GWDA and traditional DA when used to distinguish between locations where livestock are at risk or are not at risk for acquiring RVF virus (RVFV) using 699 case reports of RVF (affecting 18,894 animals) from two outbreaks in South Africa in 2008-2009 and 2010-2011. GWDA produced better results than traditional DA for all bandwidth and kernel combinations. The best GWDA model correctly classified 96.6% of the original data versus 84.5% obtained with traditional DA. With GWDA, false positives decreased from 10.9% to 3.7%, and false negatives decreased from 19.9% to 3.2%.
Collapse
Affiliation(s)
- Dennis E Nicholas
- Department of Geography and GeoInformation Science, George Mason University, 4400 University Drive, MS 6C3, Fairfax, VA 22030-4444, United States.
| | - Paul L Delamater
- Department of Geography and GeoInformation Science, George Mason University, 4400 University Drive, MS 6C3, Fairfax, VA 22030-4444, United States.
| | - Nigel M Waters
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.
| | - Kathryn H Jacobsen
- Department of Global and Community Health, George Mason University, 4400 University Drive Fairfax, MS 5B7, Fairfax, VA 22030-4444, United States.
| |
Collapse
|
15
|
Turell MJ, Britch SC, Aldridge RL, Xue RD, Smith ML, Cohnstaedt LW, Linthicum KJ. Potential for Psorophora columbiae and Psorophora ciliata Mosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1111-1116. [PMID: 26336233 DOI: 10.1093/jme/tjv093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/17/2015] [Indexed: 06/05/2023]
Abstract
Rift Valley fever virus (RVFV) continues to pose a threat to much of the world. Unlike many arboviruses, numerous mosquito species have been associated with RVFV in nature, and many species have been demonstrated as competent vectors in the laboratory. In this study, we evaluated two field-collected Psorophora species, Psorophora columbiae (Dyar and Knab) and Psorophora ciliata (F.) for their potential to transmit RVFV in North America. Both species were susceptible to infection after feeding on a hamster with a viremia of 10(7) plaque-forming units/ml, with infection rates of 65 and 83% for Ps. columbiae and Ps. ciliata, respectively (with nearly all specimens becoming infected when feeding on a hamster with a higher viremia). However, both species had a significant salivary gland barrier, as only 2/35 Ps. columbiae and 0/3 Ps. ciliata with a disseminated infection transmitted virus by bite. Despite the presence of the salivary gland barrier, due to the very high population that can occur and its propensity to feed on large mammals, Ps. columbiae might play a role in amplifying RVFV should that virus be introduced into an area where this species is common.
Collapse
Affiliation(s)
- Michael J Turell
- Virology Division, Department of Vector Assessment, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011.
| | - Seth C Britch
- USDA-ARS Center for Medical, Agricultural, & Veterinary Entomology, Gainesville, FL 32608
| | - Robert L Aldridge
- USDA-ARS Center for Medical, Agricultural, & Veterinary Entomology, Gainesville, FL 32608
| | - Rui-De Xue
- Anastasia Mosquito Control District of St. John's County, St. Augustine, FL 32080
| | - Mike L Smith
- Anastasia Mosquito Control District of St. John's County, St. Augustine, FL 32080
| | - Lee W Cohnstaedt
- USDA-ARS Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, KS 66502
| | - Kenneth J Linthicum
- USDA-ARS Center for Medical, Agricultural, & Veterinary Entomology, Gainesville, FL 32608
| |
Collapse
|
16
|
Risk factors associated with Rift Valley fever epidemics in South Africa in 2008-11. Sci Rep 2015; 5:9492. [PMID: 25804974 PMCID: PMC4372659 DOI: 10.1038/srep09492] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/02/2015] [Indexed: 11/11/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic and vector-borne disease, mainly present in Africa, which represents a threat to human health, animal health and production. South Africa has experienced three major RVF epidemics (1950–51, 1973–75 and 2008–11). Due to data scarcity, no previous study has quantified risk factors associated with RVF epidemics in animals in South Africa. Using the 2008–11 epidemic datasets, a retrospective longitudinal study was conducted to identify and quantify spatial and temporal environmental factors associated with RVF incidence. Cox regressions with a Besag model to account for the spatial effects were fitted to the data. Coefficients were estimated by Bayesian inference using integrated nested Laplace approximation. An increase in vegetation density was the most important risk factor until 2010. In 2010, increased temperature was the major risk factor. In 2011, after the large 2010 epidemic wave, these associations were reversed, potentially confounded by immunity in animals, probably resulting from earlier infection and vaccination. Both vegetation density and temperature should be considered together in the development of risk management strategies. However, the crucial need for improved access to data on population at risk, animal movements and vaccine use is highlighted to improve model predictions.
Collapse
|
17
|
Nicolas G, Chevalier V, Tantely LM, Fontenille D, Durand B. A spatially explicit metapopulation model and cattle trade analysis suggests key determinants for the recurrent circulation of rift valley Fever virus in a pilot area of madagascar highlands. PLoS Negl Trop Dis 2014; 8:e3346. [PMID: 25474116 PMCID: PMC4256285 DOI: 10.1371/journal.pntd.0003346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008-2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV) vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV) reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i) RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii) a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii) combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields, seasonality of vector proliferation, and cattle exchange practices could be a key element for understanding RVFV circulation in this area of Madagascar highlands.
Collapse
Affiliation(s)
- Gaëlle Nicolas
- International Centre of Research in Agronomy for Development (CIRAD), ES Department– AGIRs Unit, Montpellier, France
- Paris-Est University, Anses, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Véronique Chevalier
- International Centre of Research in Agronomy for Development (CIRAD), ES Department– AGIRs Unit, Montpellier, France
| | | | - Didier Fontenille
- Research Institute for Development (IRD), MIVEGEC, Montpellier, France
| | - Benoît Durand
- Paris-Est University, Anses, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| |
Collapse
|
18
|
Eight challenges in modelling infectious livestock diseases. Epidemics 2014; 10:1-5. [PMID: 25843373 DOI: 10.1016/j.epidem.2014.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 02/02/2023] Open
Abstract
The transmission of infectious diseases of livestock does not differ in principle from disease transmission in any other animals, apart from that the aim of control is ultimately economic, with the influence of social, political and welfare constraints often poorly defined. Modelling of livestock diseases suffers simultaneously from a wealth and a lack of data. On the one hand, the ability to conduct transmission experiments, detailed within-host studies and track individual animals between geocoded locations make livestock diseases a particularly rich potential source of realistic data for illuminating biological mechanisms of transmission and conducting explicit analyses of contact networks. On the other hand, scarcity of funding, as compared to human diseases, often results in incomplete and partial data for many livestock diseases and regions of the world. In this overview of challenges in livestock disease modelling, we highlight eight areas unique to livestock that, if addressed, would mark major progress in the area.
Collapse
|
19
|
Monaco F, Pinoni C, Cosseddu GM, Khaiseb S, Calistri P, Molini U, Bishi A, Conte A, Scacchia M, Lelli R. Rift Valley fever in Namibia, 2010. Emerg Infect Dis 2014; 19:2025-7. [PMID: 24274469 PMCID: PMC3840870 DOI: 10.3201/eid1912.130593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.
Collapse
|
20
|
Chengula AA, Mdegela RH, Kasanga CJ. Socio-economic impact of Rift Valley fever to pastoralists and agro pastoralists in Arusha, Manyara and Morogoro regions in Tanzania. SPRINGERPLUS 2013; 2:549. [PMID: 24255846 PMCID: PMC3825084 DOI: 10.1186/2193-1801-2-549] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022]
Abstract
Rift Valley fever (RVF) is a viral notifiable zoonotic disease primarily of domestic ruminants that causes significant socio-economic impacts. Using the 2006-07 outbreak cases, this study aimed to establish the socio-economic impact of RVF and assessing knowledge, attitude and practice of livestock keepers towards controlling RVF in selected areas of Tanzania. Data were collected in Arusha, Manyara and Morogoro regions using questionnaires, focus group discussions and in-depth interviews with key informants. Results indicate that there was little knowledge on disease (all clinical signs scored <50%) and the difference between the three regions was statistically significant (P = 0.00459). Socio-economic impacts of RVF shown by this study included; animal and human deaths, disruption of livestock market chains, inability of pastoralists to achieve their daily demands, inability to obtain protein leading to malnutrition and monetary loss at individual and national level during control of the disease. These findings have demonstrated low knowledge of the community on RVF, thus, more education and engagement is needed in order to develop more effective and efficient control strategies.
Collapse
Affiliation(s)
- Augustino A Chengula
- Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P O Box 3019, Morogoro, Tanzania
| | | | | |
Collapse
|