1
|
Martín Bazarra P, Esparcia Rodríguez Ó, Gómez Martínez A, Azancot Carballo R, Sainz de Baranda Camino C, García Ibáñez N, Fernández García MD, Carranza González R. Norovirus GII.17 gastroenteritis outbreak in a nursing home. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2025:S2529-993X(25)00045-0. [PMID: 40023675 DOI: 10.1016/j.eimce.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/02/2024] [Accepted: 12/09/2024] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Gastrointestinal norovirus infections are highly prevalent, causing outbreaks especially in institutions such as nursing homes. We describe an outbreak caused by an emerging norovirus genotype. MATERIAL AND METHODS We defined a case as a resident or worker of the centre with clinical signs and symptoms of AGE from 14 to 29 May 2022, with no underlying pathology to justify it. A clinical-epidemiological survey was carried out and stool samples were collected from patients with diarrhoea at the time of the study. Virological analysis was performed at the Microbiology Department of our hospital by antigenic detection (Certest®, Biotec SL) and/or multiplex PCR (AllplexTM GI-Virus Assay, Seegene®). Viral genotyping by sequencing was performed by the Centro Nacional de Microbiología (CNM). RESULTS The outbreak totaled 114 cases (99 residents, 15 workers), extending over 16 days. The most frequent symptoms were vomiting and diarrhoea. The overall attack rate was 30.8% (in workers 12.7%). Cases increased rapidly in the first 48h, falling progressively over successive days. Food contamination was ruled out, with person-to-person transmission being the most likely. Those affected improved clinically in less than 72h, with no deaths. We tested 14 samples from residents, which were positive for norovirus GII. The CNM received 8 samples, detecting norovirus genogroup GII, genotype 17 [P17] in 6. CONCLUSIONS Outbreaks of norovirus GEA in nursing homes can affect numerous users. In our case, norovirus genotype GII.17 was the aetiological agent, confirming its widespread dissemination in the last decade worldwide.
Collapse
Affiliation(s)
- Paula Martín Bazarra
- Servicio de Microbiología, Hospital General Universitario de Albacete, Albacete, Spain.
| | - Óscar Esparcia Rodríguez
- Servicio de Microbiología, Hospital General Universitario de Albacete, Albacete, Spain; Grupo PREMICAB, Instituto de Investigación Sanitaria de Castilla-La Mancha, Toledo, Spain
| | | | | | | | - Nerea García Ibáñez
- Unidad de Enterovirus y Gastroenteritis Víricas, Instituto de Salud Carlos III, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
| | - María Dolores Fernández García
- Unidad de Enterovirus y Gastroenteritis Víricas, Instituto de Salud Carlos III, Centro Nacional de Microbiología, Majadahonda, Madrid, Spain
| | | |
Collapse
|
2
|
Zhu X, Zhang P, Yan W, Dong F, Xu D, Yuan R, Ji L. A new wave of resurgence for GII.4 Sydney in Huzhou, particularly GII.4 Sydney[P16], between 2019 and 2023. BMC Infect Dis 2025; 25:241. [PMID: 39972255 PMCID: PMC11841341 DOI: 10.1186/s12879-025-10648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Norovirus (NoV) infection is a major pathogen causing acute gastroenteritis (AGE) across all age groups worldwide. In the past few years, there were some situations where non-GII.4 genotypes of NoV became predominant in Huzhou region. To understand the latest prevalence of genotypes, we investigated the prevalence and genetic diversity of NoV in sporadic AGE cases from January 2019 to October 2023 in Huzhou City, Zhejiang, China. METHODS Between January 2019 and October 2023, a total of 2846 specimens collected from patients with AGE were tested for NoV in Huzhou. Partial sequences of the RNA-dependent RNA polymerase (RdRp) and capsid gene of the positive samples were amplified by RT-PCR and sequenced. Genotyping of NoV sequences was carried out by the RIVM online NoV Genotyping Tool. Phylogenetic analyses were conducted using MEGA. RESULTS In total, 460 (16.16%) specimens were identified as NoV-positive. GII genogroup accounted for most of the NoV-positive specimens (83.70%, 385/460), followed by the GI genogroup (13.26%, 61/460), and dual infection with both GI and GII genogroups (3.04%, 14/460). NoV infection was found in all age groups tested. During this period, at least 20 NoV genotypes were observed, with GII.4 Sydney being the most predominant. Phylogenetic analysis of selected strains revealed that all GII.4 Sydney[P16] strains clustered together and were closely related to strains from Beijing, Shanghai, Hangzhou, Nanjing and the United States, with nucleotide homologies ranging from 96.9 to 99.7%. CONCLUSIONS We report that during the period from January 2019 to October 2023, the GII.4 Sydney is undergoing a new wave of resurgence, and becoming the main epidemic strain again, particularly GII.4 Sydney[P16] with P16 polymerase.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang, 313000, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang, 313000, China
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang, 313000, China
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang, 313000, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang, 313000, China
| | - Rui Yuan
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang, 313000, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
3
|
Chen Z, Zhang H, Shen Y, Ye C. A Norovirus-Related Gastroenteritis Outbreak Stemming from a Potential Source of Infection - Pudong New Area, Shanghai Municipality, China, April 2024. China CDC Wkly 2024; 6:968-971. [PMID: 39347449 PMCID: PMC11427338 DOI: 10.46234/ccdcw2024.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
What is already known about this topic? Noroviruses are highly infectious with rapid transmission capabilities, causing illness for an average duration of 12-60 hours. In China, individuals in educational agencies may return to class 72 hours after symptom resolution. What is added by this report? This outbreak was precipitated by a potential source of infection in a child resuming class after a 72-hour quarantine post-symptom resolution, leading to a cluster of cases within the class. What are the implications for public health practice? While extending the quarantine period for children may be considered from a safety perspective, it is a challenge for educational agencies. The outbreak is deemed a low-probability event; however, further investigation into the detoxification period of asymptomatic patients is warranted.
Collapse
Affiliation(s)
- Zou Chen
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Hong Zhang
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Yifeng Shen
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| | - Chuchu Ye
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, China
| |
Collapse
|
4
|
Ma J, Liu J, Huo Y. Biological and immunological characterization of major capsid protein VP1 from distinct GII.2 norovirus clusters. Sci Rep 2024; 14:21035. [PMID: 39251865 PMCID: PMC11385941 DOI: 10.1038/s41598-024-72062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute viral gastroenteritis worldwide. Infectious outbreaks due to recombinant NoV genotype called GII.P16-GII.2 have been frequently reported since 2016. In this study, we expressed the major capsid protein VP1 from three GII.2 NoV strains using the recombinant baculovirus expression system. The assembly, histo-blood group antigen (HBGA)-binding patterns, and cross-blocking abilities of VP1 proteins were investigated. All the three NoV VP1 proteins successfully assembled into virus-like particles (VLPs). The HBGA-binding assay demonstrated a temporal binding pattern. The latest isolate bound to saliva samples of all blood types. Sequence alignment suggested that the observed gain in HBGA-binding ability was attributed to a limited number of amino acid mutations. Using chimeric VP1 proteins, we demonstrated that synergistic effects resulted in enhanced binding ability. Bile salts increased GII.2 VLP avidity for HBGAs except GII.2-2011/M1. In vitro blockade assay of salivary HBGA-VLP binding demonstrated the presence of cross-blocking effects among different strains. This study provides insight into the evolutionary binding characteristics and cross-blocking effects of GII.2 NoVs to facilitate the development of measures to control this type of viruses.
Collapse
Affiliation(s)
- Jie Ma
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 450000, People's Republic of China
| | - Jinjin Liu
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 450000, People's Republic of China
| | - Yuqi Huo
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
5
|
Chen Q, Ma J, Gao L, Xian R, Wei K, Shi A, Yuan F, Cao M, Zhao Y, Jin M, Kuai W. Determination and analysis of whole genome sequence of recombinant GII.6[P7] norovirus in Ningxia, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105499. [PMID: 37734510 DOI: 10.1016/j.meegid.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
While the GII.4 norovirus was the predominant genotype, non-GII.4 genotype was increasingly focused since the non-GII.4 genotype caused regional epidemics. In this study, the detection rate was16.51% (183/1108) in Ningxia from January to December 2020. Among identified genotypes, GII.4[P31] and GII.4[P16] were the dominant genotypes (n = 20 and 18, respectively) while GII.6[P7] was the main type (n = 6) in non-GII.4 strains which was mainly detected in from May to July. The whole genome sequences of the norovirus diarrhea samples identified as GII.6 [P7] with Ct ≤ 30 collected in 2020 were determined. In this study, the complete genome sequences of norovirus strains PL20-044 and QTX20-071 were identified and analyzed phylogenetically. Phylogenetic analysis of the ORF1and ORF2 regions showed that these strains evolved from the GII·P7-GII.6 strains detected in recent years from different country. The results showed that PL20-044 had intra-type recombination with GII·P7-GII.6c and GII·P7-GII.6a, while QTX20-071 had intre-type recombination within GII·P7-GII.6a. The evolutionary rates of the RdRp gene region of the GII·P7 genotype and the VP1 gene region of the GII.6 genotype were 2.91 × 10-3 (95%HPDs2.32-3.51 × 10-3) and 2.61 × 10-3 (95%HPDs2.14-3.11 × 10-3) substitutions/site/year, respectively. Comparative analysis of the amino acid mutation sites in VP1 with the GII·P7-GII.6a strains before 1997, the later detected strains have changed in aa131 and aa354. Moreover, PL20-044 strains showed special mutations at aa316 and aa395. These results help to understand the norovirus genotype circulating in the human population in Ningxia, and discover the evolutionary characteristics of the GII·P7-GII.6 strain.
Collapse
Affiliation(s)
- Qian Chen
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Jiangtao Ma
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China.
| | - Lei Gao
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Ran Xian
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Kaixin Wei
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Anqi Shi
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Fang Yuan
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| | - Min Cao
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| | - Yu Zhao
- School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Miao Jin
- National Institute for Viral Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Wenhe Kuai
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| |
Collapse
|
6
|
Fumian TM, Malta FC, Sarmento SK, Fernandes SB, Negri CM, Belettini SADA, Machado MH, Guimarães MAAM, de Assis RMS, Baduy GA, Fialho AM, Burlandy FM. Acute gastroenteritis outbreak associated with multiple and rare norovirus genotypes after storm events in Santa Catarina, Brazil. J Med Virol 2023; 95:e29205. [PMID: 37933896 DOI: 10.1002/jmv.29205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Norovirus is a major cause of acute diarrheal disease (ADD) outbreaks worldwide. In the present study, we investigated an ADD outbreak caused by norovirus in several municipalities of Santa Catarina state during the summer season, southern Brazil in 2023. As of the 10th epidemiological week of 2023, approximately 87 000 ADD cases were reported, with the capital, Florianópolis, recording the highest number of cases throughout the weeks. By using RT-qPCR and sequencing, we detected 10 different genotypes, from both genogroups (G) I and II. Some rare genotypes were also identified. Additionally, rotavirus and human adenovirus were sporadically detected among the ADD cases. Several features of the outbreak suggest that sewage-contaminated water could played a role in the surge of ADD cases. Storm events in Santa Catarina state that preceded the outbreak likely increased the discharge of contaminated wastewater and stormwater into water bodies, such as rivers and beaches during a high touristic season in the state. Climate change-induced extreme weather events, including intensified rainfall and frequent floods, can disturb healthcare and sanitation systems. Implementing public policies for effective sanitation, particularly during peak times, is crucial to maintain environmental equilibrium and counter marine pollution.
Collapse
Affiliation(s)
- Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Infectious and Parasitic Diseases, School of Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sylvia Kahwage Sarmento
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Cynthia Maria Negri
- Central Laboratory of Public Health-LACEN, Florianópolis, Santa Catarina, Brazil
| | | | | | - Maria Angelica Arpon Marandino Guimarães
- Department of Infectious and Parasitic Diseases, School of Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriel Assad Baduy
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alexandre Madi Fialho
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernanda Marcicano Burlandy
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Mai CTN, Ly LTK, Doan YH, Oka T, Mai LTP, Quyet NT, Mai TNP, Thiem VD, Anh LT, Van Sanh L, Hien ND, Anh DD, Parashar UD, Tate JE, Van Trang N. Prevalence and Characterization of Gastroenteritis Viruses among Hospitalized Children during a Pilot Rotavirus Vaccine Introduction in Vietnam. Viruses 2023; 15:2164. [PMID: 38005842 PMCID: PMC10675811 DOI: 10.3390/v15112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Rotavirus (RV), norovirus (NoV), sapovirus (SaV), and human astrovirus (HAstV) are the most common viral causes of gastroenteritis in children worldwide. From 2016 to 2021, we conducted a cross-sectional descriptive study to determine the prevalence of these viruses in hospitalized children under five years old in Nam Dinh and Thua Thien Hue provinces in Vietnam during the pilot introduction of the RV vaccine, Rotavin-M1 (POLYVAC, Hanoi, Vietnam). We randomly selected 2317/6718 (34%) acute diarrheal samples from children <5 years of age enrolled at seven sentinel hospitals from December 2016 to May 2021; this period included one year surveillance pre-vaccination from December 2016 to November 2017. An ELISA kit (Premier Rotaclone®, Meridian Bioscience, Inc., Cincinnati, OH, USA) was used to detect RV, and two multiplex real-time RT-PCR assays were used for the detection of NoV, SaV and HAstV. The prevalence of RV (single infection) was reduced from 41.6% to 22.7% (p < 0.0001) between pre- and post-vaccination periods, while the single NoV infection prevalence more than doubled from 8.8% to 21.8% (p < 0.0001). The SaV and HAstV prevalences slightly increased from 1.9% to 3.4% (p = 0.03) and 2.1% to 3.3% (p = 0.09), respectively, during the same period. Viral co-infections decreased from 7.2% to 6.0% (p = 0.24), mainly due to a reduction in RV infection. Among the genotypeable samples, NoV GII.4, SaV GI.1, and HAstV-1 were the dominant types, representing 57.3%, 32.1%, and 55.0% among the individual viral groups, respectively. As the prevalence of RV decreases following the national RV vaccine introduction in Vietnam, other viral pathogens account for a larger proportion of the remaining diarrhea burden and require continuing close monitoring.
Collapse
Affiliation(s)
- Chu Thi Ngoc Mai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Le Thi Khanh Ly
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Le Thi Phuong Mai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Nguyen Tu Quyet
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Tran Ngoc Phuong Mai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Vu Dinh Thiem
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Lai Tuan Anh
- Nam Dinh Center for Disease Control, Nam Dinh 420000, Vietnam
| | - Le Van Sanh
- TT Hue Center for Disease Control, Hue, Thua Thien Hue 530000, Vietnam
| | - Nguyen Dang Hien
- Center for Research and Production of Vaccines and Biologicals, Hanoi 100000, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | | | | | - Nguyen Van Trang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| |
Collapse
|
8
|
Li J, Zhang L, Zou W, Yang Z, Zhan J, Cheng J. Epidemiology and genetic diversity of norovirus GII genogroups among children in Hubei, China, 2017-2019. Virol Sin 2023; 38:351-362. [PMID: 37030436 PMCID: PMC10311278 DOI: 10.1016/j.virs.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/03/2023] [Indexed: 04/10/2023] Open
Abstract
Norovirus (NoV) is an important cause of viral acute gastroenteritis (AGE). To gain insights into the epidemiological characteristics and genetic diversity of NoV among children in Hubei, 1216 stool samples from children (≤ 5 years) obtained under AGE surveillance from January 2017 to December 2019 were analyzed. The results showed that NoV was responsible for 14.64% of AGE cases, with the highest detection rate in children aged 7-12 months (19.76%). Statistically significant differences were found between male and female infection rates (χ2 = 8.108, P = 0.004). Genetic analysis of RdRp and VP1 sequences showed that NoV GII genotypes were GII.4 Sydney [P31] (34.35%), GII.3 [P12] (25.95%), GII.2 [P16] (22.90%), GII.4 Sydney [P16] (12.98%), GII.17 [P17] (2.29%), GII.6 [P7] and GII.3 [P16] (each at 0.76%). GII.17 [P17] variants were divided into the Kawasaki323-like lineage and the Kawasaki308-like lineage. A unique recombination event was detected between strains of GII.4 Sydney 2012 and GII.4 Sydney 2016. Significantly, all GII.P16 sequences associated with GII.4/GII.2 obtained in Hubei were correlated with novel GII.2 [P16] variants that re-emerged in Germany in 2016. Antigenic site analysis of complete VP1 sequences from all GII.4 variants from Hubei identified notable variable residues of antibody epitopes. Genotyping under continuous AGE surveillance and observation of the antigenic sites of VP1 are important monitoring strategies for emerging NoV strains.
Collapse
Affiliation(s)
- Jing Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Lingyao Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wenjing Zou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Zhaohui Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jianbo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Jing Cheng
- Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
9
|
Chen N, Chen P, Zhou Y, Chen S, Gong S, Fu M, Geng L. HuNoV Non-Structural Protein P22 Induces Maturation of IL-1β and IL-18 and N-GSDMD-Dependent Pyroptosis through Activating NLRP3 Inflammasome. Vaccines (Basel) 2023; 11:vaccines11050993. [PMID: 37243097 DOI: 10.3390/vaccines11050993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Norovirus infection is the leading cause of foodborne gastroenteritis worldwide, causing more than 200,000 deaths each year. As a result of a lack of reproducible and robust in vitro culture systems and suitable animal models for human norovirus (HuNoV) infection, the pathogenesis of HuNoV is still poorly understood. In recent years, human intestinal enteroids (HIEs) have been successfully constructed and demonstrated to be able to support the replication of HuNoV. The NLRP3 inflammasome plays a key role in host innate immune responses by activating caspase1 to facilitate IL-1β and IL-18 secretion and N-GSDMD-driven apoptosis, while NLRP3 inflammasome overactivation plays an important role in the development of various inflammatory diseases. Here, we found that HuNoV activated enteric stem cell-derived human intestinal enteroids (HIEs) NLRP3 inflammasome, which was confirmed by transfection of Caco2 cells with full-length cDNA clones of HuNoV. Further, we found that HuNoV non-structural protein P22 activated the NLRP3 inflammasome and then matured IL-1β and IL-18 and processed the cleavage of gasdermin-D (GSDMD) to N-GSDMD, leading to pyroptosis. Besides, berberine (BBR) could ameliorate the pyroptosis caused by HuNoV and P22 by inhibiting NLRP3 inflammasome activation. Together, these results reveal new insights into the mechanisms of inflammation and cell death caused by HuNoV and provide potential treatments.
Collapse
Affiliation(s)
- Nini Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yanhe Zhou
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sidong Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Fu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
10
|
Dinu S, Oprea M, Iordache RI, Rusu LC, Usein CR. Genome characterisation of norovirus GII.P17-GII.17 detected during a large gastroenteritis outbreak in Romania in 2021. Arch Virol 2023; 168:116. [PMID: 36947248 DOI: 10.1007/s00705-023-05741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Norovirus (NoV) is one of the leading causes of acute gastroenteritis worldwide. Genotype GII.P17-G.II.17 emerged in Asia between 2013 and 2015 and transiently replaced the GII.4 Sydney 2012 variant circulating at that time. We present the genome characterisation of a GII.P17-GII.17 strain causing a large outbreak in Romania in 2021. Our study shows that the 2021 strain belongs to a novel cluster of genotype GII.17, different from the two previously recognised P.17 clusters. Distinctive substitutions in predicted conformational epitopes of VP1 were identified for this new cluster. Also, our phylogenetic analysis showed the existence of another P.17 cluster grouping strains from France and Canada.
Collapse
Affiliation(s)
- Sorin Dinu
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania.
| | - Mihaela Oprea
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| | - Ramona-Ionela Iordache
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| | - Lavinia-Cipriana Rusu
- National Institute of Public Health, National Center for Surveillance and Control of Communicable Diseases, 1-3 Doctor Leonte Anastasievici, Bucharest, 050463, Romania
| | - Codruța-Romanița Usein
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| |
Collapse
|
11
|
Gao J, Zhang Z, Xue L, Li Y, Cheng T, Meng L, Li Y, Cai W, Hong X, Zhang J, Wang J, Chen M, Ye Q, Ding Y, Wu Q. GII.17[P17] and GII.8[P8] noroviruses showed different RdRp activities associated with their epidemic characteristics. J Med Virol 2023; 95:e28216. [PMID: 36254681 DOI: 10.1002/jmv.28216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Norovirus is the primary foodborne pathogenic agent causing viral acute gastroenteritis. It possesses broad genetic diversity and the prevalence of different genotypes varies substantially. However, the differences in RNA-dependent RNA polymerase (RdRp) activity among different genotypes of noroviruses remain unclear. In this study, the molecular mechanism of RdRp activity difference between the epidemic strain GII.17[P17] and the non-epidemic strain GII.8[P8] was characterized. By evaluating the evolutionary history of RdRp sequences with Markov Chain Monte Carlo method, the evolution rate of GII.17[P17] variants was higher than that of GII.8[P8] variants (1.22 × 10-3 nucleotide substitutions/site/year to 9.31 × 10-4 nucleotide substitutions/site/year, respectively). The enzyme catalytic reaction demonstrated that the Vmax value of GII.17[P17] RdRp was 2.5 times than that of GII.8[P8] RdRp. And the Km of GII.17[P17] and GII.8[P8] RdRp were 0.01 and 0.15 mmol/L, respectively. Then, GII.8[P8] RdRp fragment mutants (A-F) were designed, among which GII.8[P8]-A/B containing the conserved motif G/F were found to have significant effects on improving RdRp activity. The Km values of GII.8[P8]-A/B reached 0.07 and 0.06 mmol/L, respectively. And their Vmax values were 1.34 times than that of GII.8[P8] RdRp. In summary, our results suggested that RdRp activities were correlated with their epidemic characteristics. These findings will ultimately provide a better understanding in replication mechanism of noroviruses and development of antiviral drugs.
Collapse
Affiliation(s)
- Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Zilei Zhang
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Tong Cheng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Luobing Meng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Yijing Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Xiaojing Hong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| |
Collapse
|
12
|
Mabasa VV, van Zyl WB, Ismail A, Allam M, Taylor MB, Mans J. Multiple Novel Human Norovirus Recombinants Identified in Wastewater in Pretoria, South Africa by Next-Generation Sequencing. Viruses 2022; 14:v14122732. [PMID: 36560736 PMCID: PMC9788511 DOI: 10.3390/v14122732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The genogroup II genotype 4 (GII.4) noroviruses are a major cause of viral gastroenteritis. Since the emergence of the Sydney_2012 variant, no novel norovirus GII.4 variants have been reported. The high diversity of noroviruses and periodic emergence of novel strains necessitates continuous global surveillance. The aim of this study was to assess the diversity of noroviruses in selected wastewater samples from Pretoria, South Africa (SA) using amplicon-based next-generation sequencing (NGS). Between June 2018 and August 2020, 200 raw sewage and final effluent samples were collected fortnightly from two wastewater treatment plants in Pretoria. Viruses were recovered using skimmed milk flocculation and glass wool adsorption-elution virus recovery methods and screened for noroviruses using a one-step real-time reverse-transcription PCR (RT-PCR). The norovirus BC genotyping region (570-579 bp) was amplified from detected norovirus strains and subjected to Illumina MiSeq NGS. Noroviruses were detected in 81% (162/200) of samples. The majority (89%, 89/100) of raw sewage samples were positive for at least one norovirus, compared with 73% (73/100) of final effluent samples. Overall, a total of 89 different GI and GII RdRp-capsid combinations were identified, including 51 putative novel recombinants, 34 previously reported RdRp-capsid combinations, one emerging novel recombinant and three Sanger-sequencing confirmed novel recombinants.
Collapse
Affiliation(s)
- Victor Vusi Mabasa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Walda Brenda van Zyl
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
- National Health Laboratory Service, Tshwane Academic Division, Pretoria 0002, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2192, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2192, South Africa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Maureen Beatrice Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Janet Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
- Correspondence: ; Tel.: +27-12-319-2660
| |
Collapse
|
13
|
Cao R, Ma X, Pan M. Molecular characteristics of norovirus in sporadic and outbreak cases of acute gastroenteritis and in sewage in Sichuan, China. Virol J 2022; 19:180. [DOI: 10.1186/s12985-022-01897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Norovirus is highly diverse and constant surveillance is essential for the prevention and control of norovirus gastroenteritis.
Methods
From 2015 to 2019, fecal samples were collected from sporadic cases and outbreaks of acute gastroenteritis reported to Sichuan center for disease control and prevention. Sewage samples were collected from a wastewater treatment plant in Sichuan. All samples were tested for norovirus by real-time reverse transcription polymerase chain reaction. Norovirus-positive clinical samples were sequenced by Sanger sequencing. Sewage samples were sequenced by amplicon and virome sequencing.
Results
A total of 1462 fecal samples were collected and 11 different norovirus genotypes were detected. GII.4 Sydney 2012[P31] and GII.3[P12] were the dominant genotypes in sporadic cases whereas GII.2[P16] and GII.17[P17] were the dominant genotypes in outbreaks. GII.3 was predominant in children 0–6 months of age during spring and summer, while GII.4 was predominant in children older than 6 months and in the autumn. The detection rate of GII.17[P17] increased with age. In sewage, 16 genotypes were detected. GII.3, GII.4, GI.1, and GI.2 were the dominant genotypes.
Conclusion
This study demonstrated that multiple norovirus genotypes co-circulate in Sichuan. It is vital to continuously trace the genetic diversity of norovirus to give a future perspective on surveillance needs and guide vaccine design and policy decisions.
Collapse
|
14
|
Li M, Li K, Lan H, Hao X, Liu Y, Zhou C. Investigation of genotype diversity of 7,804 norovirus sequences in humans and animals of China. Open Life Sci 2022; 17:1429-1435. [PMID: 36405234 PMCID: PMC9644719 DOI: 10.1515/biol-2022-0511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2024] Open
Abstract
Norovirus is a prominent enteric virus responsible for severe acute gastroenteritis disease burden worldwide. In our current study, we analyzed 7,804 norovirus sequences of human and animals in China which were detected from 1980 to 2020 from GenBank. The GenBank database was searched up to May 2021 with the following search terms: "norovirus" or "norwalk virus" and "China." The 7,804 norovirus sequences were collected and evaluated by phylogenetic analysis using MEGA X software package. The online typing tool (https://www.rivm.nl/mpf/typingtool/norovirus/) was used to confirm the genotypes. There were 36 norovirus genotypes prevailing in China. GII.4 was the most prevalent genotype, and GII.2, GII.3 and GII.17 also emerged during different time periods. Most sequences were detected in East China (41.72%, 3,256/7,804), but different norovirus genotypes were distributed widely across the country. A variety of norovirus genotypes, including GI, GII, GIII, GIV, GV, GVI, GVII and GX, were reported in different animals. Furthermore, a GI.3 sequence detected from animal had high identity with norovirus detected in human from the same region, indicating the potential norovirus zoonotic transmission in China. In conclusion, these results indicated that norovirus sequences with considerable genetic diversity distributed widely in China, with potential reverse zoonotic transmission from human to animals.
Collapse
Affiliation(s)
- Manyu Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, 2 Tiantanxili Rd, Dongcheng District, Beijing 100050, China
| | - Kejian Li
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Dongcheng District, Beijing 100050, China
| | - Haiyun Lan
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Dongcheng District, Beijing 100050, China
| | - Xiaotian Hao
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Dongcheng District, Beijing 100050, China
| | - Yan Liu
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Dongcheng District, Beijing 100050, China
| | - Cheng Zhou
- Division I of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, 2 Tiantanxili Rd, Dongcheng District, Beijing 100050, China
| |
Collapse
|
15
|
Honjo S, Kuronuma K, Fujiya Y, Nakae M, Ukae S, Nihira H, Yamamoto M, Akane Y, Kondo K, Takahashi S, Kimura H, Tsutsumi H, Kawasaki Y, Tsugawa T. Genotypes and transmission routes of noroviruses causing sporadic acute gastroenteritis among adults and children, Japan, 2015-2019. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105348. [PMID: 35952938 DOI: 10.1016/j.meegid.2022.105348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Noroviruses (NoVs) are major causes of acute viral gastroenteritis at all ages worldwide. The molecular epidemiology of sporadic cases remains poorly understood, especially in adults. Additionally, no studies have analyzed the transmission route in sporadic acute gastroenteritis. In this study, we investigated cases of very mild sporadic NoV acute gastroenteritis in adults (medical staff) who do not visit the outpatient clinic and child outpatients. We also evaluated genotype differences between adults and children and possible transmission routes in adults during 5 years. The number of NoV positives were 58 in adults and 124 in children. In adults, the NoV positivity rate in this study was higher (64.4%) than that in previous reports of outpatients (10%) and inpatients (5%) in the United State. This finding suggested that the NoV positivity rate might be high in adults with very mild acute gastroenteritis. In adults, human-to-human transmission rates from children and food-borne transmission (raw oysters) were 21.6% (11/51) and 19.6% (10/51), respectively. Among adults, GII.2, GII.4, and GII.17 were the predominant genotypes, with rates of 32.7%, 30.9%, and 21.8%, respectively. Among children, GII.4 and GII.2 were the predominant genotypes, with rates of 45.5% and 40.6%, respectively. GII.17 was only detected in 0.8% (1/123) of children. Trends in NoV genotypes are expected to differ depending on the patient's age. Investigating sporadic cases including the patient's background (age and transmission route) may be helpful to monitor the trend of NoV strains, forecast prevalent NoV GII genotypes, and develop NoV vaccines.
Collapse
Affiliation(s)
- Saho Honjo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiro Fujiya
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mami Nakae
- Division of Infection Control, Sapporo Medical University Hospital, Sapporo, Japan
| | - Susumu Ukae
- Department of Pediatrics, Motomachi Children's Clinic, Sapporo, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Nihira Children's Clinic, Sapporo, Japan
| | - Masaki Yamamoto
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Akane
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Kondo
- Department of Pediatrics, Sunagawa City Hospital, Sunagawa, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirokazu Kimura
- Graduate School of Health Science, Gunma Paz University, Takasaki, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukihiko Kawasaki
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
16
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Edokpayi JN, Swalaha FM. Global public health implications of human exposure to viral contaminated water. Front Microbiol 2022; 13:981896. [PMID: 36110296 PMCID: PMC9468673 DOI: 10.3389/fmicb.2022.981896] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023] Open
Abstract
Enteric viruses are common waterborne pathogens found in environmental water bodies contaminated with either raw or partially treated sewage discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. They have been linked with gastroenteritis, while some enteric viruses have also been implicated in more severe infections such as encephalitis, meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and myocarditis (enteroviruses). Therefore, this review presents information on the occurrence of enteric viruses of public health importance, diseases associated with human exposure to enteric viruses, assessment of their presence in contaminated water, and their removal in water and wastewater sources. In order to prevent illnesses associated with human exposure to viral contaminated water, we suggest the regular viral monitoring of treated wastewater before discharging it into the environment. Furthermore, we highlight the need for more research to focus on the development of more holistic disinfection methods that will inactivate waterborne viruses in municipal wastewater discharges, as this is highly needed to curtail the public health effects of human exposure to contaminated water. Moreover, such a method must be devoid of disinfection by-products that have mutagenic and carcinogenic potential.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
17
|
Xiong Q, Jiang H, Liu Z, Peng J, Sun J, Fang L, Li C, Qiu M, Zhang X, Lu J. Untangling an AGS Outbreak Caused by the Recombinant GII.12[P16] Norovirus With Nanopore Sequencing. Front Cell Infect Microbiol 2022; 12:911563. [PMID: 35865812 PMCID: PMC9294139 DOI: 10.3389/fcimb.2022.911563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
For a rapidly spreading virus such as NoV (norovirus), pathogen identification, genotype classification, and transmission tracing are urgent for epidemic control. Here, we applied the Nanopore metatranscriptomic sequencing to determine the causative pathogen of a community AGS (Acute gastroenteritis) outbreak. The results were also confirmed by RT-PCR. The NGS (Next Generation Sequencing) library was constructed within 8 hours and sequence analyses were carried out in real-time. NoV positive reads were detected in 13 of 17 collected samples, including two water samples from sewage treatment tank and cistern. A nearly complete viral genome and other genome fragments could be generated from metatranscriptomic sequencing of 13 samples. The NoV sequences from water samples and cases are identical suggesting the potential source of the outbreak. The sequencing results also indicated the outbreak was likely caused by an emerging recombinant GII.12[P16] virus, which was only identified in the United States and Canada in 2017–2018. This is the first report of this emerging variant in mainland China, following the large outbreaks caused by the recombinant GII.17[P17] and GII.2[P16] in 2014 and 2016, respectively. Closely monitoring of the prevalence of this recombinant strain is required. Our data also highlighted the importance of real-time sequencing in emerging pathogens’ surveillance.
Collapse
Affiliation(s)
- Qianling Xiong
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huimin Jiang
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhe Liu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jinju Peng
- Haizhu Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jing Sun
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Caixia Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Qiu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- *Correspondence: Xin Zhang, ; Jing Lu,
| | - Jing Lu
- School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- *Correspondence: Xin Zhang, ; Jing Lu,
| |
Collapse
|
18
|
Pooled prevalence and genetic diversity of norovirus in Africa: a systematic review and meta-analysis. Virol J 2022; 19:115. [PMID: 35765033 PMCID: PMC9238157 DOI: 10.1186/s12985-022-01835-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Background Noroviruses are the leading cause of acute gastroenteritis in all age groups globally. The problem is magnified in developing countries including Africa. These viruses are highly prevalent with high genetic diversity and fast evolution rates. With this dynamicity, there are no recent review in the past five years in Africa. Therefore, this review and meta-analysis aimed to assess the prevalence and genetic diversity of noroviruses in Africa and tried to address the change in the prevalence and genetic diverisity the virus has been observed in Africa and in the world.
Methods Twenty-one studies for the pooled prevalence, and 11 out of the 21 studies for genetic characterization of norovirus were included. Studies conducted since 2006, among symptomatic cases of all age groups in Africa, conducted with any study design, used molecular diagnostic methods and reported since 2015, were included and considered for the main meta-analysis. PubMed, Cochrane Library, and Google Scholar were searched to obtain the studies. The quality the studies was assessed using the JBI assessment tool. Data from studies reporting both asymptomatic and symptomatic cases, that did not meet the inclusion criteria were reviewed and included as discussion points. Data was entered to excel and imported to STATA 2011 to compute the prevalence and genetic diversity. Heterogeneity was checked using I2 test statistics followed by subgroup and sensitivity analysis. Publication bias was assessed using a funnel plot and eggers test that was followed by trim and fill analysis. Result The pooled prevalence of norovirus was 20.2% (95% CI: 15.91, 24.4). The highest (36.3%) prevalence was reported in Ghana. Genogroup II noroviruses were dominant and reported as 89.5% (95% CI: 87.8, 96). The highest and lowest prevalence of this genogroup were reported in Ethiopia (98.3%), and in Burkina Faso (72.4%), respectively. Diversified genotypes had been identified with an overall prevalence of GII. 4 NoV (50.8%) which was followed by GII.6, GII.17, GI.3 and GII.2 with a pooled prevalence of 7.7, 5.1, 4.6, and 4.2%, respectively. Conclusion The overall pooled prevalence of norovirus was high in Africa with the dominance of genogroup II and GII.4 genotype. This prevalence is comparable with some reviews done in the same time frame around the world. However, in Africa, an in increasing trained of pooled prevalence had been reported through time. Likewise, a variable distribution of non-GII.4 norovirus genotypes were reported as compared to those studies done in the world of the same time frame, and those previous reviews done in Africa. Therefore, continuous surveillance is required in Africa to support future interventions and vaccine programs. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01835-w.
Collapse
|
19
|
Estienney M, Tarris G, Abou-Hamad N, Rouleau A, Boireau W, Chassagnon R, Ayouni S, Daval-Frerot P, Martin L, Bouyer F, Le Pendu J, de Rougemont A, Belliot G. Epidemiological Impact of GII.17 Human Noroviruses Associated With Attachment to Enterocytes. Front Microbiol 2022; 13:858245. [PMID: 35572680 PMCID: PMC9094630 DOI: 10.3389/fmicb.2022.858245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 01/19/2023] Open
Abstract
For the last 30 years, molecular surveys have shown that human norovirus (HuNoV), predominantly the GII.4 genotype, is one of the main causative agents of gastroenteritis. However, epidemiological surveys have revealed the worldwide emergence of GII.17 HuNoVs. Genetic analysis confirmed that GII.17 strains are distributed into three variants (i.e., Kawasaki 308, Kawasaki 323, and CS-E1). Here, virus-like particles (VLPs) were baculovirus-expressed from these variants to study putative interactions with HBGA. Qualitative analysis of the HBGA binding profile of each variant showed that the most recent and predominant GII.17 variant, Kawasaki 308, possesses a larger binding spectrum. The retrospective study of GII.17 strains documented before the emergence of the dominant Kawasaki 308 variant showed that the emergence of a new GII.17 variant could be related to an increased binding capacity toward HBGA. The use of duodenal histological sections confirmed that recognition of enterocytes involved HBGA for the three GII.17 variants. Finally, we observed that the relative affinity of recent GII.17 VLPs for HBGA remains lower than that of the GII.4-2012 variant. These observations suggest a model whereby a combination of virological factors, such as polymerase fidelity and increased affinity for HBGA, and immunological factors was responsible for the incomplete and non-persistent replacement of GII.4 by new GII.17 variants.
Collapse
Affiliation(s)
- Marie Estienney
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| | - Georges Tarris
- Department of Pathology, University Hospital of Dijon, Dijon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Nicole Abou-Hamad
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France.,Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | - Alain Rouleau
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, Besançon, France
| | - Wilfrid Boireau
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, Besançon, France
| | - Rémi Chassagnon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | - Siwar Ayouni
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - Philippe Daval-Frerot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - Laurent Martin
- Department of Pathology, University Hospital of Dijon, Dijon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Frédéric Bouyer
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| | - Gael Belliot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| |
Collapse
|
20
|
Changing Predominance of Norovirus Recombinant Strains GII.2[P16] to GII.4[P16] and GII.4[P31] in Thailand, 2017 to 2018. Microbiol Spectr 2022; 10:e0044822. [PMID: 35546545 PMCID: PMC9241750 DOI: 10.1128/spectrum.00448-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human norovirus is a major virus that causes acute gastroenteritis in all age groups. Recently, norovirus recombinant strains have been reported as the cause of norovirus outbreaks. This study has investigated the distribution of norovirus genotypes and recombinant strains circulating in children hospitalized with diarrhea in Chiang Mai, Thailand from 2017 to 2018. A total of 882 stool specimens were tested for the presence of norovirus GI and GII by reverse transcription-PCR (RT-PCR) assay. Genotypes of the viruses were assessed by partial VP1 nucleotide sequencing and the representative strains were further characterized for norovirus recombinant strains by amplification of ORF1 (RdRp)/ORF2 (VP1 capsid) junction region. From a total of 882 stool samples, 131 (14.9%) were positive for norovirus, of which the majority of norovirus genogroups were norovirus GII, and only one was identified as norovirus GI. A wide variety of norovirus genotypes were detected in this study, including GI.5, GII.2, GII.3, GII.4, GII.6, GII.7, GII.13, GII.14, and GII.17 with the predominance of GII.2 (62.5%) in 2017 and GII.4 (57.0%) in 2018. Nevertheless, it should be noted that GII.4 remained the most predominant genotype (50.4%) in overall prevalence. Analysis of norovirus recombination revealed that several norovirus recombinant strains (GII.2[P16], GII.3[P16], GII.4[P16], GII.4[P31], GII.6[P7], GII.13[P16], and GII.14[P7]) had been identified with the predominance of GII.2[P16] in 2017 and changed to GII.4[P16] and GII.4[P31] in 2018. In conclusion, this study reported the detection of a wide variety of norovirus genotypes and several norovirus recombinant strains in Chiang Mai, Thailand from 2017 to 2018. IMPORTANCE In the present study, the prevalence of norovirus infection in children with acute gastroenteritis in Chiang Mai, Thailand between 2017 and 2018 was 14.9%. A variety of norovirus genotypes were detected, including GI.5, GII.2, GII.3, GII.4, GII.6, GII.7, GII.13, GII.14, and GII.17 with the predominance of GII.4 genotype. In addition, several norovirus recombinant strains (GII.2[P16], GII.3[P16], GII.4[P16], GII.4[P31], GII.6[P7], GII.13[P16], and GII.14[P7]) had been identified. Our results revealed that GII.2[P16] was a predominant strain till the end of 2017 and then was replaced by GII.4[P16] and GII.4[P31] in 2018. The findings imply that norovirus recombinant strains emerged in Chiang Mai, Thailand and that circulating strains changes over time.
Collapse
|
21
|
Zhang M, Zhang B, Chen R, Li M, Zheng Z, Xu W, Zhang Y, Gong S, Hu Q. Human Norovirus Induces Aquaporin 1 Production by Activating NF-κB Signaling Pathway. Viruses 2022; 14:842. [PMID: 35458572 PMCID: PMC9028284 DOI: 10.3390/v14040842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022] Open
Abstract
Human norovirus (HuNoV) is one of the major pathogens of acute nonbacterial gastroenteritis. Due to the lack of a robust and reproducible in vitro culture system and an appropriate animal model, the mechanism underlying HuNoV-caused diarrhea remains unknown. In the current study, we found that HuNoV transfection induced the expression of aquaporin 1 (AQP1), which was further confirmed in the context of virus infection, whereas the enterovirus EV71 (enterovirus 71) did not have such an effect. We further revealed that VP1, the major capsid protein of HuNoV, was crucial in promoting AQP1 expression. Mechanistically, HuNoV induces AQP1 production through the NF-κB signaling pathway via inducing the expression, phosphorylation and nuclear translocation of p65. By using a model of human intestinal epithelial barrier (IEB), we demonstrated that HuNoV and VP1-mediated enhancement of small molecule permeability is associated with the AQP1 channel. Collectively, we revealed that HuNoV induced the production of AQP1 by activating the NF-κB signaling pathway. The findings in this study provide a basis for further understanding the significance of HuNoV-induced AQP1 expression and the potential mechanism underlying HuNoV-caused diarrhea.
Collapse
Affiliation(s)
- Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Binman Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Zheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yifan Zhang
- Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
22
|
Li Q, Yao P, Jiang J, Mao X, Wang F, Zhang W. Genetic diversity of norovirus associated with outbreaks in school children with acute gastroenteritis in Changzhou, China, 2018-2019. J Med Virol 2022; 94:4005-4011. [PMID: 35383971 DOI: 10.1002/jmv.27743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Norovirus is one of the major causes of outbreaks and sporadic cases of acute gastroenteritis in school children. Obtaining local genotype diversity information regarding norovirus is important for developing and evaluating prevention strategies of the transmission of this virus in school children. METHODS Clinical specimens, obtained from the routine acute gastroenteritis surveillance network from 2018 to 2019, were primarily tested using commercial real-time PCR Kit. Samples with Ct value less than 25 were selected and used for complete genome sequencing and those with Ct value between 25 and 30 were selected and used for he partial VP1 and RdRp regions sequencing. Phylogenetic trees of the viral genome were constructed by using the neighbor-joining method with bootstrap analysis of 1,000 replicates in MEGA 6.0 RESULTS: Epidemiological surveillance of acute intestinal infections (n=384) showed high-level detection (73.18%) of human norovirus in school endemic acute gastroenteritis events in Changzhou, with obvious epidemic characteristics in autumn and winter. Through genotyping, it was found that 93.12% of norovirus were GII, including GII.2, GII.3, GII.4, GII.6, GII.7 and GII.17. By October 2019, two norovirus genotypes, GII.4[P31] and GII.17[P17], became the preponderant epidemic strains. Phylogenetic analysis of the new GII.17[P17] complete genomes showed close relationship with Miyagi strain identified in Japan in 2015, and GII.4[P31] showed close relationship with Jinan strain indentified in China in 2017. CONCLUSION The study highlights the emerging role of GII.4[P31] and GII.17[P17] in causing endemic acute gastroenteritis outbreaks at school children, in Changzhou, China in 2019. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qiong Li
- Changzhou Center for Disease Prevention and Control, Changzhou, China, 213002
| | - Ping Yao
- Changzhou Center for Disease Prevention and Control, Changzhou, China, 213002
| | - Jingyi Jiang
- Changzhou Center for Disease Prevention and Control, Changzhou, China, 213002
| | - Xujian Mao
- Changzhou Center for Disease Prevention and Control, Changzhou, China, 213002
| | - Fengming Wang
- Changzhou Center for Disease Prevention and Control, Changzhou, China, 213002
| | - Wanju Zhang
- Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China, 200336
| |
Collapse
|
23
|
Kittigul L, Pombubpa K, Rupprom K, Thasiri J. Detection of Norovirus Recombinant GII.2[P16] Strains in Oysters in Thailand. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:59-68. [PMID: 35075605 DOI: 10.1007/s12560-022-09508-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Human norovirus causes sporadic and epidemic acute gastroenteritis worldwide, and the predominant strains are genotype GII.4 variants. Recently, a novel GII.17[P17] and a recombinant GII.2[P16] strain have been reported as the causes of gastroenteritis outbreaks. Outbreaks of norovirus are frequently associated with foodborne illness. In this study, each of 75 oyster samples processed by a proteinase K extraction method and an adsorption-elution method were examined for noroviruses using RT-nested PCR with capsid primers. Thirteen (17.3%) samples processed by either method tested positive for norovirus genogroup II (GII). PCR amplicons were characterized by DNA sequencing and phylogenetic analysis as GII.2 (n = 6), GII.4 (n = 1), GII.17 (n = 3), and GII.unclassified (n = 3). Norovirus-positive samples were further amplified by semi-nested RT-PCR targeting the polymerase-capsid genes. One nucleotide sequence revealed GII.17[P17] Kawasaki strain. Five nucleotide sequences were identified as belonging to the recombinant GII.2[P16] strains by recombination analysis. The collected oyster samples were quantified for norovirus GII genome copy number by RT-quantitative PCR. Using the proteinase K method, GII was found in 13/75 (17.3%) of samples with a range of 8.83-1.85 × 104 genome copies/g of oyster. One sample (1/75, 1.3%) processed by the adsorption-elution method was positive for GII at 5.00 × 101 genome copies/g. These findings indicate the circulation of a new variant GII.17 Kawasaki strain and the recombinant GII.2[P16] in oyster samples corresponding to the circulating strains reported at a global scale during the same period of time. The detection of the recombinant strains in oysters emphasizes the need for continuing systematic surveillance for control and prevention of norovirus gastroenteritis.
Collapse
Affiliation(s)
- Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Kitwadee Rupprom
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Jinthapha Thasiri
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
24
|
Epidemiological and Genetic Characterization of Norovirus Outbreaks That Occurred in Catalonia, Spain, 2017–2019. Viruses 2022; 14:v14030488. [PMID: 35336893 PMCID: PMC8955687 DOI: 10.3390/v14030488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Molecular characterization of human norovirus (HuNoV) genotypes enhances the understanding of viral features and illustrates distinctive evolutionary patterns. The aim of our study was to describe the prevalence of the genetic diversity and the epidemiology of the genotypes involved in HuNoV outbreaks in Catalonia (Spain) between 2017 and 2019. A total of 100 HuNoV outbreaks were notified with the predominance of GII (70%), followed by GI (27%) and mixed GI/GII (3%). Seasonality was observed for GII outbreaks only. The most prevalent genotypes identified were GII.4[P31] Sydney 2012, GII.4[P16] Sydney 2012 and GII.2[P16]. As compared to person-to-person (P/P) transmitted outbreaks, foodborne outbreaks showed significantly higher attack rates and lower duration. The average attack rate was higher in youth hostel/campgrounds compared to nursing homes. Only genotypes GI.4[P4], GII.2[P16], GII.4[P16], GII.4[P31] and GII.17[P17] were consistently detected every year, and only abundance of GII.2[P16] showed a negative trend over time. GII.4 Sydney 2012 outbreaks were significantly associated to nursing homes, while GII.2[P16] and GI.3[P3] were most frequently identified in youth hostel/campgrounds. The average attack rate was significantly higher when comparing GII.2[P16] vs. GI.4[P4], GII.2[P16] vs. GII.4[P31] Sydney 2012, and GII.6[P7] vs. GII.4[P31] Sydney 2012. No correlations were found between genotype and outbreak duration or age of affected individuals.
Collapse
|
25
|
Han JC, Li QX, Fang JB, Zhang JY, Li YQ, Li SZ, Cheng C, Xie CZ, Nan FL, Zhang H, Li ZX, Jin NY, Zhu GZ, Lu HJ. GII.P16-GII.2 Recombinant Norovirus VLPs Polarize Macrophages Into the M1 Phenotype for Th1 Immune Responses. Front Immunol 2021; 12:781718. [PMID: 34868056 PMCID: PMC8637406 DOI: 10.3389/fimmu.2021.781718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Norovirus (NoV) is a zoonotic virus that causes diarrhea in humans and animals. Outbreaks in nosocomial settings occur annually worldwide, endangering public health and causing serious social and economic burdens. The latter quarter of 2016 witnessed the emergence of the GII.P16-GII.2 recombinant norovirus throughout Asia. This genotype exhibits strong infectivity and replication characteristics, proposing its potential to initiate a pandemic. There is no vaccine against GII.P16-GII.2 recombinant norovirus, so it is necessary to design a preventive vaccine. In this study, GII.P16-GII.2 type norovirus virus-like particles (VLPs) were constructed using the baculovirus expression system and used to conduct immunizations in mice. After immunization of mice, mice were induced to produce memory T cells and specific antibodies, indicating that the VLPs induced specific cellular and humoral immune responses. Further experiments were then initiated to understand the underlying mechanisms involved in antigen presentation. Towards this, we established co-cultures between dendritic cells (DCs) or macrophages (Mø) and naïve CD4+T cells and simulated the antigen presentation process by incubation with VLPs. Thereafter, we detected changes in cell surface molecules, cytokines and related proteins. The results indicated that VLPs effectively promoted the phenotypic maturation of Mø but not DCs, as indicated by significant changes in the expression of MHC-II, costimulatory factors and related cytokines in Mø. Moreover, we found VLPs caused Mø to polarize to the M1 type and release inflammatory cytokines, thereby inducing naïve CD4+ T cells to perform Th1 immune responses. Therefore, this study reveals the mechanism of antigen presentation involving GII.P16-GII.2 recombinant norovirus VLPs, providing a theoretical basis for both understanding responses to norovirus infection as well as opportunities for vaccine development.
Collapse
Affiliation(s)
- Ji Cheng Han
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Qiu Xuan Li
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jin Bo Fang
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Jin Yong Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yi Quan Li
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Shan Zhi Li
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Cheng Cheng
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chang Zhan Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fu Long Nan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Xin Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ning Yi Jin
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guang Ze Zhu
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Hui Jun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
26
|
Nagarajan V, Chen J, Hsu B, Hsu G, Wang J, Hussain B. Prevalence, Distribution, and Genotypes of Adenovirus and Norovirus in the Puzi River and Its Tributaries and the Surrounding Areas in Taiwan. GEOHEALTH 2021; 5:e2021GH000465. [PMID: 34977444 PMCID: PMC8686652 DOI: 10.1029/2021gh000465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 05/04/2023]
Abstract
This study investigated the prevalence, distribution, and genotypes of adenoviruses (AdVs) and noroviruses (NoVs) in the Puzi River and surrounding areas in Taiwan. The viruses in the water samples were isolated using the membrane filtration method and the viral nucleic acids were extracted. The RNA of NoVs was reverse-transcribed into complementary DNA using reverse transcriptase-polymerase chain reaction. AdVs and NoVs were detected using nested PCR. Genotyping and phylogenetic analyses were performed to identify the various viral genotypes in the water samples. Human adenovirus (HAdVs) and porcine adenovirus (PAdVs) were the predominant genotypes in the water samples. The prevalence of F species HAdVs serotype 41 (79.2%) and C species PAdVs serotype 5 (18.1%) was higher than that of other serotypes. Among NoVs, genogroup GII was more prevalent than GI. In particular, GII.4 (21.2%) and GII.17 (18.2%) were the predominant genotypes, which was consistent with the clinical findings. The prevalence of both AdVs and NoVs was higher in the winter than spring, summer and autumn seasons. AdVs and NoVs detection results were statistically analyzed by investigating their association with water quality indicators. The results revealed that the presence of AdVs was significantly correlated with the heterotrophic bacterial count, total coliform Escherichia coli, turbidity, salinity, and dissolved oxygen. Meanwhile, the presence of NoVs was only significantly correlated with temperature, pH, and dissolved oxygen. Microbial pollution sources may include urban runoff and discharge of water from livestock farms situated near the river and tributaries within this region of Taiwan. Future studies should include comparisons of the presence of AdVs and NoVs in these known pollution sources and water quality monitoring of these watersheds, as this will allow potential identification of pollution sources. Additionally, remediation strategies must be developed to minimize viral contamination in the river ecosystem.
Collapse
Affiliation(s)
- Viji Nagarajan
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| | | | - Bing‐Mu Hsu
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| | - Gwo‐Jong Hsu
- Division of Infectious DiseasesDitmanson Medical FoundationChia‐Yi Christian HospitalChiayi CountyTaiwan
| | - Jiun‐Ling Wang
- Department of Internal MedicineNational Cheng Kung University HospitalTainanTaiwan
| | - Bashir Hussain
- Department of Earth and Environmental SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
- Department of Biomedical SciencesNational Chung Cheng UniversityChiayi CountyTaiwan
| |
Collapse
|
27
|
Xu Y, Zhu Y, Lei Z, Rui J, Zhao Z, Lin S, Wang Y, Xu J, Liu X, Yang M, Chen H, Pan X, Lu W, Du Y, Li H, Fang L, Zhang M, Zhou L, Yang F, Chen T. Investigation and analysis on an outbreak of norovirus infection in a health school in Guangdong Province, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105135. [PMID: 34781036 DOI: 10.1016/j.meegid.2021.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Our objective was to describe the epidemiological features of an outbreak of norovirus infection in a health school in Guangdong province, China, to identify the cause of such a large scale outbreak of norovirus among older students, to simulate the transmission dynamics, and to evaluate the effect of intervention measures of GII.17 [P17] genotype norovirus infection. We identified all cases during the outbreak. Descriptive epidemiological, analytical epidemiological and hygiene survey methods were used to described the outbreak epidemic course and identify the cause of the outbreak of norovirus infection. We also used dynamical model to simulate the transmission dynamics of norovirus infection and evaluate the effect of intervention measures. Norovirus genotyping was assigned to the newly obtained strains, with a maximum likelihood phylogenetic analysis conducted. There were 360 cases of 42 classes in five grades with a 12.99% attack rate. Proportionally, more students were in contact with sick students and vomit in the suspected case group than the control group (χ2 = 5.535, P = 0.019 and χ2 = 5.549, P = 0.019, respectively). The basic reproduction number was 8.32 before and 0.49 after the intervention. Dynamical modeling showed that if the isolation rate was higher or case isolation began earlier, the total attack rate would decrease. Molecular characterization identified the GII.17 [P17] genotype in all stains obtained from the health school, which were clustered with high support in the phylogenetic tree. This was an outbreak of norovirus infection caused by contact transmission. The main reasons for the spread of the epidemic were the later control time, irregular treatment of vomit and no case isolation. The transmission dynamics of contact transmission was high, more efficient control measures should be employed.
Collapse
Affiliation(s)
- Yucheng Xu
- Futian District Center for Disease Control and Prevention, Shenzhen, People's Republic of China; Guangdong Field Epidemiology Training Program, Guangzhou, People's Republic of China
| | - Yuanzhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Jingwen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Hongsheng Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Xuemei Pan
- Lianzhou District Center for Disease Control and Prevention, Qingyuan, People's Republic of China
| | - Wentao Lu
- Qingyuan City Center for Disease Control and Prevention, Qingyuan, People's Republic of China
| | - Yuzhong Du
- Qingyuan City Center for Disease Control and Prevention, Qingyuan, People's Republic of China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Meng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Lina Zhou
- Department of Nephrology, The second Hospital of Xiamen Medical college, Xiamen 361021, China
| | - Fen Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China.
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China.
| |
Collapse
|
28
|
Dynamics of norovirus genotype change and early characterization of variants in children with diarrhea in central Tunisia, 2001-2012. Arch Virol 2021; 167:99-107. [PMID: 34741201 DOI: 10.1007/s00705-021-05290-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023]
Abstract
Human noroviruses (HuNoVs), especially GII.4 strains, are a major cause of gastroenteritis epidemics in both children and adults. Stool samples were collected from 113 Tunisian children with acute gastroenteritis in 2001 and 2002 and were retrospectively tested for HuNoVs. Fifteen (13.2%) of the 113 samples were positive for HuNoVs, all of which were genogroup II strains, and the GII.4-2004/Hunter variant was predominant (67%). We reconstituted the temporal circulation of HuNoV strains in central Tunisia between 2003 and 2012 using HuNoV isolates reported in our previous studies. A comparative analysis showed a dynamic change in the molecular profile of the HuNoV strains over a 12-year period. We found that GII.4-2004/Hunter strains were circulating as early as June 2002 and that GIX.1[GII.P15] HuNoVs were already circulating four years before this genotype was first reported in Japan in 2006. Our data suggest that epidemic strains of HuNoV circulate for several years in the pediatric population before becoming predominant. This study suggests that children from low-income countries with poor sanitation may play a significant role in the molecular evolution of noroviruses and the global emergence of new epidemic strains.
Collapse
|
29
|
Wang J, Jin M, Zhang H, Zhu Y, Yang H, Yao X, Chen L, Meng J, Hu G, He Y, Duan Z. Norovirus GII.2[P16] strain in Shenzhen, China: a retrospective study. BMC Infect Dis 2021; 21:1122. [PMID: 34717565 PMCID: PMC8556823 DOI: 10.1186/s12879-021-06746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/29/2021] [Indexed: 11/11/2022] Open
Abstract
Background Norovirus (NoV) is the main cause of non-bacterial acute gastroenteritis (AGE) outbreaks worldwide. From September 2015 through August 2018, 203 NoV outbreaks involving 2500 cases were reported to the Shenzhen Center for Disease Control and Prevention. Methods Faecal specimens for 203 outbreaks were collected and epidemiological data were obtained through the AGE outbreak surveillance system in Shenzhen. Genotypes were determined by sequencing analysis. To gain a better understanding of the evolutionary characteristics of NoV in Shenzhen, molecular evolution and mutations were evaluated based on time-scale evolutionary phylogeny and amino acid mutations. Results A total of nine districts reported NoV outbreaks and the reported NoV outbreaks peaked from November to March. Among the 203 NoV outbreaks, 150 were sequenced successfully. Most of these outbreaks were associated with the NoV GII.2[P16] strain (45.3%, 92/203) and occurred in school settings (91.6%, 186/203). The evolutionary rates of the RdRp region and the VP1 sequence were 2.1 × 10–3 (95% HPD interval, 1.7 × 10–3–2.5 × 10–3) substitutions/site/year and 2.7 × 10–3 (95% HPD interval, 2.4 × 10–3–3.1 × 10–3) substitutions/site/year, respectively. The common ancestors of the GII.2[P16] strain from Shenzhen and GII.4 Sydney 2012[P16] diverged from 2011 to 2012. The common ancestors of the GII.2[P16] strain from Shenzhen and previous GII.2[P16] (2010–2012) diverged from 2003 to 2004. The results of amino acid mutations showed 6 amino acid substitutions (*77E, R750K, P845Q, H1310Y, K1546Q, T1549A) were found only in GII.4 Sydney 2012[P16] and the GII.2[P16] recombinant strain. Conclusions This study illustrates the molecular epidemiological patterns in Shenzhen, China, from September 2015 to August 2018 and provides evidence that the epidemic trend of GII.2[P16] recombinant strain had weakened and the non-structural proteins of the recombinant strain might have played a more significant role than VP1. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06746-9.
Collapse
Affiliation(s)
- Jing Wang
- Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Miao Jin
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center Control and Prevention, Beijing, 102206, China
| | - Hailong Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yanan Zhu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiangjie Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Long Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jun Meng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guifang Hu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Zhaojun Duan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center Control and Prevention, Beijing, 102206, China
| |
Collapse
|
30
|
Duan ML, Hu Y, Tang X, Xu HM. A molecular epidemiological study of pediatric norovirus gastroenteritis, 2017-2019. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1027-1032. [PMID: 34719418 PMCID: PMC8549646 DOI: 10.7499/j.issn.1008-8830.2107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To study the molecular epidemiological characteristics of norovirus in children with acute gastroenteritis from 2017 to 2019. METHODS A retrospective analysis was performed on the medical data of children with acute gastroenteritis who were admitted to Children's Hospital of Chongqing Medical University from January 2017 to December 2019. A total of 1 458 stool samples were collected from the children, and viral RNA was extracted. Reverse transcription polymerase chain reaction was used for gene amplification, sequencing, and genotype identification of the VP1 region of capsid protein in norovirus. RESULTS Among the 1 458 stool samples, 158 (10.8%) were positive for norovirus. There was no significant difference in the positive detection rate of norovirus between different years (P>0.05). Boys had a norovirus detection rate of 12.2% (105/860), which was significantly higher than that in girls (8.9%, 53/598) (P=0.043). The children aged 12 to <18 months had the highest norovirus detection rate (16.9%, 51/301). August, September, and October were the epidemic peak season. A total of 23 norovirus-positive samples were also positive for rotavirus. The norovirus detected were mainly GII type (97.5%, 154/158), and only 4 cases were GI type (2.5%, 4/158). The sequencing of the VP1 region of capsid protein in the positive samples showed that GII.4 (69.6%, 110/158) was the dominant genotype, among which 99 (62.7%, 99/158) were GII.4 Sydney 2012, followed by GII.3 (15.2%, 24/158), GII.2 (10.1%, 16/158), GII.6 (1.9%, 3/158), and GII.17 (0.6%, 1/158). GI.3 (1.3%, 2/158), GI.2 (0.6%, 1/158), and GI.5 (0.6%, 1/158) were rarely detected. CONCLUSIONS Norovirus GII.4 Sydney 2012 was the major epidemic strain in the children with norovirus gastroenteritis from 2017 to 2019. Although norovirus infection can exist throughout the year, August to October is the peak period. During this period, norovirus surveillance and key population protection are strengthened to help prevent and control norovirus diarrhea.
Collapse
Affiliation(s)
- Mei-Lin Duan
- Department of Infection, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Xu H-M, )
| | - Yue Hu
- Department of Infection, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Xu H-M, )
| | - Xiang Tang
- Department of Infection, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Xu H-M, )
| | - Hong-Mei Xu
- Department of Infection, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and Disorders/China International Science and Technology Cooperation Base of Child Development and Critical Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China (Xu H-M, )
| |
Collapse
|
31
|
Savini F, Giacometti F, Tomasello F, Pollesel M, Piva S, Serraino A, De Cesare A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods 2021; 10:2444. [PMID: 34681492 PMCID: PMC8535557 DOI: 10.3390/foods10102444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the latest One Health ECDC EFSA technical report, Norovirus in fish and fishery products have been listed as the agent/food pair causing the highest number of strong-evidence outbreaks in the EU in 2019. This review aims to identify data gaps that must be filled in order to increase knowledge on Norovirus in bivalve molluscs, perform a risk assessment and rank the key mitigation strategies for this biological hazard, which is relevant to public health. Virologic determinations are not included in any of the food safety and process hygiene microbiologic criteria reflected in the current European regulations. In addition, the Escherichia coli-based indices of acceptable faecal contamination for primary production, as well as the food safety criteria, do not appear sufficient to indicate the extent of Norovirus contamination. The qualitative risk assessment data collected in this review suggests that bivalve molluscs present a high risk to human health for Norovirus only when consumed raw or when insufficiently cooked. On the contrary, the risk can be considered negligible when they are cooked at a high temperature, while information is still scarce for non-thermal treatments.
Collapse
Affiliation(s)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (F.S.); (F.T.); (M.P.); (S.P.); (A.S.); (A.D.C.)
| | | | | | | | | | | |
Collapse
|
32
|
Jeong MH, Song YH, Ju SY, Kim SH, Kwak HS, An ES. Surveillance To Prevent the Spread of Norovirus Outbreak from Asymptomatic Food Handlers during the PyeongChang 2018 Olympics. J Food Prot 2021; 84:1819-1823. [PMID: 34115864 DOI: 10.4315/jfp-21-136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Human noroviruses are major causes of nonbacterial gastroenteritis and are transmitted by both food and water, as well as person-to-person. Asymptomatic norovirus infection of food handlers may play a role in transmission. The outbreak of norovirus infections was recognized in the PyeongChang Winter Olympics, starting with security staff on 3 February 2018. The Ministry of Food and Drug Safety in the Republic of Korea conducted norovirus surveillance from asymptomatic food handlers of food-catering facilities related to the Olympics to prevent the spread of noroviruses. Rectal swab samples (707) from food handlers were collected and examined for noroviruses by using real-time reverse transcription PCR and conventional reverse transcription PCR. Five of 707 samples were identified as noroviruses. Genotypes of the norovirus-positive samples were determined with sequencing analysis. Identified genotypes of norovirus in asymptomatic food handlers included GI.3, GII.4, and GII.17. The GII.17 strain was prevalent among the genotypes, accounting for three of five detections. Food handlers with noroviruses detected in rectal swabs were excluded from cooking, and all food handled by infected food handlers was discarded. Surveillance of norovirus infection for food handlers contributed to preventing norovirus spread. HIGHLIGHTS
Collapse
Affiliation(s)
- Min Hee Jeong
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Yun-Hee Song
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Si Yeon Ju
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Soon Han Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Hyo-Sun Kwak
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Eun Sook An
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong, Cheongju, Chungbuk, 28159, Republic of Korea
| |
Collapse
|
33
|
Wei N, Ge J, Tan C, Song Y, Wang S, Bao M, Li J. Epidemiology and evolution of Norovirus in China. Hum Vaccin Immunother 2021; 17:4553-4566. [PMID: 34495811 DOI: 10.1080/21645515.2021.1961465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Norovirus (NoV) has been recognized as a leading cause of gastroenteritis worldwide. This review estimates the prevalence and genotype distribution of NoV in China to provide a sound reference for vaccine development. Studies were searched up to October 2020 from CNKI database and inclusion criteria were study duration of at least one calendar year and population size of >100. The mean overall NoV prevalence in individuals with sporadic diarrhea/gastroenteritis was 16.68% (20796/124649, 95% CI 16.63-16.72), and the detection rate of NoV was the highest among children. Non-GII.4 strains have replaced GII.4 as the predominant caused multiple outbreaks since 2014. Especially the recombinant GII.P16-GII.2 increased sharply, and virologic data show that the polymerase GII.P16 rather than VP1 triggers pandemic. Due to genetic diversity and rapid evolution, predominant genotypes might change unexpectedly, which has become major obstacle for the development of effective NoV vaccines.
Collapse
Affiliation(s)
- Na Wei
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Jun Ge
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Changyao Tan
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Yunlong Song
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Shiwei Wang
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Mengru Bao
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| | - Jianqiang Li
- Vaccine R&D, Grand Theravac Life Science (Nanjing) Co., Ltd, Nanjing, China
| |
Collapse
|
34
|
Virological and Epidemiological Features of Norovirus Infections in Brazil, 2017-2018. Viruses 2021; 13:v13091724. [PMID: 34578304 PMCID: PMC8472875 DOI: 10.3390/v13091724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Noroviruses are considered an important cause of acute gastroenteritis (AGE) across all age groups. Here, we investigated the incidence of norovirus, genotypes circulation, and norovirus shedding in AGE stool samples from outpatients in Brazil. During a two-year period, 1546 AGE stool samples from ten Brazilian states were analyzed by RT-qPCR to detect and quantify GI and GII noroviruses. Positive samples were genotyped by dual sequencing using the ORF1/2 junction region. Overall, we detected norovirus in 32.1% of samples, with a massive predominance of GII viruses (89.1%). We also observed a significant difference between the median viral load of norovirus GI (3.4×105 GC/g of stool) and GII (1.9×107 GC/g). The most affected age group was children aged between 6 and 24 m old, and norovirus infection was detected throughout the year without marked seasonality. Phylogenetic analysis of partial RdRp and VP1 regions identified six and 11 genotype combinations of GI and GII, respectively. GII.4 Sydney[P16] was by far the predominant genotype (47.6%), followed by GII.2[P16], GII.4 Sydney[P31], and GII.6[P7]. We detected, for the first time in Brazil, the intergenogroup recombinant genotype GIX.1[GII.P15]. Our study contributes to the knowledge of norovirus genotypes circulation at the national level, reinforcing the importance of molecular surveillance programs for future vaccine designs.
Collapse
|
35
|
Zhang M, Fu M, Hu Q. Advances in Human Norovirus Vaccine Research. Vaccines (Basel) 2021; 9:732. [PMID: 34358148 PMCID: PMC8310286 DOI: 10.3390/vaccines9070732] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute gastroenteritis (AGE) worldwide, which is highly stable and contagious, with a few virus particles being sufficient to establish infection. Although the World Health Organization in 2016 stated that it should be an absolute priority to develop a HuNoV vaccine, unfortunately, there is currently no licensed HuNoV vaccine available. The major barrier to the development of an effective HuNoV vaccine is the lack of a robust and reproducible in vitro cultivation system. To develop a HuNoV vaccine, HuNoV immunogen alone or in combination with other viral immunogens have been designed to assess whether they can simultaneously induce protective immune responses against different viruses. Additionally, monovalent and multivalent vaccines from different HuNoV genotypes, including GI and GII HuNoV virus-like particles (VLPs), have been assessed in order to induce broad protection. Although there are several HuNoV vaccine candidates based on VLPs that are being tested in clinical trials, the challenges to develop effective HuNoV vaccines remain largely unresolved. In this review, we summarize the advances of the HuNoV cultivation system and HuNoV vaccine research and discuss current challenges and future perspectives in HuNoV vaccine development.
Collapse
Affiliation(s)
- Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| | - Ming Fu
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou 510623, China;
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
36
|
Castells M, Cristina J, Colina R. Evolutionary history and spatiotemporal dynamic of GIII norovirus: From emergence to classification in four genotypes. Transbound Emerg Dis 2021; 69:1872-1879. [PMID: 34038622 DOI: 10.1111/tbed.14168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023]
Abstract
Noroviruses belong to a genetically diverse group of viruses infecting a wide range of mammalian host species, and those detected in cattle and sheep are classified within genogroup III (GIII). The current classification of norovirus in genogroups and genotypes is based on phylogenetic clustering and average distances within and between these phylogenetic clusters; however, the classification studies have been focused mainly on human norovirus, being GIII norovirus relegated. Due to the increasing number of studies on GIII norovirus, the need of an updated and extensive classification is evident. The aim of this study was to update the classification of norovirus within GIII, to describe the emergence of a circulating recombinant strain, and to reconstruct the evolutionary history of this genogroup. Two P-types (GIII.P1-2) and four genotypes (GIII.1-4) were described. For the genogroup GIII, the evolutionary rate estimated was 2.78E-3 s/s/y (95%HPD, 1.79E-3 s/s/y-3.78E-3 s/s/y), and the tMRCA was estimated around 1500 (95%HPD, 1247-1688). Despite the long history of this genogroup, the genotypes detected at present emerged in the last 100 years. Interestingly, most of the recombinant GIII.2P[1] strains detected worldwide were originated from a single recombination event and this recombinant strain was later dispersed through the world. Finally, our results indicate that a scenario of genotypes replacement through the time is highly probable.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, Centro Universitario Regional Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Centro Universitario Regional Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| |
Collapse
|
37
|
Lu J, Peng J, Fang L, Zeng L, Lin H, Xiong Q, Liu Z, Jiang H, Zhang C, Yi L, Song T, Ke C, Li C, Ke B, He G, Zhu G, He J, Sun L, Li H, Zheng H. Capturing noroviruses circulating in the population: sewage surveillance in Guangdong, China (2013-2018). WATER RESEARCH 2021; 196:116990. [PMID: 33725645 DOI: 10.1016/j.watres.2021.116990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Noroviruses (NoVs) are the leading cause of acute gastroenteritis (AGE) outbreaks. Since 2014, novel genetic variants of NoV have been continuously identified and have caused a sharp increase in the number of AGE outbreaks. The specific geographical distribution and expanding genetic diversity of NoV has posed a challenge to conventional surveillance. Here, we describe the long-term dynamic correlation between NoV distribution in sewage and in the local population through the molecular surveillance of NoV in Guangdong, 2013-2018. The relative viral loads of the GI and GII genotypes in sewage were calculated through RT-PCR. A high-throughput sequencing method and operational taxonomic unit (OTU) clustering pipeline were developed to illustrate the abundances of different genotypes and genetic variants in sewage. Our results showed that the NoV viral loads and the emergence of new variants in sewage were closely associated with NoV outbreak risks in the population. Compared with the outbreaks surveillance, the dominance of the newly emerged variants, GII.P17-GII.17 and GII.P16-GII.2, could be detected one or two months ahead in sewage of a hub city. In addition, the dynamics of pre-epidemic variants, which were rarely detected in clinics, could be captured through sewage surveillance, thus improving our understanding of the origin and evolution of these novel epidemic variants. Our data highlight that sewage surveillance could provide nearly real-time and high-throughput data on NoV circulation in the community. With the advances in sequencing techniques, the sewage surveillance system could also be extended to other related infectious diseases.
Collapse
Affiliation(s)
- Jing Lu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; School of Public Health, Southern Medical University, Guangzhou, China.
| | - Jinju Peng
- School of Public Health, Southern Medical University, Guangzhou, China; Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lilian Zeng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huifang Lin
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qianling Xiong
- School of Public Health, Southern Medical University, Guangzhou, China; Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhe Liu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huimin Jiang
- School of Public Health, Southern Medical University, Guangzhou, China; Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chaozheng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Tie Song
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Caixia Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guanhao He
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guanghu Zhu
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jianfeng He
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Limei Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
38
|
Barsoum Z. Pediatric Norovirus Gastroenteritis in Ireland: Seasonal Trends, Correlation with Disease Severity, Nosocomial Acquisition and Viral Co-Infection. Indian J Pediatr 2021; 88:463-468. [PMID: 33085042 DOI: 10.1007/s12098-020-03540-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine norovirus frequency, seasonal trends, disease severity and nosocomial acquisition in a region of Ireland. METHODS From November 18th 2016 to November 18th 2017, all children up to 3 y of age who presented to Mayo University Hospital with vomiting and diarrhea, had their stool tested for norovirus and other viruses. Each week of the year was studied in relation to the total number of stool samples requested for norovirus testing, the number of positive stool samples, the calculated median of positive stool samples in two consecutive weeks and their calculated median percentage of positive stool samples in each two consecutive week period. RESULTS During the study period, norovirus was the third leading cause of gastroenteritis (12%), norovirus G2 was the predominant strain; 61% were male; 56% older than 1 y, 78% of cases were severe. No nosocomial disease was detected. The fifth week of January was the week peak. Viral Co- infection was confirmed in four cases of which astrovirus was confirmed in two cases. Three seasons of norovirus gastroenteritis and four short episodes of norovirus infection were noted during 2016/2017. CONCLUSIONS Norovirus is a predominant cause of gastroenteritis. Co- infection with other viruses, mainly astrovirus may occur. Norovirus infections occur throughout the year with a peak in winter.
Collapse
Affiliation(s)
- Zakaria Barsoum
- Department of Pediatrics, South West Acute Hospital, Enniskillen, Northern Ireland.
| |
Collapse
|
39
|
Zuo Y, Xue L, Gao J, Liao Y, Liang Y, Jiang Y, Cai W, Qin Z, Yang J, Zhang J, Wang J, Chen M, Ding Y, Wu Q. Evolutionary Mechanism of Immunological Cross-Reactivity Between Different GII.17 Variants. Front Microbiol 2021; 12:653719. [PMID: 33889144 PMCID: PMC8055840 DOI: 10.3389/fmicb.2021.653719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Human norovirus is regarded as the leading cause of epidemic acute gastroenteritis with GII.4 being the predominant genotype during the past decades. In the winter of 2014/2015, the GII.17 Kawasaki 2014 emerged as the predominant genotype, surpassing GII.4 in several East Asian countries. Hence, the influence of host immunity response on the continuous evolution of different GII.17 variants needs to be studied in depth. Here, we relate the inferences of evolutionary mechanisms of different GII.17 variants with the investigation of cross-reactivity and cross-protection of their respective antisera using the expression of norovirus P particles in Escherichia coli. The cross-reactivity assay showed that the antisera of previous strains (GII.17 A and GII.17 B) reacted with recent variants (GII.17 C and GII.17 D) at high OD values from 0.8 to 1.16, while recent variant antisera cross-reacting with previous strains were weak with OD values between 0.26 and 0.56. The cross-protection assay indicated that the antisera of previous strains had no inhibitory effect on recent variants. Finally, mutations at amino acids 353–363, 373–384, 394–404, and 444–454 had the greatest impact on cross-reactivity. These data indicate that the recent pandemic variants GII.17 C and GII.17 D avoided the herd immunity effect of previous GII.17 A and GII.17 B strains through antigenic variation.
Collapse
Affiliation(s)
- Yueting Zuo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yingyin Liao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanhui Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yueting Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiwei Qin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiale Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
40
|
Sun C, Chen J, Li H, Fang L, Wu S, Jayavanth P, Tang S, Sanchez G, Wu X. One-step duplex RT-droplet digital PCR assay for the detection of norovirus GI and GII in lettuce and strawberry. Food Microbiol 2021; 94:103653. [PMID: 33279078 DOI: 10.1016/j.fm.2020.103653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
The study was designed to develop a sensitive one-step duplex reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) to detect norovirus genogroup I and II (NoV GI and GII) in lettuce and strawberry. The specificity, sensitivity, repeatability and robustness of the assay was compared with RT-qPCR. The lowest concentration detected by RT-ddPCR for NoV GI and NoV GII were 4.68 and 8.47 copies/μL respectively, much lower than that of RT-qPCR with a number of 46.8 and 84.7 copies/μL, respectively. Lettuce and strawberry samples were artificially contaminated with NoV GI and GII suspensions, with inoculum size of 3.00 × 106 to 1.70 × 108 copies and 4.80 × 105 to 2.50 × 107 copies, respectively. Strawberry spiked with low inoculum size revealed positive results by RT-ddPCR, while recorded negative by RT-qPCR. Meanwhile, RT-ddPCR also showed a higher average recovery rate for NoV in lettuce and strawberry than RT-qPCR.The limit of detection (LoDs) of RT-ddPCR for NoVs in lettuce was 2.32 × 104 copies/25g (NoV GI) and 2.36 × 104 ciopies/25g (NoV GII), and that in strawberry was 2.56 × 104 copies/25g (NoV GI) and 2.64 × 104 ciopies/25g (NoV GII), which were 10 folds lower than that of RT-qPCR. The developed duplex RT-ddPCR assay exhibited stability and increased capacity to resist inhibitors in food samples with low concentration of NoV, making it a reliable method to avoid false negative result as opposed to RT-qPCR. In conclusion, one-step RT-ddPCR method developed in this study is pertinent in detecting foodborne virus such as NoV.
Collapse
Affiliation(s)
- Chongzhen Sun
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Jiayin Chen
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Hui Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Guangzhou, 511430, China.
| | - Ling Fang
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Guangzhou, 511430, China
| | - Shiwei Wu
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Guangzhou, 511430, China
| | - Pallavi Jayavanth
- International School, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Shuze Tang
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China
| | - Gloria Sanchez
- Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. AgustÍn Escardino 7, 46980, Paterna, Valencia, Spain
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, 601 Huangpu Avenue, Guangzhou, 510632, China.
| |
Collapse
|
41
|
Upfold NS, Luke GA, Knox C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:1-31. [PMID: 33501612 PMCID: PMC7837882 DOI: 10.1007/s12560-020-09456-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 05/02/2023]
Abstract
Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal-oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.
Collapse
Affiliation(s)
- Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
42
|
Hasing ME, Pang XL. Norovirus: Molecular Epidemiology, Viral Culture, Immunity, and Vaccines. CLINICAL MICROBIOLOGY NEWSLETTER 2021; 43:33-43. [DOI: 10.1016/j.clinmicnews.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Norovirus strains in patients with acute gastroenteritis in rural and low-income urban areas in northern Brazil. Arch Virol 2021; 166:905-913. [PMID: 33462673 DOI: 10.1007/s00705-020-04944-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/13/2020] [Indexed: 01/24/2023]
Abstract
From 2010-2016, a total of 251 stool samples were screened for norovirus using next-generation sequencing (NGS) followed by phylogenetic analysis to investigate the genotypic diversity of noroviruses in rural and low-income urban areas in northern Brazil. Norovirus infection was detected in 19.9% (50/251) of the samples. Eight different genotypes were identified: GII.4_Sydney[P31] (64%, 32/50), GII.6[P7] (14%, 7/50), GII.17[P17] (6%, 3/50), GII.1[P33] (6%, 3/50), GII.3[P16] (4%, 2/50), GII.2[P16] (2%, 1/50), GII.2[P2] (2%, 1/50), and GII.4_New Orleans[P4] (2%, 1/50). Distinct GII.6[P7] variants were recognized, indicating the presence of different co-circulating strains. Elucidating norovirus genetic diversity will improve our understanding of their potential health burden, in particular for the GII.4_Sydney[P31] variant.
Collapse
|
44
|
Epidemiology of norovirus gastroenteritis in hospitalized children under five years old in western China, 2015-2019. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:918-925. [PMID: 33531203 DOI: 10.1016/j.jmii.2021.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Norovirus is associated with one-fifth of all gastroenteritis cases, but basic epidemiological data is lacking, especially in developing countries. As long-term surveillance on norovirus gastroenteritis is scarce in western China, this study aims to update the epidemiological knowledge of norovirus gastroenteritis and to characterize the genotypes of norovirus strains. METHODS Stool samples were collected from hospitalized children under 5 years old with gastroenteritis in Chengdu, China. All samples were tested for norovirus as well as rotavirus, sapovirus, enteric adenovirus, and astrovirus by real-time RT-PCR. RdRp and VP1 genes were sequenced in norovirus-positive samples to investigate viral phylogenies. RESULTS Of the 1181 samples collected from 2015 to 2019, 242 (20.5%) were positive for norovirus. Among norovirus-positive cases, 65 cases had co-infection with another virus; norovirus/enteric adenovirus was most frequently detected (50.8%, 33/65). The highest positive rate was observed in children aged 13-18 months (23.7%, 68/287). Norovirus infection peaked in autumn (36.6%, 91/249), followed by summer (20.3%, 70/345). Pearson correlation analysis showed significant correlation between the norovirus-positive rate and humidity (r = 0.773, P < 0.05). GII.4 Sydney 2012 [P31] (48.5%, 79/163) and GII.3 [P12] (35.6%, 58/163) were the dominant norovirus strains. CONCLUSIONS Norovirus has become one of the most common causes of viral gastroenteritis in children under 5 years old in western China. Continuous monitoring is imperative for predicting the emergence of new epidemic strains and for current vaccine development.
Collapse
|
45
|
Ji L, Hu G, Xu D, Wu X, Fu Y, Chen L. Molecular epidemiology and changes in genotype diversity of norovirus infections in acute gastroenteritis patients in Huzhou, China, 2018. J Med Virol 2020; 92:3173-3178. [PMID: 32603477 PMCID: PMC7692952 DOI: 10.1002/jmv.26247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/24/2020] [Indexed: 11/09/2022]
Abstract
Norovirus is an important causative agent of acute gastroenteritis worldwide, affecting people of all ages. Stool samples collected from patients with clinical symptoms of acute gastroenteritis in all age groups at the diarrhea outpatient department of the First People's Hospital in Huzhou were analyzed to gain insight into the prevalence and genetic characteristics of norovirus. From January to December 2018, a total of 551 specimens were screened for norovirus by real-time reverse transcription-polymerase chain reaction (RT-PCR). RT-PCR was used for genomic amplification and sequencing of the RNA-dependent RNA polymerase and capsid gene of the positive samples. Genotypes of norovirus were assigned using the norovirus Noronet typing tool and phylogenetic analysis. About 100 (18.1%) specimens were identified as norovirus positive. GII genogroup was the main genogroup identified (83.0%; 83/100). About 42 (42.0%) samples were successfully sequenced and genotyped by RT-PCR. Since one of the samples was dual infection, so we got 43 virus finally. Nine norovirus GII genotypes and four norovirus GI genotypes were detected in Huzhou during our research period. The main two norovirus GII genotypes were GII.2[P16] (54.8%; 23/43) and GII.17[P17] (11.9%; 5/43). We characterized the molecular epidemiology of norovirus infection in acute gastroenteritis patients during 2018. GII genogroup was the main genogroup identified. The dominance norovirus genotype circulating in the population of Huzhou was GII.2[P16] in 2018.
Collapse
Affiliation(s)
- Lei Ji
- Microbiological LaboratoryHuzhou Center for Disease Control and PreventionHuzhouChina
| | - Gang Hu
- Obstetrics and GynecologyHuzhou Maternity and Child Health Care HospitalHuzhouChina
| | - Deshun Xu
- Microbiological LaboratoryHuzhou Center for Disease Control and PreventionHuzhouChina
| | - Xiaofang Wu
- Microbiological LaboratoryHuzhou Center for Disease Control and PreventionHuzhouChina
| | - Yun Fu
- Microbiological LaboratoryHuzhou Center for Disease Control and PreventionHuzhouChina
| | - Liping Chen
- Microbiological LaboratoryHuzhou Center for Disease Control and PreventionHuzhouChina
| |
Collapse
|
46
|
Sun C, Zhao Y, Wang G, Huang D, He H, Sai L. Molecular epidemiology of GII noroviruses in outpatients with acute gastroenteritis in Shandong Province, China. Arch Virol 2020; 166:375-387. [PMID: 33226478 DOI: 10.1007/s00705-020-04883-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/03/2020] [Indexed: 11/26/2022]
Abstract
Noroviruses have been recognized as the most important causative agents of acute gastroenteritis. The present study was carried out to investigate the molecular epidemiological features of genotype II (GII) norovirus in outpatients with acute gastroenteritis in Shandong province in China from July 2017 to June 2018. In total, 151 (10.30%) samples were positive for NoV GII strains by RT-PCR. Eight genotypes were detected: GII.2, GII.3, GII.4, GII.6, GII.7, GII.12, GII.13 and GII.17. GII.4 (43.71%) was the most prevalent genotype, and the dominant strains belonged to the group of Sydney-2012 strains. GII.17 (27.15%), which has become the main cause of outbreaks of acute gastroenteritis in China, also accounted for a high proportion. Meanwhile, three recombinant types (GII.P17-GII.7, GII.P3-GII.4 and GII.P12-GII.4) were observed and authenticated using Simplot software. The results showed that GII norovirus was the main cause of acute gastroenteritis in Shandong province. GII.4 and GII.17 were the dominant genotypes. Continuous observation and identification of emerging genotypes are necessary for understanding the evolution of the virus, control of infection, and development of vaccines.
Collapse
Affiliation(s)
- Chengxi Sun
- Department of Clinical Laboratory, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Yingjie Zhao
- Department of Rheumatology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Gang Wang
- Department of Infectious Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Deyu Huang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Hong He
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Lintao Sai
- Department of Infectious Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China.
| |
Collapse
|
47
|
Zheng L, Zhang H, Ma J, Liu J, Ma S, Wang M, Huo Y. Phylogenetic and biological characterizations of a GI.3 norovirus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104554. [PMID: 32927119 DOI: 10.1016/j.meegid.2020.104554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023]
Abstract
Noroviruses (NoVs) are a major cause of acute non-bacterial gastroenteritis worldwide. In this study, we report the isolation, near-complete genome sequencing, and expression and biological characterization of the major capsid protein (VP1) of a GI.3 NoV isolated from a child presenting acute gastroenteritis. The genome of the GI.3 NoV is 7746 bp in length, not including the poly-adenylation tail. Phylogenetic analysis based on the complete VP1 nucleotide sequences indicates that GI.3 NoVs could be divided into four clusters, with 4.6%, 5.3%, 6.6%, 1.9% intracluster variations in nucleotide and 4.8%, 3.8%, 6.1%, 1.7% intracluster variations in amino acid sequences, respectively. A Bayesian evolutionary analysis showed that GI.3 NoVs evolved at 2.44 × 10-3, 2.78 × 10-3, and 3.04 × 10-3 nucleotide substitutions/site/year using a strict clock model, an uncorrelated log-normal model (UCLN), and an uncorrelated exponential derivation model (UCED), respectively. VP1 protein expression using a recombinant baculovirus expression system leads to the successful assembly of virus-like particles (VLPs). In vitro VLP-Histo-blood group antigen (HBGA) binding assay indicates that GI.3 NoV VLPs strongly bind to blood type A salivary HBGAs, moderately bind to blood type O salivary HBGAs, and weakly bind or do not bind to blood type B and AB salivary HBGAs. In vitro VLP-HBGA binding blockade assay indicated that the binding of GI.3 NoV VLPs to blood type A salivary HBGAs could only be blocked by anti-GI.3 NoV VLPs serum but not non-GI.3 NoV genotype-specific hyperimmune sera (GI.2, GI.7, GII.4, GII.6, GII.7, and GII.17). The detailed characterization of GI.3 NoV in this study provides evidence that GI.3 NoV undergoes rapid evolution and exhibits no cross-blocking effects, suggesting that GI.3 NoV may potentially be utilized in the development of multivalent NoV vaccines.
Collapse
Affiliation(s)
- Lijun Zheng
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | | | - Jie Ma
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jinjin Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Shuhuan Ma
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | | | - Yuqi Huo
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
48
|
Hernandez JM, Silva LD, Sousa Junior EC, Cardoso JF, Reymão TKA, Portela ACR, de Lima CPS, Teixeira DM, Lucena MSS, Nunes MRT, Gabbay YB. Evolutionary and Molecular Analysis of Complete Genome Sequences of Norovirus From Brazil: Emerging Recombinant Strain GII.P16/GII.4. Front Microbiol 2020; 11:1870. [PMID: 32849456 PMCID: PMC7423841 DOI: 10.3389/fmicb.2020.01870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Noroviruses (NoVs) are enteric viruses that cause acute gastroenteritis, and the pandemic GII.4 genotype is spreading and evolving rapidly. The recombinant GII.P16/GII.4_Sydney strain emerged in 2016, replacing GII.P31/GII.4_Sydney (GII.P31 formerly known as GII.Pe) in some countries. We analyzed the complete genome of 20 NoV strains (17 GII.P31/GII.4_ Sydney and 3 GII.P16/GII.4_Sydney) from Belém and Manaus, Brazil, collected from 2012 to 2016. Phylogenetic trees were constructed by maximum likelihood method from 191 full NoV-VP1 sequences, demonstrated segregation of the Sydney lineage in two larger clades, suggesting that GII.4 strains associated with GII.P16 already have modifications compared with GII.P31/GII.4. Additionally, the Bayesian Markov Chain Monte Carlo method was used to reconstruct a time-scaled phylogenetic tree formed by GII.P16 ORF1 sequences (n = 117) and three complete GII.P16 sequences from Belém. The phylogenetic tree indicated the presence of six clades classified into different capsid genotypes and locations. Evolutionary rates of the ORF1 gene of GII.P16 strains was estimated at 2.01 × 10-3 substitutions/site/year, and the most recent common ancestors were estimated in 2011 (2011-2012, 95% HPD). Comparing the amino acid (AA) sequence coding for ORF1 with the prototype strain GII.P16/GII.4, 36 AA changes were observed, mainly in the non-structural proteins p48, p22, and RdRp. GII.P16/GII.4 strains of this study presented changes in amino acids 310, 333, 373, and 393 of the antigenic sites in the P2 subdomain, and ML tree indicating the division within the Sydney lineage according to the GII.P16 and GII.P31 polymerases. Notably, as noroviruses have high recombination rates and the GII.4 genotype was prevalent for a long time in several locations, additional and continuous evolutionary analyses of this new genotype should be needed in the future.
Collapse
Affiliation(s)
- Juliana Merces Hernandez
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luciana Damascena Silva
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| | | | - Jedson Ferreira Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tammy Kathlyn Amaral Reymão
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | | | | | | | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
49
|
Osazuwa F, Grobler HS, Johnson W. Phylogenetic lineage of GII.17 norovirus identified among children in South-South, Nigeria. BMC Res Notes 2020; 13:347. [PMID: 32698856 PMCID: PMC7376658 DOI: 10.1186/s13104-020-05185-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
Objectives Norovirus is a major cause of diarrhea among children worldwide. This present report highlight’s the genetic homology patterns of GII.17 noroviruses detected among children under-5 years of age with diarrhea in the South-South, region of Nigeria. Stool specimens were collected from 300 children with diarrhea and analyzed for norovirus using conventional reverse transcriptase-Polymerase Chain Reaction. Sequencing of the capsid region was performed to genotype the strains Results 36/300 (12.0%) of patients were positive for norovirus by RT-PCR. 7/36 (19.4%) (5 GI.3 and 2 GI.5) were GI others where typed to be GII. All GII.17 norovirus identified in this study, 3/29 (10.3%) where typed to belong to the recently discovered GII.17 Kawasaki strain. This study report for the first time the detection of norovirus GII.17 Kawasaki strain in South-South, region of Nigeria.
Collapse
Affiliation(s)
- Favour Osazuwa
- MDS Molecular Services Sub-Saharan African Centre, Abuja, Nigeria. .,Department of Medical Laboratory Sciences, University of Benin, Benin City, Nigeria.
| | | | - William Johnson
- Department of Medical Laboratory Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
50
|
Huang Z, Yao D, Xiao S, Yang D, Ou X. Full-genome sequences of GII.13[P21] recombinant norovirus strains from an outbreak in Changsha, China. Arch Virol 2020; 165:1647-1652. [PMID: 32356188 PMCID: PMC7223583 DOI: 10.1007/s00705-020-04643-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022]
Abstract
On 31 March 2019, 68 school students suffered from vomiting, diarrhea, and abdominal pain after participating in a group activity at a commercial park. In this outbreak, multiple norovirus genotypes were observed, including GII.2[P16], GII.17[P17], and GII.13[P21]. Further, we determined the full-genome sequences of two strains of GII.13[P21] recombinant noroviruses, which were 7434 nt long. Phylogenetic analysis based on open reading frames (ORFs) 1 and 2 revealed that these recombinants were related to stains of different genotypes from different countries. The full genome nucleotide sequences of the two isolates were 97.0% and 98.0% identical to those of strains from London and Thailand, respectively. Simplot analysis revealed the presence of a break point at nt 5059 in the ORF1 region. The histo-blood group antigen binding sites were conserved in both recombinant viruses. Our findings not only provide valuable genetic information about a recombinant norovirus but also contribute to our general understanding of the evolution, genetic diversity, and distribution of noroviruses.
Collapse
Affiliation(s)
- Zheng Huang
- Changsha Center for Disease Control and Prevention, Beside the Liuyang River Bridge, No. 509, Wanjiali Second North Road, Changsha, Hunan People’s Republic of China
| | - Dong Yao
- Changsha Center for Disease Control and Prevention, Beside the Liuyang River Bridge, No. 509, Wanjiali Second North Road, Changsha, Hunan People’s Republic of China
| | - Shan Xiao
- Changsha Center for Disease Control and Prevention, Beside the Liuyang River Bridge, No. 509, Wanjiali Second North Road, Changsha, Hunan People’s Republic of China
| | - Dong Yang
- Changsha Center for Disease Control and Prevention, Beside the Liuyang River Bridge, No. 509, Wanjiali Second North Road, Changsha, Hunan People’s Republic of China
| | - Xinhua Ou
- Changsha Center for Disease Control and Prevention, Beside the Liuyang River Bridge, No. 509, Wanjiali Second North Road, Changsha, Hunan People’s Republic of China
| |
Collapse
|