1
|
Kim SH, Jang HW, Park JJ, Nam DG, Lee SJ, Yeo SH, Kim SY. Antibiotic Resistance in Acetic Acid Bacteria Originating from Vinegar. Antibiotics (Basel) 2024; 13:626. [PMID: 39061308 PMCID: PMC11274321 DOI: 10.3390/antibiotics13070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Acetic acid bacteria (AAB) are major contributors to the production of fermented vinegar, offering various cultural, culinary, and health benefits. Although the residual unpasteurized AAB after vinegar production are not pathogens, these are necessary and require safety evaluations, including antibiotic resistance, before use as a starter. In this research, we investigated the antibiotic resistance profiles of 26 AAB strains, including various species of Komagataeibacter and Acetobacter, against 10 different antibiotics using the E-test method. All strains exhibited resistance to aztreonam and clindamycin. Komagataeibacter species demonstrated a 50% resistance rate to ciprofloxacin, analogous to Acetobacter species, but showed twice the resistance rates to chloramphenicol and erythromycin. Genomic analysis of K. saccharivorans CV1 identified intrinsic resistance mechanisms, such as multidrug efflux pumps, thereby enhancing our understanding of antibiotic resistance in acetic acid-producing bacteria. These findings enhance understanding of antibiotic resistance in AAB for food safety and new antimicrobial strategies, suggesting the need for standardized testing methods and molecular genetic study.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - Hyun-Wook Jang
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - Jin-Ju Park
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - Dong-Geon Nam
- Division of Functional Food & Nutrition, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Su-Jeong Lee
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - Soo-Hwan Yeo
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| | - So-Young Kim
- Fermented and Processed Food Science Division, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-H.K.); (H.-W.J.); (J.-J.P.); (S.-J.L.)
| |
Collapse
|
2
|
Farfour E, Roux A, Sage E, Revillet H, Vasse M, Vallée A. Rarely Encountered Gram-Negative Rods and Lung Transplant Recipients: A Narrative Review. Microorganisms 2023; 11:1468. [PMID: 37374970 DOI: 10.3390/microorganisms11061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The respiratory tract of lung transplant recipients (LTR) is likely to be colonized with non-fermentative Gram-negative rods. As a consequence of the improvements in molecular sequencing and taxonomy, an increasing number of bacterial species have been described. We performed a review of the literature of bacterial infections in LTR involving non-fermentative Gram-negative rods with exclusion of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp. and Burkholderia spp. Overall, non-fermenting GNR were recovered from 17 LTR involving the following genera: Acetobacter, Bordetella, Chryseobacterium, Elizabethkinga, Inquilinus, and Pandoraea. We then discuss the issues raised by these bacteria, including detection and identification, antimicrobial resistance, pathogenesis, and cross-transmission.
Collapse
Affiliation(s)
- Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
| | - Antoine Roux
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Edouard Sage
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène Hospitalière, CHU de Toulouse, 31300 Toulouse, France
- Observatoire National Burkholderia cepacia, 31403 Toulouse, France
| | - Marc Vasse
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
- INSERM Hémostase Inflammation Thrombose HITH U1176, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Alexandre Vallée
- Service d'Epidémiologie-Data-Biostatistiques, Délégation à la Recherche Clinique et à l'Innovation, Hôpital Foch, 92150 Suresnes, France
| |
Collapse
|
3
|
Raible KM, Algazaq JN, Papanicolaou G, Babady NE. Acetobacter tropicalis bacteraemia in an immunocompromised patient: case report. Access Microbiol 2022; 4:acmi000374. [PMID: 36644433 PMCID: PMC9833420 DOI: 10.1099/acmi.0.000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction. The published literature characterizing the bacterial genus Acetobacter primarily explores the role of these organisms in the fermentation industry. Reports of human infections caused by Acetobacter species are rare and are primarily associated with immunocompromised patients. Case Presentation. A young patient with refractory acute myeloid leukaemia received a peripheral blood stem cell transplant at our institution. Both pre- and post-transplant courses were complicated by polymicrobial bloodstream infections. During this time a bacterium, later identified as Acetobacter tropicalis , was isolated from blood cultures. A. tropicalis was recovered in consecutive blood cultures for approximately 1 week; during this time the patient's condition deteriorated, ending in fatal cardiorespiratory failure. Conclusion. This case provides the first report of a human infection with A. tropicalis , although the significance of this finding in a complex patient is hard to establish. This illustrates how the routine implementation of molecular identification techniques by clinical microbiology laboratories will result in the reporting of more rare or novel micro-organisms involved in human infections.
Collapse
Affiliation(s)
- Kevin M. Raible
- Department of Pathology and Laboratory Medicine, Clinical Microbiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jumanah N. Algazaq
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Genovefa Papanicolaou
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N. Esther Babady
- Department of Pathology and Laboratory Medicine, Clinical Microbiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Antimicrobial Resistance of Acetobacter and Komagataeibacter Species Originating from Vinegars. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010463. [PMID: 35010733 PMCID: PMC8744987 DOI: 10.3390/ijerph19010463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023]
Abstract
Consumers' preference towards healthy and novel foods dictates the production of organic unfiltered bottled vinegar that still contains acetic acid bacteria. After ingesting vinegar, the bacteria come into close contact with the human microbiota, creating the possibility of horizontal gene transfer, including genetic determinants for antibiotic resistance. Due to the global spread of antimicrobial resistance (AMR), we analyzed the AMR of Acetobacter and Komagataeibacter species originating mainly from vinegars. Six antibiotics from different structural groups and mechanisms of action were selected for testing. The AMR was assessed with the disk diffusion method using various growth media. Although the number of resistant strains differed among the growth media, 97.4%, 74.4%, 56.4%, and 33.3% of strains were resistant to trimethoprim, erythromycin, ciprofloxacin, and chloramphenicol, respectively, on all three media. Moreover, 17.9% and 53.8% of all strains were resistant to four and three antibiotics of different antimicrobial classes, respectively. We then looked for antimicrobial resistance genes in the genome sequences of the reference strains. The most common genetic determinant potentially involved in AMR encodes an efflux pump. Since these genes pass through the gastrointestinal tract and may be transferred to human microbiota, further experiments are needed to analyze the probability of this scenario in more detail.
Collapse
|
5
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA. Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Front Med (Lausanne) 2020; 7:576221. [PMID: 33195324 PMCID: PMC7606900 DOI: 10.3389/fmed.2020.576221] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Aysilu I Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
6
|
Basu SS, Delaney ML, Li N, Onderdonk AB, Bry L. Acetobacter indonesiensis Pneumonia after Lung Transplantation. Emerg Infect Dis 2018; 24:598-599. [PMID: 29460757 PMCID: PMC5823329 DOI: 10.3201/eid2403.170409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report a case of Acetobacter indonesiensis pneumonia in a 51-year-old woman after bilateral lung transplantation. We found 2 other A. indonesiensis pneumonia cases reported in the literature. All 3 cases involved complex patients exposed to broad-spectrum antimicrobial drugs, suggesting that this pathogen may be opportunistic and highly drug-resistant.
Collapse
|