1
|
Smith N, Keynan Y, Wuerz T, Sharma A. Powassan Virus Encephalitis after Tick Bite, Manitoba, Canada. Emerg Infect Dis 2024; 30:1959-1961. [PMID: 39122440 PMCID: PMC11346980 DOI: 10.3201/eid3009.231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
A case of Powassan encephalitis occurred in Manitoba, Canada, after the bite of a black-legged tick. Awareness of this emerging tickborne illness is needed because the number of vector tick species is growing. No specific treatment options exist, and cases with illness and death are high. Prevention is crucial.
Collapse
|
2
|
Mladinich MC, Himmler GE, Conde JN, Gorbunova EE, Schutt WR, Sarkar S, Tsirka SAE, Kim HK, Mackow ER. Age-dependent Powassan virus lethality is linked to glial cell activation and divergent neuroinflammatory cytokine responses in a murine model. J Virol 2024; 98:e0056024. [PMID: 39087762 PMCID: PMC11334436 DOI: 10.1128/jvi.00560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 08/02/2024] Open
Abstract
Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFβ, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.
Collapse
Affiliation(s)
- Megan C. Mladinich
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Shayan Sarkar
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Styliani-Anna E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Center for Infectious Disease, Stony Brook, New York, USA
| |
Collapse
|
3
|
Lee EE, Mejia M, Matthews LA, Lee F, Shah KM, Schoggins JW, Vandergriff TW, Yancey KB, Thomas C, Wang RC. West Nile virus encephalitis presenting with a vesicular dermatitis. JAAD Case Rep 2024; 45:117-122. [PMID: 38464779 PMCID: PMC10920127 DOI: 10.1016/j.jdcr.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Affiliation(s)
- Eunice E. Lee
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - Maria Mejia
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | | | - Francesca Lee
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Kishan M. Shah
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - John W. Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas
| | - Travis W. Vandergriff
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Kim B. Yancey
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| | - Cristina Thomas
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Richard C. Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Mendoza MA, Hass RM, Vaillant J, Johnson DR, Theel ES, Toledano M, Abu Saleh O. Powassan Virus Encephalitis: A Tertiary Center Experience. Clin Infect Dis 2024; 78:80-89. [PMID: 37540989 PMCID: PMC10810704 DOI: 10.1093/cid/ciad454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Powassan virus (POWV) is an emerging arthropod-borne flavivirus, transmitted by Ixodes spp. ticks, which has been associated with neuroinvasive disease and poor outcomes. METHODS A retrospective study was conducted at Mayo Clinic from 2013 to 2022. We included clinical and epidemiologic data of probable and confirmed neuroinvasive POWV cases. RESULTS Sixteen patients with neuroinvasive POWV were identified; their median age was 63.2 years, and 62.5% were male. Six patients presented with rhombencephalitis, 4 with isolated meningitis, 3 with meningoencephalitis, 2 with meningoencephalomyelitis, and 1 with opsoclonus myoclonus syndrome. A median time of 18 days was observed between symptom onset and diagnosis. Cerebrospinal fluid analysis showed lymphocytic pleocytosis with elevated protein and normal glucose in the majority of patients. Death occurred within 90 days in 3 patients (18.8%), and residual neurologic deficits were seen in 8 survivors (72.7%). CONCLUSIONS To our knowledge, this is the largest case series of patients with neuroinvasive POWV infection. We highlight the importance of a high clinical suspicion among patients who live in or travel to high-risk areas during the spring to fall months. Our data show high morbidity and mortality rates among patients with neuroinvasive disease.
Collapse
Affiliation(s)
- Maria Alejandra Mendoza
- Division of Public Health, Infectious Diseases, and Occupational Medicine News, Mayo Clinic, Rochester, Minnesota, USA
| | - Reece M Hass
- Departement of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - James Vaillant
- Division of Public Health, Infectious Diseases, and Occupational Medicine News, Mayo Clinic, Rochester, Minnesota, USA
| | - Derek R Johnson
- Departement of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michel Toledano
- Departement of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Omar Abu Saleh
- Division of Public Health, Infectious Diseases, and Occupational Medicine News, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Dupuis AP, Lange RE, Ciota AT. Emerging tickborne viruses vectored by Amblyomma americanum (Ixodida: Ixodidae): Heartland and Bourbon viruses. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1183-1196. [PMID: 37862097 DOI: 10.1093/jme/tjad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 10/21/2023]
Abstract
Heartland (HRTV) and Bourbon (BRBV) viruses are newly identified tick-borne viruses, isolated from serious clinical cases in 2009 and 2014, respectively. Both viruses originated in the lower Midwest United States near the border of Missouri and Kansas, cause similar disease manifestations, and are presumably vectored by the same tick species, Amblyomma americanum Linnaeus (Ixodida: Ixodidae). In this article, we provide a current review of HRTV and BRBV, including the virology, epidemiology, and ecology of the viruses with an emphasis on the tick vector. We touch on current challenges of vector control and surveillance, and we discuss future directions in the study of these emergent pathogens.
Collapse
Affiliation(s)
- Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
| | - Rachel E Lange
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
6
|
Al-Tarbsheh AH, Jain E, Austin A, Ramani A, Giampa J, Dawani O, Robeldo FMS, Chopra A. Powassan virus encephalitis: Single center experience from capital district of New York. Am J Med Sci 2022; 364:803-805. [PMID: 35878736 DOI: 10.1016/j.amjms.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Affiliation(s)
| | - Esha Jain
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Adam Austin
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | | | - Joseph Giampa
- Department of Radiology, Albany Medical College, Albany, NY, USA
| | - Om Dawani
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | | | - Amit Chopra
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
7
|
Abstract
Powassan virus is an increasingly recognized cause of severe encephalitis that is transmitted by Ixodes ticks. Given the nonspecific clinical, laboratory, and imaging features of Powassan virus disease, providers should consider it in patients with compatible exposures and request appropriate testing.
Collapse
Affiliation(s)
- Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, AL360U.2, Boston, MA 02115, USA
| |
Collapse
|
8
|
Hart CE, Middleton FA, Thangamani S. Infection with Borrelia burgdorferi Increases the Replication and Dissemination of Coinfecting Powassan Virus in Ixodes scapularis Ticks. Viruses 2022; 14:1584. [PMID: 35891563 PMCID: PMC9319581 DOI: 10.3390/v14071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/02/2023] Open
Abstract
Powassan virus (POWV) is a tick-borne neuroinvasive flavivirus endemic to North America. It is generally transmitted by the tick, Ixodes scapularis. This species also transmits Borrelia burgdorferi, the causative agent of Lyme disease. Infection with B. burgdorferi can result in arthritis, carditis, and neuroborreliosis. These pathogens experience sylvatic overlap. To determine the risk of human exposure to coinfected ticks, the interactions between POWV and B. burgdorferi are assessed in laboratory-infected I. scapularis. Adult male and female I. scapularis ticks are orally inoculated with either both pathogens, POWV only, B. burgdorferi only, or uninfected media. After twenty-one days, the ticks are dissected, and RNA is extracted from their midguts and salivary glands. In infected midguts, the quantity of POWV in coinfected ticks was elevated compared to those with only POWV. In addition, the salivary glands of ticks with infected midguts had increased POWV dissemination to those with only POWV. RNA sequencing is performed to identify the potential mechanism for this pattern, which varies between the organs. Ixodes scapularis ticks are found to be capable of harboring both POWV and B. burgdorferi with a benefit to POWV replication and dissemination.
Collapse
Affiliation(s)
- Charles E. Hart
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA;
- SUNY Center for Vector-Borne Diseases, Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A. Middleton
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA;
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA;
- SUNY Center for Vector-Borne Diseases, Upstate Medical University, Syracuse, NY 13210, USA
- Institute for Global Health and Translational Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
9
|
Maxwell SP, Brooks C, McNeely CL, Thomas KC. Neurological Pain, Psychological Symptoms, and Diagnostic Struggles among Patients with Tick-Borne Diseases. Healthcare (Basel) 2022; 10:healthcare10071178. [PMID: 35885705 PMCID: PMC9323096 DOI: 10.3390/healthcare10071178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Public health reports contain limited information regarding the psychological and neurological symptoms of tick-borne diseases (TBDs). Employing a mixed-method approach, this analysis triangulates three sources of symptomology and provides a comparison of official public health information, case reports, medical literature, and the self-reported symptoms of patients with Lyme disease and other TBDs. Out of the fifteen neuropsychiatric symptoms reported in the medical literature for common TBDs, headaches and fatigue and/or malaise are the only two symptoms fully recognized by public health officials. Of TBDs, Lyme disease is the least recognized by public health officials for presenting with neuropsychiatric symptoms; only headaches and fatigue are recognized as overlapping symptoms of Lyme disease. Comparisons from a patient symptoms survey indicate that self-reports of TBDs and the associated symptoms align with medical and case reports. Anxiety, depression, panic attacks, hallucinations, delusions, and pain—ranging from headaches to neck stiffness and arthritis—are common among patients who report a TBD diagnosis. Given the multitude of non-specific patient symptoms, and the number and range of neuropsychiatric presentations that do not align with public health guidance, this study indicates the need for a revised approach to TBD diagnosis and for improved communication from official public health sources regarding the wide range of associated symptoms.
Collapse
Affiliation(s)
- Sarah P. Maxwell
- School of Economic, Political & Policy Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Correspondence:
| | - Chris Brooks
- Laboratory for Human Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA; (C.B.); (K.C.T.)
| | - Connie L. McNeely
- Center for Science, Technology, and Innovation Policy, George Mason University, Fairfax, VA 22030, USA;
| | - Kevin C. Thomas
- Laboratory for Human Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA; (C.B.); (K.C.T.)
| |
Collapse
|
10
|
Karshima SN, Ahmed MI, Kogi CA, Iliya PS. Anaplasma phagocytophilum infection rates in questing and host-attached ticks: a global systematic review and meta-analysis. Acta Trop 2022; 228:106299. [PMID: 34998998 DOI: 10.1016/j.actatropica.2021.106299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Anaplasma phagocytophilum causes a multi-organ non-specific febrile illness referred to as human granulocytic anaplasmosis. The epidemiologic risk of the pathogen is underestimated despite human encroachment into the natural habitats of ticks. In this study, we performed a systematic review and meta-analysis to determine the global infection rates and distribution of A. phagocytophilum in tick vectors. We pooled data using the random-effects model, assessed individual study quality using the Joanna Briggs Institute critical appraisal instrument for prevalence studies and determined heterogeneity and across study bias using Cochran's Q-test and Egger's regression test respectively. A total of 126 studies from 33 countries across 4 continents reported A. phagocytophilum estimated infection rate of 4.76% (9453/174,967; 95% CI: 3.96, 5.71). Estimated IRs across sub-groups varied significantly (p <0.05) with a range of 1.95 (95% CI: 0.63, 5.86) to 7.15% (95% CI: 5.31, 9.56). Country-based IRs ranged between 0.42 (95% CI: 0.22, 0.80) in Belgium and 37.54% (95% CI: 0.72, 98.03) in Norway. The highest number of studies on A. phagocytophilum were in Europe (82/126) by continent and the USA (33/126) by country. The risk of transmitting this pathogens from ticks to animals and humans exist and therefore, we recommend the use of chemical and biological control measures as well as repellents and protective clothing by occupationally exposed individuals to curtail further transmission of the pathogen to humans and animals.
Collapse
|
11
|
Conde JN, Sanchez-Vicente S, Saladino N, Gorbunova EE, Schutt WR, Mladinich MC, Himmler GE, Benach J, Kim HK, Mackow ER. Powassan Viruses Spread Cell to Cell during Direct Isolation from Ixodes Ticks and Persistently Infect Human Brain Endothelial Cells and Pericytes. J Virol 2022; 96:e0168221. [PMID: 34643436 PMCID: PMC8754205 DOI: 10.1128/jvi.01682-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Powassan viruses (POWVs) are neurovirulent tick-borne flaviviruses emerging in the northeastern United States, with a 2% prevalence in Long Island (LI) deer ticks (Ixodes scapularis). POWVs are transmitted within as little as 15 min of a tick bite and enter the central nervous system (CNS) to cause encephalitis (10% of cases are fatal) and long-term neuronal damage. POWV-LI9 and POWV-LI41 present in LI Ixodes ticks were isolated by directly inoculating VeroE6 cells with tick homogenates and detecting POWV-infected cells by immunoperoxidase staining. Inoculated POWV-LI9 and LI41 were exclusively present in infected cell foci, indicative of cell to cell spread, despite growth in liquid culture without an overlay. Cloning and sequencing establish POWV-LI9 as a phylogenetically distinct lineage II POWV strain circulating in LI deer ticks. Primary human brain microvascular endothelial cells (hBMECs) and pericytes form a neurovascular complex that restricts entry into the CNS. We found that POWV-LI9 and -LI41 and lineage I POWV-LB productively infect hBMECs and pericytes and that POWVs were basolaterally transmitted from hBMECs to lower-chamber pericytes without permeabilizing polarized hBMECs. Synchronous POWV-LI9 infection of hBMECs and pericytes induced proinflammatory chemokines, interferon-β (IFN-β) and proteins of the IFN-stimulated gene family (ISGs), with delayed IFN-β secretion by infected pericytes. IFN inhibited POWV infection, but despite IFN secretion, a subset of POWV-infected hBMECs and pericytes remained persistently infected. These findings suggest a potential mechanism for POWVs (LI9/LI41 and LB) to infect hBMECs, spread basolaterally to pericytes, and enter the CNS. hBMEC and pericyte responses to POWV infection suggest a role for immunopathology in POWV neurovirulence and potential therapeutic targets for preventing POWV spread to neuronal compartments. IMPORTANCE We isolated POWVs from LI deer ticks (I. scapularis) directly in VeroE6 cells, and sequencing revealed POWV-LI9 as a distinct lineage II POWV strain. Remarkably, inoculation of VeroE6 cells with POWV-containing tick homogenates resulted in infected cell foci in liquid culture, consistent with cell-to-cell spread. POWV-LI9 and -LI41 and lineage I POWV-LB strains infected hBMECs and pericytes that comprise neurovascular complexes. POWVs were nonlytically transmitted basolaterally from infected hBMECs to lower-chamber pericytes, suggesting a mechanism for POWV transmission across the blood-brain barrier (BBB). POWV-LI9 elicited inflammatory responses from infected hBMEC and pericytes that may contribute to immune cell recruitment and neuropathogenesis. This study reveals a potential mechanism for POWVs to enter the CNS by infecting hBMECs and spreading basolaterally to abluminal pericytes. Our findings reveal that POWV-LI9 persists in cells that form a neurovascular complex spanning the BBB and suggest potential therapeutic targets for preventing POWV spread to neuronal compartments.
Collapse
Affiliation(s)
- Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Santiago Sanchez-Vicente
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University New York, New York, USA
| | - Nicholas Saladino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Jorge Benach
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
12
|
Yang X, Gao GF, Liu WJ. Powassan virus: A tick borne flavivirus infecting humans. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Hassett EM, Thangamani S. Ecology of Powassan Virus in the United States. Microorganisms 2021; 9:microorganisms9112317. [PMID: 34835443 PMCID: PMC8624383 DOI: 10.3390/microorganisms9112317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/02/2022] Open
Abstract
Zoonotic viruses threaten the lives of millions of people annually, exacerbated by climate change, human encroachment into wildlife habitats, and habitat destruction. The Powassan virus (POWV) is a rare tick-borne virus that can cause severe neurological damage and death, and the incidence of the associated disease (Powassan virus disease) is increasing in the eastern United States. The mechanisms by which POWV is maintained in nature and transmitted to humans are complex and only partly understood. This review provides an overview of what is known about the vector species, vector-host transmission dynamics, and environmental and human-driven factors that may be aiding the spread of both the vector and virus.
Collapse
|
14
|
Kroopnick A, Jia DT, Rimmer K, Namale VS, Kim C, Ofoezie U, Thakur KT. Clinical use of steroids in viral central nervous system (CNS) infections: three challenging cases. J Neurovirol 2021; 27:727-734. [PMID: 34596868 DOI: 10.1007/s13365-021-01008-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The role of adjunctive corticosteroids in reducing morbidity and mortality of viral CNS infections remains poorly defined. Clinicians are often left in a quagmire regarding steroid use in complex and rapidly evolving viral CNS infections. Limited studies have explored the underlying mechanisms behind the potential benefit of steroids. Here, we describe steroid use in three cases of viral CNS disease: varicella zoster virus (VZV), Powassan virus, and influenza A-associated acute necrotizing encephalopathy.
Collapse
Affiliation(s)
- Adam Kroopnick
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
| | - Dan Tong Jia
- Northwestern University School of Medicine, 420 E Superior St, Chicago, Illinois, 60611, USA
| | - Kathryn Rimmer
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
| | - Vivian S Namale
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
| | - Carla Kim
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
| | - Ugoada Ofoezie
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA
| | - Kiran T Thakur
- Department of Neurology, Columbia University Irving Medical Center-New York Presbyterian Hospital, 622 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Griffin BD, Chan M, Tailor N, Mendoza EJ, Leung A, Warner BM, Duggan AT, Moffat E, He S, Garnett L, Tran KN, Banadyga L, Albietz A, Tierney K, Audet J, Bello A, Vendramelli R, Boese AS, Fernando L, Lindsay LR, Jardine CM, Wood H, Poliquin G, Strong JE, Drebot M, Safronetz D, Embury-Hyatt C, Kobasa D. SARS-CoV-2 infection and transmission in the North American deer mouse. Nat Commun 2021; 12:3612. [PMID: 34127676 PMCID: PMC8203675 DOI: 10.1038/s41467-021-23848-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
Widespread circulation of SARS-CoV-2 in humans raises the theoretical risk of reverse zoonosis events with wildlife, reintroductions of SARS-CoV-2 into permissive nondomesticated animals. Here we report that North American deer mice (Peromyscus maniculatus) are susceptible to SARS-CoV-2 infection following intranasal exposure to a human isolate, resulting in viral replication in the upper and lower respiratory tract with little or no signs of disease. Further, shed infectious virus is detectable in nasal washes, oropharyngeal and rectal swabs, and viral RNA is detectable in feces and occasionally urine. We further show that deer mice are capable of transmitting SARS-CoV-2 to naïve deer mice through direct contact. The extent to which these observations may translate to wild deer mouse populations remains unclear, and the risk of reverse zoonosis and/or the potential for the establishment of Peromyscus rodents as a North American reservoir for SARS-CoV-2 remains unknown.
Collapse
Affiliation(s)
- Bryan D Griffin
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mable Chan
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Nikesh Tailor
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Emelissa J Mendoza
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Anders Leung
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Bryce M Warner
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ana T Duggan
- Science Technology Cores and Services, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Estella Moffat
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Lauren Garnett
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kaylie N Tran
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Logan Banadyga
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alixandra Albietz
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jonathan Audet
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alexander Bello
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Robert Vendramelli
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Amrit S Boese
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Lisa Fernando
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Claire M Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative, Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Guillaume Poliquin
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Pediatrics & Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Office of the Scientific Director, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - James E Strong
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Pediatrics & Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Michael Drebot
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Darwyn Kobasa
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
16
|
Lantos PM, Rumbaugh J, Bockenstedt LK, Falck-Ytter YT, Aguero-Rosenfeld ME, Auwaerter PG, Baldwin K, Bannuru RR, Belani KK, Bowie WR, Branda JA, Clifford DB, DiMario FJ, Halperin JJ, Krause PJ, Lavergne V, Liang MH, Meissner HC, Nigrovic LE, Nocton JJJ, Osani MC, Pruitt AA, Rips J, Rosenfeld LE, Savoy ML, Sood SK, Steere AC, Strle F, Sundel R, Tsao J, Vaysbrot EE, Wormser GP, Zemel LS. Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis and Treatment of Lyme Disease. Clin Infect Dis 2021; 72:e1-e48. [PMID: 33417672 DOI: 10.1093/cid/ciaa1215] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
This evidence-based clinical practice guideline for the prevention, diagnosis, and treatment of Lyme disease was developed by a multidisciplinary panel representing the Infectious Diseases Society of America (IDSA), the American Academy of Neurology (AAN), and the American College of Rheumatology (ACR). The scope of this guideline includes prevention of Lyme disease, and the diagnosis and treatment of Lyme disease presenting as erythema migrans, Lyme disease complicated by neurologic, cardiac, and rheumatologic manifestations, Eurasian manifestations of Lyme disease, and Lyme disease complicated by coinfection with other tick-borne pathogens. This guideline does not include comprehensive recommendations for babesiosis and tick-borne rickettsial infections, which are published in separate guidelines. The target audience for this guideline includes primary care physicians and specialists caring for this condition such as infectious diseases specialists, emergency physicians, internists, pediatricians, family physicians, neurologists, rheumatologists, cardiologists and dermatologists in North America.
Collapse
Affiliation(s)
- Paul M Lantos
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Yngve T Falck-Ytter
- Case Western Reserve University, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - Paul G Auwaerter
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Baldwin
- Geisinger Medical Center, Danville, Pennsylvania, USA
| | | | - Kiran K Belani
- Childrens Hospital and Clinical of Minnesota, Minneapolis, Minnesota, USA
| | - William R Bowie
- University of British Columbia, Vancouver, British Columbia, Canada
| | - John A Branda
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David B Clifford
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Peter J Krause
- Yale School of Public Health, New Haven, Connecticut, USA
| | | | | | | | | | | | | | - Amy A Pruitt
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jane Rips
- Consumer Representative, Omaha, Nebraska, USA
| | | | | | | | - Allen C Steere
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franc Strle
- University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Robert Sundel
- Boston Children's Hospital Boston, Massachusetts, USA
| | - Jean Tsao
- Michigan State University, East Lansing, Michigan, USA
| | | | | | - Lawrence S Zemel
- Connecticut Children's Medical Center, Hartford, Connecticut, USA
| |
Collapse
|
17
|
Taylor L, Condon T, Destrampe EM, Brown JA, McGavic J, Gould CV, Chambers TV, Kosoy OI, Burkhalter KL, Annambhotla P, Basavaraju SV, Groves J, Osborn RA, Weiss J, Stramer SL, Misch EA. Powassan Virus Infection Likely Acquired Through Blood Transfusion Presenting as Encephalitis in a Kidney Transplant Recipient. Clin Infect Dis 2021; 72:1051-1054. [PMID: 32539111 DOI: 10.1093/cid/ciaa738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023] Open
Abstract
A kidney transplant patient without known tick exposure developed encephalitis 3 weeks after transplantation. During the transplant hospitalization, the patient had received a blood transfusion from an asymptomatic donor later discovered to have been infected with Powassan virus. Here, we describe a probable instance of transfusion-transmitted Powassan virus infection.
Collapse
Affiliation(s)
- Lindsay Taylor
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Taryn Condon
- Epidemiology Resource Center, Indiana State Department of Health, Indianapolis, Indiana, USA
| | - Eric M Destrampe
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jennifer A Brown
- Epidemiology Resource Center, Indiana State Department of Health, Indianapolis, Indiana, USA
| | - Jeanette McGavic
- Epidemiology Resource Center, Indiana State Department of Health, Indianapolis, Indiana, USA
| | - Carolyn V Gould
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Trudy V Chambers
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Olga I Kosoy
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Kristen L Burkhalter
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Pallavi Annambhotla
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sridhar V Basavaraju
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jamel Groves
- American Red Cross Scientific Affairs, Gaithersburg, Maryland, USA
| | - Rebecca A Osborn
- Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin, USA
| | - John Weiss
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, Wisconsin and American Red Cross Blood Services, Madison, Wisconsin, USA
| | - Susan L Stramer
- American Red Cross Scientific Affairs, Gaithersburg, Maryland, USA
| | - Elizabeth A Misch
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Dumic I, Glomski B, Patel J, Nordin T, Nordstrom CW, Sprecher LJ, Niendorf E, Singh A, Simeunovic K, Subramanian A, Igandan O, Vitorovic D. "Double Trouble": Severe Meningoencephalitis Due to Borrelia burgdorferi and Powassan Virus Co-Infection Successfully Treated with Intravenous Immunoglobulin. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e929952. [PMID: 33758161 PMCID: PMC8008974 DOI: 10.12659/ajcr.929952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Powassan virus (POWV) is an emerging tick-borne flavivirus transmitted to humans by ticks. While infection is asymptomatic in some people, others develop life-threatening encephalitis with high mortality rates. Co-infection between POWV and Borrelia burgdorferi is rare despite the fact that both pathogens can be transmitted through the same tick vector, Ixodes scapularis. It is unclear if co-infection leads to more severe clinical presentation and worse outcome. CASE REPORT A 76-year-old Wisconsin man was admitted for meningoencephalitis complicated by hypoxemic and hypercapnic respiratory failure requiring endotracheal intubation. The patient had no known tick bites but lived in a heavily wooded area. Extensive work-up for infectious, autoimmune, and paraneoplastic causes was positive for Borrelia burgdorferi and Powassan virus infection (POWV). Following treatment with ceftriaxone for neuroborreliosis and supportive care for POWV infection, the patient failed to improve. Intravenous immunoglobulins (IVIG) were started empirically, and the patient attained gradual neurological improvement and was successfully extubated. CONCLUSIONS Treatment for POWV infection is supportive, and at this time there are no approved targeted antivirals for this disease. At this time, it remains unclear if co-infection with 2 pathogens leads to a more severe clinical presentation and higher mortality. In the absence of contraindications, IVIG might be beneficial to patients with POWV infection who are not improving with supportive care.
Collapse
Affiliation(s)
- Igor Dumic
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI, USA.,Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Bridget Glomski
- Mayo Clinic Family Medicine Residency Program, Eau Claire, WI, USA
| | - Janki Patel
- Department of Infectious Disease, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Terri Nordin
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA.,Mayo Clinic Family Medicine Residency Program, Eau Claire, WI, USA
| | - Charles W Nordstrom
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI, USA.,Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Lawrence J Sprecher
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI, USA.,Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Eric Niendorf
- Department of Radiology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Amteshwar Singh
- Department of Hospital Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kosana Simeunovic
- Department of Hospital Medicine, Merit Health Wesley, Hattiesburg, MS, USA
| | - Anand Subramanian
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI, USA.,Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Oladapo Igandan
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI, USA.,Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Danilo Vitorovic
- Department of Neurology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Nemeth NM, Root J, Hartwig AE, Bowen RA, Bosco-Lauth AM. Powassan Virus Experimental Infections in Three Wild Mammal Species. Am J Trop Med Hyg 2021; 104:1048-1054. [PMID: 33534764 DOI: 10.4269/ajtmh.20-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Powassan virus (POWV) is a tick-borne virus maintained in sylvatic cycles between mammalian wildlife hosts and ticks (primarily Ixodes spp.). There are two currently recognized lineages, POWV-lineage 1 (POWV-L1) and deer tick virus (DTV; lineage 2), both of which can cause fatal neurologic disease in humans. Increased numbers of human case reports in the northeastern and north central United States in recent years have fueled questions into POWV epidemiology. We inoculated three candidate wildlife POWV reservoir hosts, groundhogs (Marmota monax), striped skunks (Mephitis mephitis), and fox squirrels (Sciurus niger), with either POWV-L1 or DTV. Resulting viremia, tissue tropism, and pathology were minimal in most inoculated individuals of all three species, with low (peak titer range, 101.7-103.3 plaque-forming units/mL serum) or undetectable viremia titers, lack of detection in tissues except for low titers in spleen, and seroconversion in most individuals by 21 days postinoculation (DPI). Pathology was limited and most commonly consisted of mild inflammation in the brain of POWV-L1- and DTV-inoculated skunks on four and 21 DPI, respectively. These results reveal variation in virulence and host competence among wild mammalian species, and a likely limited duration of host infectiousness to ticks during enzootic transmission cycles. However, POWV can transmit rapidly from tick to host, and tick co-feeding may be an additional transmission mechanism. The rare and low-level detections of viremia in these three, common, wild mammal species suggest that vector-host dynamics should continue to be explored, along with eco-epidemiological aspects of enzootic POWV transmission in different regions and virus lineages.
Collapse
Affiliation(s)
- Nicole M Nemeth
- 1Department of Population Health, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia.,2Department of Pathology, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia
| | - Jeffrey Root
- 3United States Department of Agriculture/APHIS, National Wildlife Research Center, Fort Collins, Colorado
| | - Airn E Hartwig
- 4Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Richard A Bowen
- 4Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Angela M Bosco-Lauth
- 4Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
20
|
Unusual cause at an unusual time-Powassan virus rhombencephalitis. Int J Infect Dis 2020; 103:88-90. [PMID: 33227515 DOI: 10.1016/j.ijid.2020.11.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
Powassan virus lineage II (POWV) is an emerging tick-borne neurotropic pathogen, transmitted to humans by the bite of infected Ixodes scapularis ticks. In the United States, the disease is most prevalent in the Northeast and the upper Midwest and occurs mostly during the spring and summer months when tick activity is the highest. Some patients infected with POWV develop severe encephalitis, with high mortality. We report the case of a 42-year-old healthy man who developed progressive diplopia and dysarthria in December following a deer hunting trip. Routine blood work was unrevealing and MRI was normal. Extensive work-up for infectious, autoimmune, and paraneoplastic causes was positive only for POWV. The patient was treated with supportive care and intravenous corticosteroids, with an excellent outcome. We present a rare clinical presentation of a potentially fatal emerging disease that responded favorably to corticosteroids.
Collapse
|
21
|
A novel synthetic DNA vaccine elicits protective immune responses against Powassan virus. PLoS Negl Trop Dis 2020; 14:e0008788. [PMID: 33119599 PMCID: PMC7595275 DOI: 10.1371/journal.pntd.0008788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/10/2020] [Indexed: 01/07/2023] Open
Abstract
Powassan virus (POWV) infection is a tick-borne emerging infectious disease in the United States and North America. Like Zika virus, POWV is a member of the family Flaviviridae. POWV causes severe neurological sequalae, meningitis, encephalitis, and can cause death. Although the risk of human POWV infection is low, its incidence in the U.S. in the past 16 years has increased over 300%, urging immediate attention. Despite the disease severity and its growing potential for threatening larger populations, currently there are no licensed vaccines which provide protection against POWV. We developed a novel synthetic DNA vaccine termed POWV-SEV by focusing on the conserved portions of POWV pre-membrane and envelope (prMEnv) genes. A single immunization of POWV-SEV elicited broad T and B cell immunity in mice with minimal cross-reactivity against other flaviviruses. Antibody epitope mapping demonstrated a similarity between POWV-SEV-induced immune responses and those elicited naturally in POWV-infected patients. Finally, POWV-SEV induced immunity provided protection against POWV disease in lethal challenge experiments.
Collapse
|
22
|
Feder HM, Telford S, Goethert HK, Wormser GP. Powassan Virus Encephalitis Following Brief Attachment of Connecticut Deer Ticks. Clin Infect Dis 2020; 73:e2350-e2354. [PMID: 33111953 DOI: 10.1093/cid/ciaa1183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Powassan virus (POWV) is a tick-transmitted pathogen that may cause severe encephalitis; experimentally, it can be transmitted within just 15 minutes following a tick bite. The deer tick virus subtype of POWV (DTV) is transmitted by the deer tick and is the likely cause of the increase in the number of POWV cases reported in the United States. However, DTV has only been definitively documented in 6 patients by molecular analysis of the virus. METHODS Two patients from Connecticut with encephalitis, who had a recent deer tick bite, were evaluated by the relevant serologic tests to determine if they had been infected with POWV. Evaluation also included molecular testing of an adult deer tick that had been removed from one of the patients. RESULTS We documented neuroinvasive POWV infection in 2 children from Connecticut. Based on the results of testing the tick removed from case 2, this patient was infected by DTV, representing the 7th reported case and the first documented case of DTV infection in a child. Of note, the duration of the tick bites in both cases was very short. CONCLUSIONS We provide the first clinical and epidemiologic evidence that POWV/DTV can be rapidly transmitted to a human host, that is, within hours of tick attachment, which is distinctive when compared to other deer tick-transmitted infections such as Lyme disease.
Collapse
Affiliation(s)
- Henry M Feder
- University of Connecticut Medical Center and Connecticut Children's Medical Center, Farmington and Hartford, Connecticut, USA
| | - Sam Telford
- Tufts University, North Grafton, Massachusetts, USA
| | | | - Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
23
|
Campbell O, Krause PJ. The emergence of human Powassan virus infection in North America. Ticks Tick Borne Dis 2020; 11:101540. [PMID: 32993949 DOI: 10.1016/j.ttbdis.2020.101540] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/24/2023]
Abstract
Powassan virus (POWV) is a tickborne flavivirus discovered in Ontario, Canada in 1958 that causes long-term neurological sequelae in about half the reported cases and death in a little more than 10 % of cases. The incidence of POWV disease is rising in the United States but there is limited understanding of the scope and causes of recent changes in POWV epidemiology. We focus on quantifying the increase in human POWV disease incidence and infection prevalence in the United States. We also examine differences in the frequency of symptomatic cases and asymptomatic or mildly symptomatic cases, as well as limitations in national and state surveillance for POWV infection. We searched SCOPUS for all articles containing original POWV prevalence research, case studies, or literature reviews published in English. Case studies were supplemented by Morbidity and Mortality Weekly Report POWV data from the Centers for Disease Control and Prevention (CDC) and surveillance information from state health department websites. An increase in the number of POWV cases has been reported in the United States over the past 50 yr, and the geographic range of human POWV cases has expanded. The age distribution of symptomatic POWV cases has shifted, with significantly more individuals over 40 yr old being diagnosed after 1998. The emergence of POWV is due in large part to: (i) a change in transmission of POWV from a vector that rarely bites people (Ixodes cookei) to a new vector that often bites people (Ixodes scapularis) and has expanded its geographic range, (ii) enhanced surveillance efforts for arboviruses, and (iii) a greater awareness of POWV infection.
Collapse
Affiliation(s)
- Olivia Campbell
- Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut, United States
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut, United States.
| |
Collapse
|
24
|
Mohan KVK, Leiby DA. Emerging tick-borne diseases and blood safety: summary of a public workshop. Transfusion 2020; 60:1624-1632. [PMID: 32208532 DOI: 10.1111/trf.15752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Tick-borne agents of disease continue to emerge and subsequently expand their geographic distribution. The threat to blood safety by tick-borne agents is ever increasing and requires constant surveillance concomitant with implementation of appropriate intervention methods. In April 2017, the Food and Drug Administration organized a public workshop on emerging tick-borne pathogens (excluding Babesia microti and Lyme disease) designed to provide updates on the current understanding of emerging tick-borne diseases, thereby allowing for extended discussions to determine if decisions regarding mitigation strategies need to be made proactively. Subject matter experts and other stakeholders participated in this workshop to discuss issues of biology, epidemiology, and clinical burden of tick-borne agents, risk of transfusion-transmission, surveillance, and considerations for decision making in implementing safety interventions. Herein, we summarize the scientific presentations, panel discussions, and considerations going forward.
Collapse
Affiliation(s)
- Krishna V K Mohan
- Product Review Branch, Division of Emerging & Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food & Drug Administration, Silver Spring, Maryland, USA
| | - David A Leiby
- Product Review Branch, Division of Emerging & Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food & Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
25
|
Robich RM, Cosenza DS, Elias SP, Henderson EF, Lubelczyk CB, Welch M, Smith RP. Prevalence and Genetic Characterization of Deer Tick Virus (Powassan Virus, Lineage II) in Ixodes scapularis Ticks Collected in Maine. Am J Trop Med Hyg 2020; 101:467-471. [PMID: 31218999 DOI: 10.4269/ajtmh.19-0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Deer tick virus (DTV) is a genetic variant of Powassan virus (POWV) that circulates in North America in an enzootic cycle involving the blacklegged or "deer tick," Ixodes scapularis, and small rodents such as the white-footed mouse. The number of reported human cases with neuroinvasive disease has increased substantially over the past few years, indicating that POWV may be of increasing public health importance. To this end, we sought to estimate POWV infection rates in questing I. scapularis collected from four health districts in Maine (York, Cumberland, Midcoast, and Central Maine). Infection rates were 1.6%, 1.7%, 0.7%, and 0%, respectively, for adults collected from April to November in 2016. Adults collected in October and November in 2017 from York and Cumberland counties had slightly higher rates of 2.3% and 3.5%, respectively. There was no difference in the number of males verses the number of females infected. All positive samples were of the DTV (lineage II) variant. Phylogenetic analysis was performed on 8 of the 15 DTV sequences obtained in 2016. Deer tick virus from the coastal regions were genetically similar and clustered with virus strains isolated from I. scapularis from New York State and Bridgeport, CT. The two inland viruses were genetically nearly identical and grouped with viruses from Massachusetts, Connecticut, and New York. These results are the first reported infection rates and sequences for POWV in questing ticks collected in Maine and will provide a reference point for future POWV studies.
Collapse
Affiliation(s)
- Rebecca M Robich
- Vector-borne Disease Laboratory, Maine Medical Center Research Institute, Scarborough, Maine
| | - Danielle S Cosenza
- Vector-borne Disease Laboratory, Maine Medical Center Research Institute, Scarborough, Maine
| | - Susan P Elias
- Vector-borne Disease Laboratory, Maine Medical Center Research Institute, Scarborough, Maine
| | - Elizabeth F Henderson
- Vector-borne Disease Laboratory, Maine Medical Center Research Institute, Scarborough, Maine
| | - Charles B Lubelczyk
- Vector-borne Disease Laboratory, Maine Medical Center Research Institute, Scarborough, Maine
| | - Margret Welch
- Vector-borne Disease Laboratory, Maine Medical Center Research Institute, Scarborough, Maine
| | - Robert P Smith
- Vector-borne Disease Laboratory, Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
26
|
Wormser GP, McKenna D, Scavarda C, Cooper D, El Khoury MY, Nowakowski J, Sudhindra P, Ladenheim A, Wang G, Karmen CL, Demarest V, Dupuis AP, Wong SJ. Co-infections in Persons with Early Lyme Disease, New York, USA. Emerg Infect Dis 2019; 25:748-752. [PMID: 30882316 PMCID: PMC6433014 DOI: 10.3201/eid2504.181509] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In certain regions of New York state, USA, Ixodes scapularis ticks can potentially transmit 4 pathogens in addition to Borrelia burgdorferi: Anaplasma phagocytophilum, Babesia microti, Borrelia miyamotoi, and the deer tick virus subtype of Powassan virus. In a prospective study, we systematically evaluated 52 adult patients with erythema migrans, the most common clinical manifestation of B. burgdorferi infection (Lyme disease), who had not received treatment for Lyme disease. We used serologic testing to evaluate these patients for evidence of co-infection with any of the 4 other tickborne pathogens. Evidence of co-infection was found for B. microti only; 4–6 patients were co-infected with Babesia microti. Nearly 90% of the patients evaluated had no evidence of co-infection. Our finding of B. microti co-infection documents the increasing clinical relevance of this emerging infection.
Collapse
|
27
|
Smith RP, Elias SP, Cavanaugh CE, Lubelczyk CB, Lacombe EH, Brancato J, Doyle H, Rand PW, Ebel GD, Krause PJ. Seroprevalence of Borrelia burgdorferi, B. miyamotoi, and Powassan Virus in Residents Bitten by Ixodes Ticks, Maine, USA. Emerg Infect Dis 2019; 25:804-807. [PMID: 30882312 PMCID: PMC6433028 DOI: 10.3201/eid2504.180202] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted a serosurvey of 230 persons in Maine, USA, who had been bitten by Ixodes scapularis or I. cookei ticks. We documented seropositivity for Borrelia burgdorferi (13.9%) and B. miyamotoi (2.6%), as well as a single equivocal result (0.4%) for Powassan encephalitis virus.
Collapse
|
28
|
Khan AM, Shahzad SR, Ashraf MF, Naseer U. Powassan virus encephalitis, severe babesiosis and lyme carditis in a single patient. BMJ Case Rep 2019; 12:12/11/e231645. [PMID: 31712240 DOI: 10.1136/bcr-2019-231645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ixodes scapularis is responsible for transmission of Borrelia burgdorferi, B. miyamotoi, Babesia microti, Anaplasma phagocytophilum and Powassan virus to humans. We present a case of an 87-year-old man who presented with fever and altered mental status. Initial workup revealed haemolytic anaemia, thrombocytopenia, mild hepatitis and acute kidney injury. Patient tested positive for B. burgdorferi and Babesia microti, and was started on doxycycline, atovaquone and azithromycin. He also underwent exchange transfusion twice. After some initial improvement, patient had acute deterioration of mental status and appearance of neurological findings like myoclonus and tremors. Therefore, testing for arboviruses was done and results were positive for Powassan virus. During a protracted course of hospitalisation, patient required intubation for respiratory failure and temporary pacemaker for unstable arrythmias from Lyme carditis. Patient developed permanent neurological deficits even after recovery from the acute illness.
Collapse
Affiliation(s)
- Abdul Moiz Khan
- Internal Medicine, Albany Medical Center Hospital, Albany, New York, USA
| | | | | | - Usman Naseer
- Internal Medicine, Albany Medical Center Hospital, Albany, New York, USA
| |
Collapse
|
29
|
Egizi AM, Occi JL, Price DC, Fonseca DM. Leveraging the Expertise of the New Jersey Mosquito Control Community to Jump Start Standardized Tick Surveillance. INSECTS 2019; 10:insects10080219. [PMID: 31344868 PMCID: PMC6723063 DOI: 10.3390/insects10080219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022]
Abstract
Despite the rising incidence of tick-borne diseases (TBD) in the northeastern United States (US), information and expertise needed to assess risk, inform the public and respond proactively is highly variable across states. Standardized and well-designed tick surveillance by trained personnel can facilitate the development of useful risk maps and help target resources, but requires nontrivial start-up costs. To address this challenge, we tested whether existing personnel in New Jersey’s 21 county mosquito control agencies could be trained and interested to participate in a one-day collection of American dog ticks (Dermacentor variabilis), a presumably widespread species never before surveyed in this state. A workshop was held offering training in basic tick biology, identification, and standard operating procedures (SOPs) for surveillance, followed by a one-day simultaneous collection of D. variabilis across the state (the “NJ Tick Blitz”). In total, 498 D. variabilis were collected from 21 counties and follow-up participant surveys demonstrated an increase in knowledge and interest in ticks: 41.7% of respondents reported collecting ticks outside the Tick Blitz. We hope that the success of this initiative may provide a template for researchers and officials in other states with tick-borne disease concerns to obtain baseline tick surveillance data by training and partnering with existing personnel.
Collapse
Affiliation(s)
- Andrea M Egizi
- Tick-Borne Disease Laboratory, Monmouth County Mosquito Control Division, Tinton Falls, NJ 07724, USA.
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA.
| | - James L Occi
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
- Public Health Environmental and Agricultural Laboratory, New Jersey Department of Health, Ewing, NJ 08628, USA
| | - Dana C Price
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
30
|
Zachary KC, LaRocque RC, Gonzalez RG, Branda JA. Case 3-2019: A 70-Year-Old Woman with Fever, Headache, and Progressive Encephalopathy. N Engl J Med 2019; 380:380-387. [PMID: 30673553 DOI: 10.1056/nejmcpc1815528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kimon C Zachary
- From the Departments of Medicine (K.C.Z., R.C.L.), Radiology (R.G.G.), and Pathology (J.A.B.), Massachusetts General Hospital, and the Departments of Medicine (K.C.Z., R.C.L.), Radiology (R.G.G.), and Pathology (J.A.B.), Harvard Medical School - both in Boston
| | - Regina C LaRocque
- From the Departments of Medicine (K.C.Z., R.C.L.), Radiology (R.G.G.), and Pathology (J.A.B.), Massachusetts General Hospital, and the Departments of Medicine (K.C.Z., R.C.L.), Radiology (R.G.G.), and Pathology (J.A.B.), Harvard Medical School - both in Boston
| | - R Gilberto Gonzalez
- From the Departments of Medicine (K.C.Z., R.C.L.), Radiology (R.G.G.), and Pathology (J.A.B.), Massachusetts General Hospital, and the Departments of Medicine (K.C.Z., R.C.L.), Radiology (R.G.G.), and Pathology (J.A.B.), Harvard Medical School - both in Boston
| | - John A Branda
- From the Departments of Medicine (K.C.Z., R.C.L.), Radiology (R.G.G.), and Pathology (J.A.B.), Massachusetts General Hospital, and the Departments of Medicine (K.C.Z., R.C.L.), Radiology (R.G.G.), and Pathology (J.A.B.), Harvard Medical School - both in Boston
| |
Collapse
|
31
|
Abstract
The tick-borne pathogen Powassan virus is a rare cause of encephalitis in North America and the Russian Far East. The number of documented cases described since the discovery of Powassan virus in 1958 may be <150, although detection of cases has increased over the past decade. In the United States, the incidence of Powassan virus infections expanded from the estimated 1 case per year prior to 2005 to 10 cases per year during the subsequent decade. The increased detection rate may be associated with several factors, including enhanced surveillance, the availability of improved laboratory diagnostic methods, the expansion of the vector population, and, perhaps, altered human activities that lead to more exposure. Nonetheless, it remains unclear whether Powassan virus is indeed an emerging threat or if enzootic cycles in nature remain more-or-less stable with periodic fluctuations of host and vector population sizes. Despite the low disease incidence, the approximately 10% to 15% case fatality rate of neuroinvasive Powassan virus infection and the temporary or prolonged sequelae in >50% of survivors make Powassan virus a medical concern requiring the attention of public health authorities and clinicians. The medical importance of Powassan virus justifies more research on developing specific and effective treatments and prevention and control measures.
Collapse
Affiliation(s)
- Gábor Kemenesi
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
32
|
Kannangara DW, Patel P. Report of Non-Lyme, Erythema Migrans Rashes from New Jersey with a Review of Possible Role of Tick Salivary Toxins. Vector Borne Zoonotic Dis 2018; 18:641-652. [PMID: 30129909 DOI: 10.1089/vbz.2018.2278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Erythema migrans (EM) rashes once considered pathognomonic of Lyme disease (LD) have been reported following bites of arthropods that do not transmit LD and in areas with no LD. Also, EM rashes have been reported in association with organisms other than members of Borrelia burgdorferi sensu lato complex. Arthropod saliva has chemicals that have effects on the host and pathogen transmission. Tick saliva has protein families similar to spiders and scorpions and even substances homologous to those found in snakes and other venomous animals. Ticks "invertebrate pharmacologists" have a sophisticated arsenal of chemicals that assist in blood feeding, pathogen transmission, and suppressing host defenses. No organisms have been isolated from many EM rashes. We propose that tick salivary toxins may play a role in the causation of rashes and laboratory abnormalities in tick-borne diseases. The role of tick salivary toxins needs further exploration. Cases of Lyme-like EM rashes referred to as STARI (Southern Tick-Associated Rash Illness) following bites of the lone star tick, Amblyomma americanum, in the United States have been reported predominantly in Southeastern Missouri and a few in South Carolina, North Carolina, Georgia, and one case each in Mississippi and Long Island, New York. Although there is one report of Borrelia lonestari in a patient with a rash, biopsies of 31 cases of STARI, with cultures and PCR, failed to show a relationship. Distribution of A. americanum, whose bites are associated with STARI, now extends along the East Coast of the United States, including New Jersey, up to the Canadian border. As far as we are aware, there have been no prior reports of Lyme-like rashes in New Jersey. In this study, we present case examples of 2 Lyme-like rashes, variations of EM rashes, and a brief review of studies that suggest a role of tick salivary toxins in tick-borne diseases.
Collapse
Affiliation(s)
| | - Pritiben Patel
- St Luke's Health NetWork , Warren Campus, Phillipsburg, New Jersey
| |
Collapse
|
33
|
Corrin T, Greig J, Harding S, Young I, Mascarenhas M, Waddell LA. Powassan virus, a scoping review of the global evidence. Zoonoses Public Health 2018; 65:595-624. [PMID: 29911344 DOI: 10.1111/zph.12485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 05/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Powassan virus (POWV), a flavivirus discovered in 1958, causes sporadic but severe cases of encephalitis in humans. Since 2007, the number of human Powassan cases diagnosed each year in the USA has steadily increased. This is in agreement with predictions that Powassan cases may increase in North America as a result of increased exposure to infected ticks. However, the increase may also reflect improved diagnostics and reporting among other factors. METHODS A scoping review was prioritized to identify and characterize the global literature on POWV. Following an a priori developed protocol, a comprehensive search strategy was implemented. Two reviewers screened titles and abstracts for relevant research and the identified full papers were used to characterize the POWV literature using a predetermined data characterization tool. RESULTS One hundred and seventy-eight articles were included. The majority of the studies were conducted in North America (88.2%) between 1958 and 2017. Both genotypes of POWV (Powassan lineage 1 and Deer Tick virus) were isolated or studied in vitro, in vectors, nonhuman hosts and human populations. To date, POWV has been reported in 147 humans in North America. The virus has also been isolated from five tick species, and several animals have tested positive for exposure to the virus. The relevant articles identified in this review cover the following eight topics: epidemiology (123 studies), pathogenesis (66), surveillance (33), virus characterization (22), POWV transmission (8), diagnostic test accuracy (8), treatment (4) and mitigation strategies (3). CONCLUSION The literature on POWV is relatively small compared with other vector-borne diseases, likely because POWV has not been prioritized due to the small number of severe sporadic human cases. With the projected impact of climate change on tick populations, increases in the number of human cases are expected. It is recommended that future research efforts focus on closing some of the important knowledge gaps identified in this scoping review.
Collapse
Affiliation(s)
- Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Judy Greig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Shannon Harding
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Ian Young
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Mariola Mascarenhas
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Lisa A Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
34
|
|
35
|
Patel KM, Johnson J, Zacharioudakis IM, Boxerman JL, Flanigan TP, Reece RM. First confirmed case of Powassan neuroinvasive disease in Rhode Island. IDCases 2018; 12:84-87. [PMID: 29942757 PMCID: PMC6010959 DOI: 10.1016/j.idcr.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Powassan Virus is the arthropod-borne vector responsible for Powassan neuroinvasive disease. The virus was first isolated in 1958 and has been responsible for approximately 100 cases of neuroinvasive disease. Rates of infection have been on the rise over the past decade with numerous states reporting their first confirmed case; New Jersey, New Hampshire and Connecticut all reported their first case within the last five years. We present here the first confirmed case of Powassan neuroinvasive disease in the nearby state of Rhode Island. A previously healthy 81-year-old female with known tick exposure presented with fever, altered sensorium, seizures and focal neurological deficits. After an extensive work-up that was largely unrevealing Powassan encephalitis was suspected. The diagnosis was confirmed with serological testing consisting of Powassan IgM enzyme-linked immunosorbent assay and Powassan plaque reduction neutralization testing. The case study provides evidence for the increasing spread of Powassan neuroinvasive disease and reinforces the importance of requesting focused testing for Powassan Virus in patients from an endemic area with a clinically compatible syndrome.
Collapse
Affiliation(s)
- Kavin M Patel
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, United States
| | - Jennie Johnson
- Department of Infectious Disease, Rhode Island Hospital and Alpert Medical School of Brown University, United States
| | - Ioannis M Zacharioudakis
- Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, United States
| | - Jerrold L Boxerman
- Department of Diagnostic Imaging, Rhode Island Hospital and Alpert Medical School of Brown University, United States
| | - Timothy P Flanigan
- Department of Infectious Disease, Rhode Island Hospital and Alpert Medical School of Brown University, United States
| | - Rebecca M Reece
- Department of Infectious Disease, Rhode Island Hospital and Alpert Medical School of Brown University, United States
| |
Collapse
|
36
|
Krow-Lucal ER, Lindsey NP, Fischer M, Hills SL. Powassan Virus Disease in the United States, 2006-2016. Vector Borne Zoonotic Dis 2018; 18:286-290. [PMID: 29652642 DOI: 10.1089/vbz.2017.2239] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Powassan virus (POWV) is a tick-borne flavivirus that causes rare, but often severe, disease in humans. POWV neuroinvasive disease was added to the U.S. nationally notifiable disease list in 2001 and nonneuroinvasive disease was added in 2004. The only previous review of the epidemiology of POWV disease in the United States based on cases reported to the Centers for Disease Control and Prevention (CDC) covered the period from 1999 through 2005. METHODS We describe the epidemiology and clinical features of laboratory-confirmed POWV disease cases reported to CDC from 2006 through 2016. RESULTS There were 99 cases of POWV disease reported during the 11-year period, including 89 neuroinvasive and 10 nonneuroinvasive disease cases. There was a median of seven cases per year (range: 1-22), with the highest numbers of cases reported in 2011 (n = 16), 2013 (n = 15), and 2016 (n = 22). Cases occurred throughout the year, but peaked in May and June. Cases were reported primarily from northeastern and north-central states. Overall, 72 (73%) cases were in males and the median age was 62 years (range: 3 months-87 years). Of the 11 (11%) cases who died, all were aged >50 years. The average annual incidence of neuroinvasive POWV disease was 0.0025 cases per 100,000 persons. CONCLUSIONS POWV disease can be a severe disease and has been diagnosed with increased frequency in recent years. However, this might reflect increased disease awareness, improved test availability, and enhanced surveillance efforts. Clinicians should consider POWV disease in patients presenting with acute encephalitis or aseptic meningitis who are resident in, or have traveled to, an appropriate geographic region.
Collapse
Affiliation(s)
- Elisabeth R Krow-Lucal
- Arboviral Diseases Branch, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Nicole P Lindsey
- Arboviral Diseases Branch, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Marc Fischer
- Arboviral Diseases Branch, Centers for Disease Control and Prevention , Fort Collins, Colorado
| | - Susan L Hills
- Arboviral Diseases Branch, Centers for Disease Control and Prevention , Fort Collins, Colorado
| |
Collapse
|
37
|
Affiliation(s)
- Robin B McFee
- Debusk College of Osteopathic Medicine, Lincoln Memorial University.
| |
Collapse
|
38
|
Piantadosi A, Kanjilal S, Ganesh V, Khanna A, Hyle EP, Rosand J, Bold T, Metsky HC, Lemieux J, Leone MJ, Freimark L, Matranga CB, Adams G, McGrath G, Zamirpour S, Telford S, Rosenberg E, Cho T, Frosch MP, Goldberg MB, Mukerji SS, Sabeti PC. Rapid Detection of Powassan Virus in a Patient With Encephalitis by Metagenomic Sequencing. Clin Infect Dis 2018; 66:789-792. [PMID: 29020227 PMCID: PMC5850433 DOI: 10.1093/cid/cix792] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
We describe a patient with severe and progressive encephalitis of unknown etiology. We performed rapid metagenomic sequencing from cerebrospinal fluid and identified Powassan virus, an emerging tick-borne flavivirus that has been increasingly detected in the United States.
Collapse
Affiliation(s)
- Anne Piantadosi
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
| | - Sanjat Kanjilal
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
| | - Vijay Ganesh
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Arjun Khanna
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Emily P Hyle
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Tyler Bold
- Division of Infectious Diseases, Massachusetts General Hospital
| | - Hayden C Metsky
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
- Department of Electrical Engineering and Computer Science, MIT, Cambridge
| | - Jacob Lemieux
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
- Department of Medicine, Massachusetts General Hospital, Boston
| | - Michael J Leone
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Lisa Freimark
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
| | - Christian B Matranga
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
| | - Gordon Adams
- Division of Infectious Diseases, Massachusetts General Hospital
| | - Graham McGrath
- Division of Infectious Diseases, Massachusetts General Hospital
| | | | - Sam Telford
- Tufts School of Veterinary Medicine, North Grafton
| | - Eric Rosenberg
- Division of Infectious Diseases, Massachusetts General Hospital
- Harvard Medical School, Boston
| | - Tracey Cho
- Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Matthew P Frosch
- Harvard Medical School, Boston
- Division of Neuropathology, Massachusetts General Hospital
| | - Marcia B Goldberg
- Division of Infectious Diseases, Massachusetts General Hospital
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
- Department of Microbiology and Immunobiology, Harvard Medical School
| | - Shibani S Mukerji
- Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
39
|
Doughty CT, Yawetz S, Lyons J. Emerging Causes of Arbovirus Encephalitis in North America: Powassan, Chikungunya, and Zika Viruses. Curr Neurol Neurosci Rep 2017; 17:12. [PMID: 28229397 DOI: 10.1007/s11910-017-0724-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arboviruses are arthropod-borne viruses transmitted by the bite of mosquitoes, ticks, or other arthropods. Arboviruses are a common and an increasing cause of human illness in North America. Powassan virus, Chikungunya virus, and Zika virus are arboviruses that have all recently emerged as increasing causes of neurologic illness. Powassan virus almost exclusively causes encephalitis, but cases are rare, sporadic, and restricted to portions of North America and Russia. Chikungunya virus has spread widely across the world, causing millions of infections. Encephalitis is a rare manifestation of illness but is more common and severe in neonates and older adults. Zika virus has recently spread through much of the Americas and has been associated mostly with microcephaly and other congenital neurologic complications. Encephalitis occurring in infected adults has also been recently reported. This review will discuss the neuropathogenesis of these viruses, their transmission and geographic distribution, the spectrum of their neurologic manifestations, and the appropriate method of diagnosis.
Collapse
Affiliation(s)
- Christopher T Doughty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Division of Neurological Infections and Inflammatory Diseases, Department of Neurology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Sigal Yawetz
- Harvard Medical School, Boston, MA, USA.,Division of Infectious Disease, Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer Lyons
- Division of Neurological Infections and Inflammatory Diseases, Department of Neurology, Brigham and Women's Hospital, 45 Francis Street, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Izuogu AO, McNally KL, Harris SE, Youseff BH, Presloid JB, Burlak C, Munshi-South J, Best SM, Taylor RT. Interferon signaling in Peromyscus leucopus confers a potent and specific restriction to vector-borne flaviviruses. PLoS One 2017; 12:e0179781. [PMID: 28650973 PMCID: PMC5484488 DOI: 10.1371/journal.pone.0179781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Tick-borne flaviviruses (TBFVs), including Powassan virus and tick-borne encephalitis virus cause encephalitis or hemorrhagic fevers in humans with case-fatality rates ranging from 1-30%. Despite severe disease in humans, TBFV infection of natural rodent hosts has little noticeable effect. Currently, the basis for resistance to disease is not known. We hypothesize that the coevolution of flaviviruses with their respective hosts has shaped the evolution of potent antiviral factors that suppress virus replication and protect the host from lethal infection. In the current study, we compared virus infection between reservoir host cells and related susceptible species. Infection of primary fibroblasts from the white-footed mouse (Peromyscus leucopus, a representative host) with a panel of vector-borne flaviviruses showed up to a 10,000-fold reduction in virus titer compared to control Mus musculus cells. Replication of vesicular stomatitis virus was equivalent in P. leucopus and M. musculus cells suggesting that restriction was flavivirus-specific. Step-wise comparison of the virus infection cycle revealed a significant block to viral RNA replication, but not virus entry, in P. leucopus cells. To understand the role of the type I interferon (IFN) response in virus restriction, we knocked down signal transducer and activator of transcription 1 (STAT1) or the type I IFN receptor (IFNAR1) by RNA interference. Loss of IFNAR1 or STAT1 significantly relieved the block in virus replication in P. leucopus cells. The major IFN antagonist encoded by TBFV, nonstructural protein 5, was functional in P. leucopus cells, thus ruling out ineffective viral antagonism of the host IFN response. Collectively, this work demonstrates that the IFN response of P. leucopus imparts a strong and virus-specific barrier to flavivirus replication. Future identification of the IFN-stimulated genes responsible for virus restriction specifically in P. leucopus will yield mechanistic insight into efficient control of virus replication and may inform the development of antiviral therapeutics.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Host Specificity/genetics
- Host Specificity/immunology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Interferon Type I/antagonists & inhibitors
- Interferon Type I/immunology
- Mice
- Peromyscus/genetics
- Peromyscus/immunology
- Peromyscus/virology
- RNA, Small Interfering/genetics
- RNA, Viral/genetics
- Receptor, Interferon alpha-beta/antagonists & inhibitors
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- STAT1 Transcription Factor/antagonists & inhibitors
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Viral Nonstructural Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Adaeze O. Izuogu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Kristin L. McNally
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, Montana, United States of America
| | - Stephen E. Harris
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - Brian H. Youseff
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - John B. Presloid
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Christopher Burlak
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, New York, United States of America
| | - Sonja M. Best
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, Montana, United States of America
| | - R. Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| |
Collapse
|
41
|
Hermance ME, Thangamani S. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America. Vector Borne Zoonotic Dis 2017; 17:453-462. [PMID: 28498740 PMCID: PMC5512300 DOI: 10.1089/vbz.2017.2110] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV, Flaviviridae) is the only North American member of the tick-borne encephalitis serogroup of flaviviruses. It is transmitted to small- and medium-sized mammals by Ixodes scapularis, Ixodes cookei, and several other Ixodes tick species. Humans become infected with POWV during spillover transmission from the natural transmission cycles. In humans, POWV is the causative agent of a severe neuroinvasive illness with 50% of survivors displaying long-term neurological sequelae. POWV was recognized as a human pathogen in 1958 when a young boy died of severe encephalitis in Powassan, Ontario, and POWV was isolated from the brain autopsy of this case. Two distinct genetic lineages of POWV are now recognized: POWV (lineage I) and deer tick virus (lineage II). Since the index case in 1958, over 100 human cases of POWV have been reported, with an apparent rise in disease incidence in the past 16 years. This recent increase in cases may represent a true emergence of POWV in regions where the tick vector species are prevalent, or it could represent an increase in POWV surveillance and diagnosis. In the past 5 years, both basic and applied research for POWV disease has intensified, including phylogenetic studies, field surveillance, case studies, and animal model development. This review provides an overview of POWV, including the epidemiology, transmission, clinical disease, and diagnosis of POWV infection. Recent research developments and future priorities with regard to the disease are emphasized.
Collapse
Affiliation(s)
- Meghan E Hermance
- 1 Department of Pathology, University of Texas Medical Branch , Galveston, Texas
| | - Saravanan Thangamani
- 1 Department of Pathology, University of Texas Medical Branch , Galveston, Texas.,2 Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston, Texas.,3 Center for Tropical Diseases, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
42
|
Santos RI, Hermance ME, Gelman BB, Thangamani S. Spinal Cord Ventral Horns and Lymphoid Organ Involvement in Powassan Virus Infection in a Mouse Model. Viruses 2016; 8:E220. [PMID: 27529273 PMCID: PMC4997582 DOI: 10.3390/v8080220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022] Open
Abstract
Powassan virus (POWV) belongs to the family Flaviviridae and is a member of the tick-borne encephalitis serogroup. Transmission of POWV from infected ticks to humans has been documented in the USA, Canada, and Russia, causing fatal encephalitis in 10% of human cases and significant neurological sequelae in survivors. We used C57BL/6 mice to investigate POWV infection and pathogenesis. After footpad inoculation, infected animals exhibited rapid disease progression and 100% mortality. Immunohistochemistry and immunofluorescence revealed a very strong neuronal tropism of POWV infection. The central nervous system infection appeared as a meningoencephalitis with perivascular mononuclear infiltration and microglial activation in the brain, and a poliomyelitis-like syndrome with high level of POWV antigen at the ventral horn of the spinal cord. Pathological studies also revealed substantial infection of splenic macrophages by POWV, which suggests that the spleen plays a more important role in pathogenesis than previously realized. This report provides a detailed description of the neuroanatomical distribution of the lesions produced by POWV infection in C57BL/6 mice.
Collapse
Affiliation(s)
- Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Meghan E Hermance
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
43
|
Nelder MP, Russell CB, Sheehan NJ, Sander B, Moore S, Li Y, Johnson S, Patel SN, Sider D. Human pathogens associated with the blacklegged tick Ixodes scapularis: a systematic review. Parasit Vectors 2016; 9:265. [PMID: 27151067 PMCID: PMC4857413 DOI: 10.1186/s13071-016-1529-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/21/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The blacklegged tick Ixodes scapularis transmits Borrelia burgdorferi (sensu stricto) in eastern North America; however, the agent of Lyme disease is not the sole pathogen harbored by the blacklegged tick. The blacklegged tick is expanding its range into areas of southern Canada such as Ontario, an area where exposure to blacklegged tick bites and tick-borne pathogens is increasing. We performed a systematic review to evaluate the public health risks posed by expanding blacklegged tick populations and their associated pathogens. METHODS We followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for conducting our systematic review. We searched Ovid MEDLINE, Embase, BIOSIS, Scopus and Environment Complete databases for studies published from 2000 through 2015, using subject headings and keywords that included "Ixodes scapularis", "Rickettsia", "Borrelia", "Anaplasma", "Babesia" and "pathogen." Two reviewers screened titles and abstracts against eligibility criteria (i.e. studies that included field-collected blacklegged ticks and studies that did not focus solely on B. burgdorferi) and performed quality assessments on eligible studies. RESULTS Seventy-eight studies were included in the final review, 72 were from the US and eight were from Canada (two studies included blacklegged ticks from both countries). Sixty-four (82%) studies met ≥ 75% of the quality assessment criteria. Blacklegged ticks harbored 91 distinct taxa, 16 of these are tick-transmitted human pathogens, including species of Anaplasma, Babesia, Bartonella, Borrelia, Ehrlichia, Rickettsia, Theileria and Flavivirus. Organism richness was highest in the Northeast (Connecticut, New York) and Upper Midwest US (Wisconsin); however, organism richness was dependent on sampling effort. The primary tick-borne pathogens of public health concern in Ontario, due to the geographic proximity or historical detection in Ontario, are Anaplasma phagocytophilum, Babesia microti, B. burgdorferi, Borrelia miyamotoi, deer tick virus and Ehrlichia muris-like sp. Aside from B. burgdorferi and to a much lesser concern A. phagocytophilum, these pathogens are not immediate concerns to public health in Ontario; rather they represent future threats as the distribution of vectors and pathogens continue to proliferate. CONCLUSIONS Our review is the first systematic assessment of the literature on the human pathogens associated with the blacklegged tick. As Lyme disease awareness continues to increase, it is an opportune time to document the full spectrum of human pathogens transmittable by blacklegged ticks.
Collapse
Affiliation(s)
- Mark P Nelder
- Enteric, Zoonotic and Vector-borne Diseases; Communicable Diseases, Emergency Preparedness and Response; Public Health Ontario, Toronto, Ontario, Canada.
| | - Curtis B Russell
- Enteric, Zoonotic and Vector-borne Diseases; Communicable Diseases, Emergency Preparedness and Response; Public Health Ontario, Toronto, Ontario, Canada
| | - Nina Jain Sheehan
- Enteric, Zoonotic and Vector-borne Diseases; Communicable Diseases, Emergency Preparedness and Response; Public Health Ontario, Toronto, Ontario, Canada
| | - Beate Sander
- Enteric, Zoonotic and Vector-borne Diseases; Communicable Diseases, Emergency Preparedness and Response; Public Health Ontario, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - Stephen Moore
- Enteric, Zoonotic and Vector-borne Diseases; Communicable Diseases, Emergency Preparedness and Response; Public Health Ontario, Toronto, Ontario, Canada
| | - Ye Li
- Analytic Services, Knowledge Services, Public Health Ontario, Toronto, ON, Canada
| | - Steven Johnson
- Analytic Services, Knowledge Services, Public Health Ontario, Toronto, ON, Canada
| | - Samir N Patel
- Public Health Ontario Laboratories, Public Health Ontario, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Doug Sider
- Enteric, Zoonotic and Vector-borne Diseases; Communicable Diseases, Emergency Preparedness and Response; Public Health Ontario, Toronto, Ontario, Canada
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Sanchez E, Vannier E, Wormser GP, Hu LT. Diagnosis, Treatment, and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and Babesiosis: A Review. JAMA 2016; 315:1767-77. [PMID: 27115378 PMCID: PMC7758915 DOI: 10.1001/jama.2016.2884] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Lyme disease, human granulocytic anaplasmosis (HGA), and babesiosis are emerging tick-borne infections. OBJECTIVE To provide an update on diagnosis, treatment, and prevention of tick-borne infections. EVIDENCE REVIEW Search of PubMed and Scopus for articles on diagnosis, treatment, and prevention of tick-borne infections published in English from January 2005 through December 2015. FINDINGS The search yielded 3550 articles for diagnosis and treatment and 752 articles for prevention. Of these articles, 361 were reviewed in depth. Evidence supports the use of US Food and Drug Administration-approved serologic tests, such as an enzyme immunoassay (EIA), followed by Western blot testing, to diagnose extracutaneous manifestations of Lyme disease. Microscopy and polymerase chain reaction assay of blood specimens are used to diagnose active HGA and babesiosis. The efficacy of oral doxycycline, amoxicillin, and cefuroxime axetil for treating Lyme disease has been established in multiple trials. Ceftriaxone is recommended when parenteral antibiotic therapy is recommended. Multiple trials have shown efficacy for a 10-day course of oral doxycycline for treatment of erythema migrans and for a 14-day course for treatment of early neurologic Lyme disease in ambulatory patients. Evidence indicates that a 10-day course of oral doxycycline is effective for HGA and that a 7- to 10-day course of azithromycin plus atovaquone is effective for mild babesiosis. Based on multiple case reports, a 7- to 10-day course of clindamycin plus quinine is often used to treat severe babesiosis. A recent study supports a minimum of 6 weeks of antibiotics for highly immunocompromised patients with babesiosis, with no parasites detected on blood smear for at least the final 2 weeks of treatment. CONCLUSIONS AND RELEVANCE Evidence is evolving regarding the diagnosis, treatment, and prevention of Lyme disease, HGA, and babesiosis. Recent evidence supports treating patients with erythema migrans for no longer than 10 days when doxycycline is used and prescription of a 14-day course of oral doxycycline for early neurologic Lyme disease in ambulatory patients. The duration of antimicrobial therapy for babesiosis in severely immunocompromised patients should be extended to 6 weeks or longer.
Collapse
Affiliation(s)
- Edgar Sanchez
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts
| | - Edouard Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts
| | - Gary P. Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, New York
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
45
|
Piantadosi A, Rubin DB, McQuillen DP, Hsu L, Lederer PA, Ashbaugh CD, Duffalo C, Duncan R, Thon J, Bhattacharyya S, Basgoz N, Feske SK, Lyons JL. Emerging Cases of Powassan Virus Encephalitis in New England: Clinical Presentation, Imaging, and Review of the Literature. Clin Infect Dis 2016; 62:707-713. [PMID: 26668338 PMCID: PMC4850925 DOI: 10.1093/cid/civ1005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/21/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Powassan virus (POWV) is a rarely diagnosed cause of encephalitis in the United States. In the Northeast, it is transmitted by Ixodes scapularis, the same vector that transmits Lyme disease. The prevalence of POWV among animal hosts and vectors has been increasing. We present 8 cases of POWV encephalitis from Massachusetts and New Hampshire in 2013-2015. METHODS We abstracted clinical and epidemiological information for patients with POWV encephalitis diagnosed at 2 hospitals in Massachusetts from 2013 to 2015. We compared their brain imaging with those in published findings from Powassan and other viral encephalitides. RESULTS The patients ranged in age from 21 to 82 years, were, for the most part, previously healthy, and presented with syndromes of fever, headache, and altered consciousness. Infections occurred from May to September and were often associated with known tick exposures. In all patients, cerebrospinal fluid analyses showed pleocytosis with elevated protein. In 7 of 8 patients, brain magnetic resonance imaging demonstrated deep foci of increased T2/fluid-attenuation inversion recovery signal intensity. CONCLUSIONS We describe 8 cases of POWV encephalitis in Massachusetts and New Hampshire in 2013-2015. Prior to this, there had been only 2 cases of POWV encephalitis identified in Massachusetts. These cases may represent emergence of this virus in a region where its vector, I. scapularis, is known to be prevalent or may represent the emerging diagnosis of an underappreciated pathogen. We recommend testing for POWV in patients who present with encephalitis in the spring to fall in New England.
Collapse
MESH Headings
- Acyclovir/therapeutic use
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antibodies, Viral/cerebrospinal fluid
- Antiviral Agents/therapeutic use
- Brain/diagnostic imaging
- Brain/pathology
- Brain/virology
- Encephalitis Viruses, Tick-Borne/drug effects
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/diagnosis
- Encephalitis, Tick-Borne/diagnostic imaging
- Encephalitis, Tick-Borne/epidemiology
- Encephalitis, Tick-Borne/virology
- Female
- Flavivirus/drug effects
- Flavivirus/immunology
- Flavivirus/pathogenicity
- Humans
- Ixodes/virology
- Magnetic Resonance Imaging
- Male
- Massachusetts/epidemiology
- Meningitis, Bacterial/drug therapy
- Middle Aged
- New Hampshire/epidemiology
- Prevalence
- Seasons
- United States/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Anne Piantadosi
- Division of Infectious Disease, Massachusetts General Hospital
| | - Daniel B Rubin
- Department of Neurology, Brigham and Women's Hospital, Boston
| | - Daniel P McQuillen
- Department of Infectious Diseases, Lahey Hospital & Medical Center, Tufts University School of Medicine, Burlington
| | | | | | - Cameron D Ashbaugh
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, Massachusetts
| | - Chad Duffalo
- Christiana Care Health System, Division of Infectious Diseases, Newark, Delaware
| | - Robert Duncan
- Department of Infectious Diseases, Lahey Hospital & Medical Center, Tufts University School of Medicine, Burlington
| | - Jesse Thon
- Department of Neurology, Brigham and Women's Hospital, Boston
| | | | - Nesli Basgoz
- Division of Infectious Disease, Massachusetts General Hospital
| | - Steven K Feske
- Department of Neurology, Brigham and Women's Hospital, Boston
| | | |
Collapse
|
46
|
Abstract
Erythema migrans (EM) is the most common objective manifestation of Borrelia burgdorferi infection. Systemic symptoms are usually present. Most patients do not recall a preceding tick bite. Despite a characteristic appearance, EM is not pathognomonic for Lyme disease and must be distinguished from other similar appearing skin lesions. EM is a clinical diagnosis; serologic and PCR assays are unnecessary. Leukopenia and thrombocytopenia are indicative of either an alternative diagnosis, or coinfection with another tick-borne pathogen. When EM is promptly treated with appropriate antimicrobial agents, the prognosis is excellent. Persons in endemic areas should take measures to prevent tick bites.
Collapse
Affiliation(s)
- Robert B Nadelman
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Skyline Office #2NC20, 40 Sunshine Cottage Road, Valhalla, NY 10595, USA.
| |
Collapse
|
47
|
Wormser GP, Pritt B. Update and Commentary on Four Emerging Tick-Borne Infections: Ehrlichia muris-like Agent, Borrelia miyamotoi, Deer Tick Virus, Heartland Virus, and Whether Ticks Play a Role in Transmission of Bartonella henselae. Infect Dis Clin North Am 2016; 29:371-81. [PMID: 25999230 DOI: 10.1016/j.idc.2015.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Emerging tick-borne infections continue to be observed in the United States and elsewhere. Current information on the epidemiology, clinical and laboratory features, and treatment of infections due to Ehrlichia muris-like agent, deer tick virus, Borrelia miyamotoi sensu lato, and Heartland virus was provided and critically reviewed. More research is needed to define the incidence and to understand the clinical and the laboratory features of these infections. There is also a growing need for the development of sensitive and specific serologic and molecular assays for these infections that are easily accessible to clinicians.
Collapse
Affiliation(s)
- Gary P Wormser
- Division of Infectious Diseases, New York Medical College, 40 Sunshine Cottage Road, Skyline Office #2N-C20, Valhalla, NY 10595, USA.
| | - Bobbi Pritt
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, Mayo Clinic, 200 1st Street, SW, Rochester, MN 55905, USA
| |
Collapse
|
48
|
Diuk-Wasser MA, Vannier E, Krause PJ. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitol 2015; 32:30-42. [PMID: 26613664 DOI: 10.1016/j.pt.2015.09.008] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Ixodes ticks maintain a large and diverse array of human pathogens in the enzootic cycle, including Borrelia burgdorferi and Babesia microti. Despite the poor ecological fitness of B. microti, babesiosis has recently emerged in areas endemic for Lyme disease. Studies in ticks, reservoir hosts, and humans indicate that coinfection with B. burgdorferi and B. microti is common, promotes transmission and emergence of B. microti in the enzootic cycle, and causes greater disease severity and duration in humans. These interdisciplinary studies may serve as a paradigm for the study of other vector-borne coinfections. Identifying ecological drivers of pathogen emergence and host factors that fuel disease severity in coinfected individuals will help guide the design of effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
| | - Edouard Vannier
- Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
49
|
Kozak RA, Ackford JG, Slaine P, Li A, Carman S, Campbell D, Welch MK, Kropinski AM, Nagy É. Characterization of a novel adenovirus isolated from a skunk. Virology 2015; 485:16-24. [DOI: 10.1016/j.virol.2015.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/17/2015] [Accepted: 06/19/2015] [Indexed: 01/23/2023]
|
50
|
Tokarz R, Williams SH, Sameroff S, Sanchez Leon M, Jain K, Lipkin WI. Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J Virol 2014; 88:11480-92. [PMID: 25056893 PMCID: PMC4178814 DOI: 10.1128/jvi.01858-14] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Simon Hedley Williams
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Maria Sanchez Leon
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|