1
|
Patouillat L, Hambuckers A, Adi Subrata S, Garigliany M, Brotcorne F. Zoonotic pathogens in wild Asian primates: a systematic review highlighting research gaps. Front Vet Sci 2024; 11:1386180. [PMID: 38993279 PMCID: PMC11238137 DOI: 10.3389/fvets.2024.1386180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Ongoing global changes, including natural land conversion for agriculture and urbanization, modify the dynamics of human-primate contacts, resulting in increased zoonotic risks. Although Asia shelters high primate diversity and experiences rapid expansion of human-primate contact zones, there remains little documentation regarding zoonotic surveillance in the primates of this region. Methods Using the PRISMA guidelines, we conducted a systematic review to compile an inventory of zoonotic pathogens detected in wild Asian primates, while highlighting the coverage of primate species, countries, and pathogen groups surveyed, as well as the diagnostic methods used across the studies. Moreover, we compared the species richness of pathogens harbored by primates across diverse types of habitats classified according to their degree of anthropization (i.e., urban vs. rural vs. forest habitats). Results and discussion Searches of Scopus, PubMed, and the Global Mammal Parasite Database yielded 152 articles on 39 primate species. We inventoried 183 pathogens, including 63 helminthic gastrointestinal parasites, two blood-borne parasites, 42 protozoa, 45 viruses, 30 bacteria, and one fungus. Considering each study as a sample, species accumulation curves revealed no significant differences in specific richness between habitat types for any of the pathogen groups analyzed. This is likely due to the insufficient sampling effort (i.e., a limited number of studies), which prevents drawing conclusive findings. This systematic review identified several publication biases, particularly the uneven representation of host species and pathogen groups studied, as well as a lack of use of generic diagnostic methods. Addressing these gaps necessitates a multidisciplinary strategy framed in a One Health approach, which may facilitate a broader inventory of pathogens and ultimately limit the risk of cross-species transmission at the human-primate interface. Strengthening the zoonotic surveillance in primates of this region could be realized notably through the application of more comprehensive diagnostic techniques such as broad-spectrum analyses without a priori selection.
Collapse
Affiliation(s)
- Laurie Patouillat
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
- FARAH, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alain Hambuckers
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
| | - Sena Adi Subrata
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mutien Garigliany
- FARAH, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Fany Brotcorne
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Lu J, Long Y, Sun J, Gong L. Towards a comprehensive view of the herpes B virus. Front Immunol 2023; 14:1281384. [PMID: 38035092 PMCID: PMC10687423 DOI: 10.3389/fimmu.2023.1281384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.
Collapse
Affiliation(s)
- Jiangling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
3
|
Amano M, Sapkanarak K, Thbthimthong W, Meesawat S, Kemthong T, Suttisan N, Abe H, Malaivijitnond S, Yasuda J. Development of Quantitative Real-Time PCR and Loop-Mediated Isothermal Amplification Assays for the Surveillance and Diagnosis of Herpes B Virus Infection. Viruses 2023; 15:2086. [PMID: 37896863 PMCID: PMC10611326 DOI: 10.3390/v15102086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Herpes B virus (BV) is a zoonotic virus which can be transmitted from macaques to humans, which is often associated with high mortality rates. Because macaques often exhibit asymptomatic infections, individuals who come into contact with these animals face unexpected risks of BV infections. A serological test is widely performed to investigate BV infections. However, the assay's sensitivity and specificity appeared to be inadequate, and it does not necessarily indicate ongoing viral shedding. Here, we developed LAMP and qPCR assays aiming to detect BVs with a high sensitivity and specificity in various macaque species and validated them using oral swab samples collected from 97 wild cynomolgus macaques living in Thailand. Our LAMP and qPCR assays detected more than 50 and 10 copies of the target sequences per reaction, respectively. The LAMP assay could detect BV within 25 min, indicating its advantages for the rapid detection of BV. Collectively, our findings indicated that both assays developed in this study exhibit advantages and usefulness for BV surveillance and the diagnosis of BV infections in macaques. Furthermore, for the first time, we determined the partial genome sequences of BVs detected in cynomolgus macaques in Thailand. Phylogenetic analysis revealed the species-specific evolution of BV within macaques.
Collapse
Affiliation(s)
- Murasaki Amano
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Krittiga Sapkanarak
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wipaporn Thbthimthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
| | - Suthirote Meesawat
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nutchanat Suttisan
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
| | - Haruka Abe
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Vietnam Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; (K.S.); (W.T.); (S.M.); (T.K.); (N.S.); (S.M.)
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (M.A.); (H.A.)
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
4
|
Qi M, Wang Q, Wang Y, Chen Y, Hu C, Yang W, Wu F, Huang T, Dawood AS, Zubair M, Li X, Chen J, Robertson ID, Chen H, Guo A. Epidemiological Survey and Risk Factor Analysis of 14 Potential Pathogens in Golden Snub-Nosed Monkeys at Shennongjia National Nature Reserve, China. Pathogens 2023; 12:pathogens12030483. [PMID: 36986405 PMCID: PMC10051804 DOI: 10.3390/pathogens12030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Golden snub-nosed monkeys (Rhinopithecus roxellanae) belong to Class A, the highest level of endangered primate species. Exploring the infection status of potential pathogens in golden snub-nosed monkeys is important for controlling associated diseases and protecting this species. The objective of this study was to investigate the seroprevalence for a number of potential pathogens and the prevalence of fecal adenovirus and rotavirus. A total of 283 fecal samples were collected from 100 golden snub-nosed monkeys in December 2014, June 2015, and January 2016; 26 blood samples were collected from 26 monkeys in June 2014, June 2015, January 2016 and November 2016 at Shennongjia National Reserve in Hubei, China. The infection of 11 potential viral diseases was examined serologically using an Indirect Enzyme-linked Immunosorbent Assay (iELISA) and Dot Immunobinding Assays (DIA), while the whole blood IFN-γ in vitro release assay was used to test tuberculosis (TB). In addition, fecal Adenovirus and Rotavirus were detected using Polymerase Chain Reaction (PCR). As a result, the Macacine herpesvirus-1 (MaHV-1), Golden snub-nosed monkey cytomegalovirus (GsmCMV), Simian foamy virus (SFV) and Hepatitis A virus (HAV) were detected with the seroprevalence of 57.7% (95% CI: 36.9, 76.6), 38.5% (95% CI: 20.2, 59.4), 26.9% (95% CI: 11.6, 47.8), and 7.7% (95% CI: 0.0, 84.2), respectively. Two fecal samples tested positive for Adenovirus (ADV) by PCR, with a prevalence of 0.7% (95% CI: 0.2, 2.5), and further, the amplification products were sequenced. Phylogenetic analysis revealed that they belonged to the HADV-G group. However, other pathogens, such as Coxsackievirus (CV), Measles virus (MeV), Rotavirus (RV), Simian immunodeficiency virus (SIV), Simian type D retroviruses (SRV), Simian-T-cell lymphotropic virus type 1 (STLV-1), Simian varicella virus (SVV), Simian virus 40 (SV40) and Mycobacterium tuberculosis complex (TB) were negative in all samples. In addition, a risk factor analysis indicated that the seroprevalence of MaHV-1 infection was significantly associated with old age (≥4 years). These results have important implications for understanding the health status and conservation of the endangered golden snub-nosed monkey population at Shennongjia Nature Reserve.
Collapse
Affiliation(s)
- Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- EpiCentre, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanji Yang
- Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Shennongjia Forest District 442411, China
| | - Feng Wu
- Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Shennongjia Forest District 442411, China
| | - Tianpeng Huang
- Key Laboratory of Conservation Biology for Shennongjia Golden Monkey, Shennongjia Forest District 442411, China
| | - Ali Sobhy Dawood
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Muhammad Zubair
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Xiang Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ian Duncan Robertson
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
- School of Veterinary Medicine, Murdoch University, Murdoch 6150, Australia
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- National Professional Laboratory for Animal Tuberculosis (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan 430070, China
| |
Collapse
|
5
|
Kaewchot S, Tangsudjai S, Sariya L, Mongkolphan C, Saechin A, Sariwongchan R, Panpeth N, Thongsahuan S, Suksai P. Zoonotic pathogens survey in free-living long-tailed macaques in Thailand. Int J Vet Sci Med 2022; 10:11-18. [PMID: 35291581 PMCID: PMC8890534 DOI: 10.1080/23144599.2022.2040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Long-tailed macaques (Macaca fascicularis) are known to harbour a variety of infectious pathogens, including zoonotic species. Long-tailed macaques and humans coexist in Thailand, which creates potential for interspecies pathogen transmission. This study was conducted to assess the presence of B virus, Mycobacterium spp., simian foamy virus (SFV), hepatitis B virus (HBV), and Plasmodium spp. in 649 free-living Thai long-tailed macaques through polymerase-chain reaction. DNA of SFV (56.5%), HBV (0.3%), and Plasmodium spp. (2.2%) was detected in these macaques, whereas DNA of B virus and Mycobacterium spp. was absent. SFV infection in long-tailed macaques is broadly distributed in Thailand and is correlated with age. The HBV sequences in this study were similar to HBV sequences from orangutans. Plasmodium spp. DNA was identified as P. inui. Collectively, our results indicate that macaques can carry zoonotic pathogens, which have a public health impact. Surveillance and awareness of pathogen transmission between monkeys and humans are important.
Collapse
Affiliation(s)
- Supakarn Kaewchot
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Siriporn Tangsudjai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Chalisa Mongkolphan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Aeknarin Saechin
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Rattana Sariwongchan
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Natanon Panpeth
- Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand
| | | | - Parut Suksai
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
6
|
Shohael AM, Moin AT, Chowdhury MAB, Riana SH, Ullah MA, Araf Y, Sarkar B. An Updated Overview of Herpes Simplex Virus-1 Infection: Insights from Origin to Mitigation Measures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
[B virus]. Uirusu 2021; 71:125-136. [PMID: 37245975 DOI: 10.2222/jsv.71.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
B virus is a herpes virus that natutaly infects macaque monkeys. It is extremely neuropathogenic when infection occurs in humans. B virus infection has been reported only in laboratory workers and breeders of macaque monkeys in North America and the United Kingdom, and it is therefore recognized as a rare infectious disease. The first cases of B virus disease were reported in Japan in 2019 and in China in 2021, although no cases had been reported since 1997. Although B virus disease has not been reported for more than 20 years, the potential threat has always existed. The viral factors responsible for the strong neuropathogenicity of B virus to humans has not been identified. There are no reports of infection by contact with wild macaque monkeys, but the possibility can not been ruled out. In this paper, we describe its virological properties, findings from B virus disease from patient-reported cases, and the genotype of B virus.
Collapse
|
8
|
Faisal M, Purbayu M, Shavalier MA, Marsh TL, Loch TP. Shedding of the Salmonid Herpesvirus-3 by Infected Lake Trout ( Salvelinus namaycush). Viruses 2019; 11:E580. [PMID: 31247927 PMCID: PMC6669692 DOI: 10.3390/v11070580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonid Herpesvirus-3, commonly known as the Epizootic Epitheliotropic Disease virus (EEDV), causes a disease of lake trout (Salvelinus namaycush) that has killed millions of fish over the past several decades. Currently, most aspects of EEDV disease ecology remain unknown. In this study, we investigated EEDV shedding in experimentally challenged (intracoelomic injection) lake trout that were individually microchipped. In order to assess viral shedding, each infected fish was placed in individual static, aerated aquaria for a period of 8 h, after which the water was assessed for the presence of EEDV DNA using quantitative PCR. Water sampling was conducted every seven days for 93 days post-infection (pi), followed by additional sampling after one year. Results demonstrated that lake trout began shedding EEDV into the water as early as 9 days pi. Shedding peaked approximately three weeks pi and ceased after nine weeks pi. In contrast, mortalities did not occur until 40 days pi. Although mortality reached 73.9%, surviving fish ceased shedding and continued to grow. However, additional shedding was detected 58 weeks after infection in 66% of surviving fish. Findings of this study demonstrate that EEDV is shed into the water by infected lake trout hosts for extended periods of time, a mechanism that favors virus dissemination.
Collapse
Affiliation(s)
- Mohamed Faisal
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Mochamad Purbayu
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Megan A Shavalier
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Terence L Marsh
- Department of Microbiology and Molecular Genetics, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas P Loch
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Altizer S, Becker DJ, Epstein JH, Forbes KM, Gillespie TR, Hall RJ, Hawley DM, Hernandez SM, Martin LB, Plowright RK, Satterfield DA, Streicker DG. Food for contagion: synthesis and future directions for studying host-parasite responses to resource shifts in anthropogenic environments. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531154 DOI: 10.1098/rstb.2017.0102] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human-provided resource subsidies for wildlife are diverse, common and have profound consequences for wildlife-pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) interspecific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modelling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human-wildlife conflicts over shared food resources and reduce cross-species transmission risks, including to humans.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA .,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel J Becker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Kristian M Forbes
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Biology, The Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Infectious Disease, College of Veterinary Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lynn B Martin
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Dara A Satterfield
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Daniel G Streicker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
10
|
Schurer JM, Ramirez V, Kyes P, Tanee T, Patarapadungkit N, Thamsenanupap P, Trufan S, Grant ET, Garland-Lewis G, Kelley S, Nueaitong H, Kyes RC, Rabinowitz P. Long-Tailed Macaques ( Macaca fascicularis) in Urban Landscapes: Gastrointestinal Parasitism and Barriers for Healthy Coexistence in Northeast Thailand. Am J Trop Med Hyg 2019; 100:357-364. [PMID: 30628564 PMCID: PMC6367618 DOI: 10.4269/ajtmh.18-0241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/02/2018] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal parasites have diverse life cycles that can involve people, animals, and the environment (e.g., water and soil), demonstrating the utility of One Health frameworks in characterizing infection risk. Kosumpee Forest Park (Thailand) is home to a dense population of long-tailed macaques (Macaca fascicularis) that frequently interact with tourists and local residents. Our study investigated the presence of zoonotic parasites, and barriers to healthy coexistence by conducting stool analysis on macaques (N = 102) and people (N = 115), and by examining risk factors for infection with a household questionnaire (N = 95). Overall, 44% of macaques and 12% of people were infected with one or more gastrointestinal helminths, including Strongyloides spp., Ascaris spp., and Trichuris sp. An adults-only generalized linear mixed model identified three factors significantly associated with human infection: household size, occupational exposure, and contact with macaque feces at home. Participants identified both advantages and disadvantages to living in close contact with macaques, suggesting that interventions to improve human and animal health in Kosumpee Forest Park would be welcome.
Collapse
Affiliation(s)
- Janna M. Schurer
- Center for One Health Research, University of Washington, Seattle, Washington
| | - Vickie Ramirez
- Center for One Health Research, University of Washington, Seattle, Washington
| | - Pensri Kyes
- Departments of Psychology and Global Health, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Kham Riang, Thailand
- Genetics and Environmental Toxicology Research Group, Khon Kaen University, Sila, Thailand
| | - Natcha Patarapadungkit
- Genetics and Environmental Toxicology Research Group, Khon Kaen University, Sila, Thailand
- Faculty of Medicine, Department of Pathology, Khon Kaen University, Sila, Thailand
| | - Penkhae Thamsenanupap
- Faculty of Environment and Resource Studies, Mahasarakham University, Kham Riang, Thailand
- Genetics and Environmental Toxicology Research Group, Khon Kaen University, Sila, Thailand
| | - Sally Trufan
- Center for One Health Research, University of Washington, Seattle, Washington
| | - Erica T. Grant
- Center for One Health Research, University of Washington, Seattle, Washington
| | | | - Stephen Kelley
- Department of Comparative Medicine, University of Washington and Fred Hutch Cancer Research Center, Seattle, Washington
| | | | - Randall C. Kyes
- Departments of Psychology and Global Health, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Peter Rabinowitz
- Center for One Health Research, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Wisely SM, Sayler KA, Anderson CJ, Boyce CL, Klegarth AR, Johnson SA. Macacine Herpesvirus 1 Antibody Prevalence and DNA Shedding among Invasive Rhesus Macaques, Silver Springs State Park, Florida, USA. Emerg Infect Dis 2019; 24:345-351. [PMID: 29350146 PMCID: PMC5782895 DOI: 10.3201/eid2402.171439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We compiled records on macacine herpesvirus 1 (McHV-1) seroprevalence and, during 2015–2016, collected saliva and fecal samples from the free-ranging rhesus macaques of Silver Springs State Park, a popular public park in central Florida, USA, to determine viral DNA shedding and perform sequencing. Phylogenetic analysis of the US5 and US5-US6 intragenic sequence from free-ranging and laboratory McHV-1 variants did not reveal genomic differences. In animals captured during 2000–2012, average annual seroprevalence was 25% ± 9 (mean ± SD). We found 4%–14% (95% CI 2%–29%) of macaques passively sampled during the fall 2015 mating season shed McHV-1 DNA orally. We did not observe viral shedding during the spring or summer or from fecal samples. We conclude that these macaques can shed McHV-1, putting humans at risk for exposure to this potentially fatal pathogen. Management plans should be put in place to limit transmission of McHV-1 from these macaques.
Collapse
|
12
|
Eberle R, Jones-Engel L. Questioning the Extreme Neurovirulence of Monkey B Virus (Macacine alphaherpesvirus 1). Adv Virol 2018; 2018:5248420. [PMID: 29666644 PMCID: PMC5831965 DOI: 10.1155/2018/5248420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/10/2018] [Indexed: 01/20/2023] Open
Abstract
Monkey B virus (Macacine alphaherpesvirus 1; BV) occurs naturally in macaques of the genus Macaca, which includes rhesus and long-tailed (cynomolgus) monkeys that are widely used in biomedical research. BV is closely related to the human herpes simplex viruses (HSV), and BV infections in its natural macaque host are quite similar to HSV infections in humans. Zoonotic BV is extremely rare, having been diagnosed in only a handful of North American facilities with the last documented case occurring in 1998. However, BV is notorious for its neurovirulence since zoonotic infections are serious, usually involving the central nervous system, and are frequently fatal. Little is known about factors underlying the extreme neurovirulence of BV in humans. Here we review what is actually known about the molecular biology of BV and viral factors affecting its neurovirulence. Based on what is known about related herpesviruses, areas for future research that may elucidate mechanisms underlying the neurovirulence of this intriguing virus are also reviewed.
Collapse
Affiliation(s)
- R. Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - L. Jones-Engel
- Department of Anthropology and Center for Studies in Ecology and Demography, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Eberle R, Maxwell LK, Nicholson S, Black D, Jones-Engel L. Genome sequence variation among isolates of monkey B virus (Macacine alphaherpesvirus 1) from captive macaques. Virology 2017; 508:26-35. [PMID: 28494342 PMCID: PMC5535784 DOI: 10.1016/j.virol.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022]
Abstract
Complete genome sequences of 19 strains of monkey B virus (Macacine alphaherpesvirus 1; BV) isolated from several macaque species were determined. A low level of sequence variation was present among BV isolates from rhesus macaques. Most variation among BV strains isolated from rhesus macaques was located in regions of repetitive or quasi-repetitive sequence. Variation in coding sequences (polypeptides and miRNAs) was minor compared to regions of non-coding sequences. Non-coding sequences in the long and short repeat regions of the genome did however exhibit islands of conserved sequence. Oral and genital isolates from a single monkey were identical in sequence and varied only in the number of iterations of repeat units in several areas of repeats. Sequence variation between BV isolates from different macaque species (different BV genotypes) was much greater and was spread across the entire genome, confirming the existence of different genotypes of BV in different macaque species.
Collapse
Affiliation(s)
- R Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | - L K Maxwell
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - S Nicholson
- Department of Biochemistry and Molecular Biology, College of Agriculture Sciences and Natural Resources, Oklahoma State University, Stillwater, OK, USA
| | - D Black
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - L Jones-Engel
- Department of Anthropology, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Pöhlmann S, Suntz M, Akimkin V, Bleyer M, Kaul A. Herpes B virus replication and viral lesions in the liver of a cynomolgus macaque which died from severe disease with rapid onset. J Med Primatol 2017; 46:256-259. [PMID: 28439900 DOI: 10.1111/jmp.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 11/26/2022]
Abstract
Herpes B virus (BV, Macacine alphaherpesvirus 1) infects macaques asymptomatically, with rare exceptions, but can cause fatal encephalitis in humans. Here, we report disseminated BV infection in a cynomolgus macaque that had died within 12 hour after the onset of unspecific symptoms. Multifocal lesions surrounded by viral antigen were detected in liver while other organs remained inconspicuous, indicating that the liver is a major target. Moreover, high copy numbers of viral DNA were found in feces, underlining the excrements are a potential source of transmission.
Collapse
Affiliation(s)
- Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Michael Suntz
- Chemical and Veterinary Investigations Office Freiburg, Freiburg, Germany
| | - Valerij Akimkin
- Chemical and Veterinary Investigations Office Stuttgart, Fellbach, Germany
| | - Martina Bleyer
- Pathology Unit, German Primate Center, Göttingen, Germany
| | - Artur Kaul
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| |
Collapse
|
15
|
Abstract
Viruses related to the herpes simplex viruses of humans are present in all nonhuman primate (NHP) species tested and cross species transmission has been documented. The herpesvirus present in macaques, Herpes B virus (BV) rarely causes disease in its natural macaque host. However, when transmitted to a nonnative host, BV has occasionally caused severe and even fatal disease if not treated immediately. Here we present a comprehensive review of the taxonomy, molecular biology, physiology, epidemiology, diagnosis and treatment of BV. We also summarizes what is known about related herpesviruses of other NHP species and the zoonotic potential of these viruses.
Collapse
Affiliation(s)
- R Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Oklahoma, USA
| | - L Jones-Engel
- Department of Anthropology and Center for Studies in Demography and Ecology, University of Washington, Washington, USA
| |
Collapse
|