1
|
Carlson CJ, Bevins SN, Schmid BV. Plague risk in the western United States over seven decades of environmental change. GLOBAL CHANGE BIOLOGY 2022; 28:753-769. [PMID: 34796590 PMCID: PMC9299200 DOI: 10.1111/gcb.15966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 05/02/2023]
Abstract
After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we test whether animal and human data suggest that plague reservoirs and spillover risk have shifted since 1950. To do so, we develop a new method for detecting the impact of climate change on infectious disease distributions, capable of disentangling long-term trends (signal) and interannual variation in both weather and sampling (noise). We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs-with suitability increasing up to 40% in some places-and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts.
Collapse
Affiliation(s)
- Colin J. Carlson
- Center for Global Health Science and SecurityGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Sarah N. Bevins
- US Department of Agriculture Animal and Plant Health Inspection Service–Wildlife Services National Wildlife Research CenterFort CollinsColoradoUSA
| | - Boris V. Schmid
- Centre for Ecological and Evolutionary SynthesisDepartment of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
2
|
Atherstone C, Diederich S, Pickering B, Smith G, Casey G, Fischer K, Ward MP, Ndoboli D, Weingartl H, Alonso S, Dhand N, Roesel K, Grace D, Mor SM. Investigation of Ebolavirus exposure in pigs presented for slaughter in Uganda. Transbound Emerg Dis 2020; 68:1521-1530. [PMID: 32915496 PMCID: PMC8247040 DOI: 10.1111/tbed.13822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
In 2008, an outbreak of Reston ebolavirus (RESTV) in pigs in the Philippines expanded our understanding of the host range of ebolaviruses. Subsequent experimental infections with the human‐pathogenic species Zaire ebolavirus (EBOV) confirmed that pigs are susceptible to African species of ebolaviruses. Pig keeping has become an increasingly important livelihood strategy throughout parts of sub‐Saharan Africa, driven by increasing demand for pork. The growth in pig keeping is particularly rapid in Uganda, which has the highest per capita pork consumption in East Africa and a history of sporadic human outbreaks of Ebola virus disease (EVD). Using a systematic sampling protocol, we collected sera from 658 pigs presented for slaughter in Uganda between December 2015 and October 2016. Forty‐six pigs (7%) were seropositive based on ELISA tests at two different institutions. Seropositive pigs had antibodies that bound to Sudan NP (n = 27), Zaire NP (Kikwit; n = 8) or both NPs (n = 11). Sera from 4 of the ELISA‐positive pigs reacted in Western blot (EBOV NP = 1; RESTV NP = 2; both NPs = 2), and one sample had full neutralizing antibody against Sudan ebolavirus (SUDV) in virus neutralization tests. Pigs sampled in June 2016 were significantly more likely to be seropositive than pigs sampled in October 2016 (p = .03). Seropositive pigs were sourced from all regions except Western region. These observed temporal and spatial variations are suggestive of multiple introductions of ebolaviruses into the pig population in Uganda. This is the first report of exposure of pigs in Uganda to ebolaviruses and the first to employ systematic abattoir sampling for ebolavirus surveillance during a non‐outbreak period. Future studies will be necessary to further define the role pigs play (if any) in ebolavirus maintenance and transmission so that potential risks can be mitigated.
Collapse
Affiliation(s)
- Christine Atherstone
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia.,International Livestock Research Institute, Kampala, Uganda
| | - Sandra Diederich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald -Insel Riems, Germany
| | - Bradley Pickering
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Greg Smith
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Graham Casey
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Kerstin Fischer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald -Insel Riems, Germany
| | - Michael P Ward
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Dickson Ndoboli
- Central Diagnostic Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Hana Weingartl
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Silvia Alonso
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Navneet Dhand
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Kristina Roesel
- International Livestock Research Institute, Kampala, Uganda.,Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
| | - Siobhan M Mor
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, Australia.,International Livestock Research Institute, Addis Ababa, Ethiopia.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Judson SD, LeBreton M, Fuller T, Hoffman RM, Njabo K, Brewer TF, Dibongue E, Diffo J, Kameni JMF, Loul S, Nchinda GW, Njouom R, Nwobegahay J, Takuo JM, Torimiro JN, Wade A, Smith TB. Translating Predictions of Zoonotic Viruses for Policymakers. ECOHEALTH 2018; 15:52-62. [PMID: 29230614 DOI: 10.1007/s10393-017-1304-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Recent outbreaks of Ebola virus disease and Zika virus disease highlight the need for disseminating accurate predictions of emerging zoonotic viruses to national governments for disease surveillance and response. Although there are published maps for many emerging zoonotic viruses, it is unknown if there is agreement among different models or if they are concordant with national expert opinion. Therefore, we reviewed existing predictions for five high priority emerging zoonotic viruses with national experts in Cameroon to investigate these issues and determine how to make predictions more useful for national policymakers. Predictive maps relied primarily on environmental parameters and species distribution models. Rift Valley fever virus and Crimean-Congo hemorrhagic fever virus predictions differed from national expert opinion, potentially because of local livestock movements. Our findings reveal that involving national experts could elicit additional data to improve predictions of emerging pathogens as well as help repackage predictions for policymakers.
Collapse
Affiliation(s)
- Seth D Judson
- David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | | | | | - Risa M Hoffman
- David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Kevin Njabo
- University of California, Los Angeles, CA, USA
| | - Timothy F Brewer
- David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | | | | | - Jean-Marc Feussom Kameni
- Ministry of Livestock, Fisheries and Animal Industries, Yaoundé, Cameroon
- Epidemiology-Public Health-Veterinary Association (ESPV), Yaoundé, Cameroon
| | - Severin Loul
- Ministry of Livestock, Fisheries and Animal Industries, Yaoundé, Cameroon
| | - Godwin W Nchinda
- The Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS (CIRCB), Yaoundé, Cameroon
| | | | | | | | - Judith N Torimiro
- The Chantal Biya International Reference Centre for Research on the Prevention and Management of HIV/AIDS (CIRCB), Yaoundé, Cameroon
| | - Abel Wade
- National Veterinary Laboratory (LANAVET) Annex, Yaoundé, Cameroon
| | | |
Collapse
|