1
|
Dawson KLD, Rosato G, Egloff S, Burgener C, Oevermann A, Grest P, Hilbe M, Seuberlich T. Fatal tick-borne encephalitis virus infection in Dalmatian puppy-dogs after putative vector independent transmission. Vet Q 2024; 44:1-7. [PMID: 38596900 PMCID: PMC11008312 DOI: 10.1080/01652176.2024.2338385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
In a retrospective metatranscriptomics study, we identified tick-borne encephalitis virus (TBEV) to be the causative agent for a fatal non-suppurative meningoencephalitis in a three-week-old Dalmatian puppy in Switzerland. Further investigations showed that the two other littermates with similar signs and pathological lesions were also positive for TBEV. By using an unbiased approach of combining high-throughput sequencing (HTS) and bioinformatics we were able to solve the etiology and discover an unusual case of TBEV in three young puppies. Based on our findings, we suggest that a vector-independent transmission of TBEV occurred and that most likely an intrauterine infection led to the severe and fulminant disease of the entire litter. We were able to demonstrate the presence of TBEV RNA by in situ hybridization (ISH) in the brain of all three puppies. Furthermore, we were able to detect TBEV by RT-qPCR in total RNA extracted from formalin-fixed and paraffin embedded (FFPE) blocks containing multiple peripheral organs. Overall, our findings shed light on alternative vector-independent transmission routes of TBEV infections in dogs and encourage veterinary practitioners to consider TBEV as an important differential diagnosis in neurological cases in dogs.
Collapse
Affiliation(s)
- Kara L. D. Dawson
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Giuliana Rosato
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simone Egloff
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carole Burgener
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paula Grest
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Zacharias C, Torgler R, Cummins J. What makes patients tick? Vaccine preferences against tick-borne encephalitis in four European countries. BMC Infect Dis 2024; 24:1151. [PMID: 39396966 PMCID: PMC11472448 DOI: 10.1186/s12879-024-10045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND We explored vaccine motivation and preferences for tick-borne encephalitis (TBE) vaccine attributes among participants in TBE-endemic countries in Europe. METHODS An online survey was conducted among the general public in Austria, Germany, Switzerland, and Sweden. Participants were ≥ 18 years old, open to receiving vaccines, and living in, or regularly traveling to, TBE-endemic regions in the aforementioned countries. Participants were asked about their general vaccine knowledge and motivations for vaccination, before rating the importance of TBE vaccine attributes, such as efficacy, safety, dosing schedule, and booster interval. Thereafter, participants were shown three hypothetical TBE vaccine profiles with different combinations of attributes. Assuming equal efficacy and safety, participants were asked to select their preferred profile from 12 screens as part of a discrete-choice conjoint analysis. Utility scores were calculated to show the importance of each attribute. Data are presented for the overall survey group and by age and gender, using t-tests to compare means. RESULTS For 73% of participants (n = 1003/1379), self-protection was among the top three reasons to get vaccinated. Disease severity, protection of children or family, and advice or recommendation from a doctor/healthcare professional (HCP) were top three reasons for over half of participants. The majority (58-69%) agreed or strongly agreed that they trust their doctor/HCP on the subject of vaccines, they rely on their doctor/HCP's vaccine knowledge, and they prefer their doctor/HCP to make recommendations on which vaccines they or their families should take. Efficacy and safety were the most important standalone TBE vaccine attributes; however, among TBE vaccine profiles including 3-, 5- and 10-year booster intervals, the 10-year booster interval was the most influential attribute level when choosing a preferred vaccine profile (utility score: 0.58 [standard error: 0.01]). Differences in motivators and preferences were observed between age and gender subgroups. CONCLUSION The high level of doctor/HCP reliance highlights the key role doctors/HCPs play in influencing vaccine decision-making. Booster interval was the biggest driver of choice when selecting a hypothetical TBE vaccine profile, with the strongest preference for a 10-year booster interval. These findings could be used to inform TBE vaccination recommendations and in the further development of TBE vaccines.
Collapse
Affiliation(s)
| | - Ralph Torgler
- Bavarian Nordic Switzerland AG, Grafenauweg 8, Zug, CH-6301, Switzerland.
| | - Jennifer Cummins
- Bavarian Nordic Switzerland AG, Grafenauweg 8, Zug, CH-6301, Switzerland
| |
Collapse
|
3
|
Kang Y, Hepojoki J, Maldonado RS, Mito T, Terzioglu M, Manninen T, Kant R, Singh S, Othman A, Verma R, Uusimaa J, Wartiovaara K, Kareinen L, Zamboni N, Nyman TA, Paetau A, Kipar A, Vapalahti O, Suomalainen A. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature 2024; 628:844-853. [PMID: 38570685 PMCID: PMC11041766 DOI: 10.1038/s41586-024-07260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Age of Onset
- Alleles
- COVID-19/immunology
- COVID-19/virology
- COVID-19/genetics
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/immunology
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Founder Effect
- Gene Knock-In Techniques
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Type I/immunology
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/immunology
- Mutation
- RNA, Mitochondrial/immunology
- RNA, Mitochondrial/metabolism
- SARS-CoV-2/immunology
Collapse
Affiliation(s)
- Yilin Kang
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Rocio Sartori Maldonado
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takayuki Mito
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sachin Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Alaa Othman
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Rohit Verma
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Unit of Child Neurology, Oulu University Hospital, Oulu, Finland
| | - Kirmo Wartiovaara
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Safety Authority, Helsinki, Finland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Tuula Anneli Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Anders Paetau
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Czarnowska A, Groth M, Okrzeja J, Garkowski A, Kristoferitsch W, Kułakowska A, Zajkowska J. A fatal case of tick-borne encephalitis in an immunocompromised patient: case report from Northeastern Poland and review of literature. Ticks Tick Borne Dis 2024; 15:102273. [PMID: 37984275 DOI: 10.1016/j.ttbdis.2023.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 11/22/2023]
Abstract
Tick-borne encephalitis (TBE) is an infectious illness of the central nervous system caused by the TBE virus, which is commonly transmitted through a tick-bite. TBE is endemic in Europe and mid-Asia. In this study, we report a case of a 36-year-old woman, living in Northeastern Poland, with a history of double corneal transplantation and post-transplant immunosuppressive therapy who was admitted to hospital because of progressive weakness, acute headache, nausea, vertigo, vomiting, and fever. The patient was diagnosed with TBE. However, the diagnosis was challenging as the initial serological tests for antibodies against the TBE virus were negative. We want to raise the awareness among the clinicians that the course of TBE is often unpredictable and that it tends to be more severe in immunocompromised individuals.. Delayed production of antibodies against TBE virus, which might inhibit the diagnosis of the disease, is observed in some immunocompromised patients.
Collapse
Affiliation(s)
- Agata Czarnowska
- Department of Neurology, Medical University of Bialystok, Poland.
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfection, Medical University of Białystok, Poland
| | - Jakub Okrzeja
- Department of Radiology, Medical University of Białystok, Poland
| | - Adam Garkowski
- Department of Radiology, Medical University of Białystok, Poland
| | - Wolfgang Kristoferitsch
- Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Vienna, Austria
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfection, Medical University of Białystok, Poland
| |
Collapse
|
5
|
Fareed A, Rohail S, Zameer U, Wahid A, Akhtar SMM, Masood W. A comprehensive neurological perspective on tick-borne flaviviruses, with emphasis on Powassan virus. Ther Adv Infect Dis 2024; 11:20499361241247470. [PMID: 38693969 PMCID: PMC11062229 DOI: 10.1177/20499361241247470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Powassan virus (POWV), a tick-borne flavivirus transmitted primarily by Ixodes ticks, poses a significant threat as it can lead to severe neuroinvasive illness. This review delves into the nuanced clinical presentation of Powassan infection, a challenge in diagnosis exacerbated by the absence of an available vaccine. Over the past decade, the prevalence of POWV has surged in North America, necessitating a thorough examination of its neurological manifestations alongside tick-borne encephalitis virus (TBEV). A comprehensive literature search conducted up to January 2024 revealed 135 cases of neurological symptoms associated with either Powassan or TBEV infection. Notably, severe occipital headache emerged as the most prevalent symptom (22.75%), followed by meningoencephalitis (10.34%), seizures (8.27%), and flaccid paresis (6.8%). Additional manifestations included poor balance, wide gait, dysarthria, facial nerve palsy, seizure, slurred speech, and absent deep tendon reflexes. Tragically, nine cases resulted in fatal outcomes attributed to POWV infection. This analysis highlights the intricate spectrum of neurological symptoms associated with Powassan infection and underscores the necessity for heightened awareness among medical practitioners, particularly in regions with a higher prevalence of the virus. The complexity of symptoms emphasizes the need for further research to unravel the factors contributing to this diversity. Additionally, exploring potential treatment avenues and vaccine development is crucial in addressing the rising threat posed by POWV, ultimately enhancing our ability to manage and prevent severe neurological outcomes.
Collapse
Affiliation(s)
- Areeba Fareed
- Department of Medicine, Karachi Medical and Dental College, Block M, North Nazimabad, Karachi 74600, Pakistan
| | - Samia Rohail
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Ushna Zameer
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Abdul Wahid
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Waniyah Masood
- Department of Medicine, Dow Medical College, Karachi, Pakistan
| |
Collapse
|
6
|
Pulkkinen LIA, Barrass SV, Lindgren M, Pace H, Överby AK, Anastasina M, Bally M, Lundmark R, Butcher SJ. Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein. PLoS Pathog 2023; 19:e1011125. [PMID: 36787339 PMCID: PMC9970071 DOI: 10.1371/journal.ppat.1011125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.
Collapse
Affiliation(s)
- Lauri Ilmari Aurelius Pulkkinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sarah Victoria Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marie Lindgren
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Hudson Pace
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marta Bally
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Lundmark
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail: (SJB); (RL)
| | - Sarah Jane Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (SJB); (RL)
| |
Collapse
|
7
|
Zakotnik S, Knap N, Bogovič P, Zorec TM, Poljak M, Strle F, Avšič-Županc T, Korva M. Complete Genome Sequencing of Tick-Borne Encephalitis Virus Directly from Clinical Samples: Comparison of Shotgun Metagenomic and Targeted Amplicon-Based Sequencing. Viruses 2022; 14:v14061267. [PMID: 35746738 PMCID: PMC9231111 DOI: 10.3390/v14061267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical presentation of tick-borne encephalitis virus (TBEV) infection varies from asymptomatic to severe meningoencephalitis or meningoencephalomyelitis. The TBEV subtype has been suggested as one of the most important risk factors for disease severity, but TBEV genetic characterization is difficult. Infection is usually diagnosed in the post-viremic phase, and so relevant clinical samples of TBEV are extremely rare and, when present, are associated with low viral loads. To date, only two complete TBEV genomes sequenced directly from patient clinical samples are publicly available. The aim of this study was to develop novel protocols for the direct sequencing of the TBEV genome, enabling studies of viral genetic determinants that influence disease severity. We developed a novel oligonucleotide primer scheme for amplification of the complete TBEV genome. The primer set was tested on 21 clinical samples with various viral loads and collected over a 15-year period using the two most common sequencing platforms. The amplicon-based strategy was compared to direct shotgun sequencing. Using the novel primer set, we successfully obtained nearly complete TBEV genomes (>90% of genome) from all clinical samples, including those with extremely low viral loads. Comparison of consensus sequences of the TBEV genome generated using the novel amplicon-based strategy and shotgun sequencing showed no difference. We conclude that the novel primer set is a powerful tool for future studies on genetic determinants of TBEV that influence disease severity and will lead to a better understanding of TBE pathogenesis.
Collapse
Affiliation(s)
- Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Petra Bogovič
- Department of Infectious Diseases, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Franc Strle
- Department of Infectious Diseases, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
- Correspondence:
| |
Collapse
|
8
|
Molecular Organisation of Tick-Borne Encephalitis Virus. Viruses 2022; 14:v14040792. [PMID: 35458522 PMCID: PMC9027435 DOI: 10.3390/v14040792] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/19/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a pathogenic, enveloped, positive-stranded RNA virus in the family Flaviviridae. Structural studies of flavivirus virions have primarily focused on mosquito-borne species, with only one cryo-electron microscopy (cryo-EM) structure of a tick-borne species published. Here, we present a 3.3 Å cryo-EM structure of the TBEV virion of the Kuutsalo-14 isolate, confirming the overall organisation of the virus. We observe conformational switching of the peripheral and transmembrane helices of M protein, which can explain the quasi-equivalent packing of the viral proteins and highlights their importance in stabilising membrane protein arrangement in the virion. The residues responsible for M protein interactions are highly conserved in TBEV but not in the structurally studied Hypr strain, nor in mosquito-borne flaviviruses. These interactions may compensate for the lower number of hydrogen bonds between E proteins in TBEV compared to the mosquito-borne flaviviruses. The structure reveals two lipids bound in the E protein which are important for virus assembly. The lipid pockets are comparable to those recently described in mosquito-borne Zika, Spondweni, Dengue, and Usutu viruses. Our results thus advance the understanding of tick-borne flavivirus architecture and virion-stabilising interactions.
Collapse
|
9
|
European subtype of tick-borne encephalitis virus. Literature review. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.4.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review is devoted to the European subtype of tick-borne encephalitis virus (TBEV). It summarizes and analyzes the information available at the scientific literature on the genetic and biological properties of strains of this virus subtype. A comparative analysis of the complete coding sequences of all currently recognized tick-borne flaviviruses was carried out. It was noted that the differences in TBEV strains included in the European subtype are minimal, which indicates a higher degree of their genetic homogeneity than in strains of the Far Eastern and Siberian subtypes. The level of differences in the genome of strains of the European subtype, depending on the region and the source of isolation, was analyzed. No relationship was found between the level of homology of nucleotide sequences of TBEV strains of the European subtype and the source of isolation. The proposed models for the evolution of TBE are described. The area of TBE of the European subtype in Eurasia is analyzed. The maps of the geographical distribution of the European subtype are presented. It shows the European subtype TBE is found in 14 regions of Russia. TBE of this subtype, as a rule, causes a disease with a milder course in comparison with TBE caused by a virus of the Far Eastern or Siberian subtypes. An analysis of the main vectors and reservoir hosts of the European subtype TBEV in Europe and in Siberia has been carried out. It is emphasized that in Eurasia the European TBEV circulates in territories that differ significantly in climatic conditions, relief, landscape, and characteristics of biotopes. However, analysis of scientific literature data showed that, despite these differences, it has a high degree of genome stability.
Collapse
|
10
|
Albinsson B, Jääskeläinen AE, Värv K, Jelovšek M, GeurtsvanKessel C, Vene S, Järhult JD, Reusken C, Golovljova I, Avšič-Županc T, Vapalahti O, Lundkvist Å. Multi-laboratory evaluation of ReaScan TBE IgM rapid test, 2016 to 2017. ACTA ACUST UNITED AC 2020; 25. [PMID: 32234120 PMCID: PMC7118343 DOI: 10.2807/1560-7917.es.2020.25.12.1900427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Tick-borne encephalitis (TBE) is a potentially severe neurological disease caused by TBE virus (TBEV). In Europe and Asia, TBEV infection has become a growing public health concern and requires fast and specific detection. Aim In this observational study, we evaluated a rapid TBE IgM test, ReaScan TBE, for usage in a clinical laboratory setting. Methods Patient sera found negative or positive for TBEV by serological and/or molecular methods in diagnostic laboratories of five European countries endemic for TBEV (Estonia, Finland, Slovenia, the Netherlands and Sweden) were used to assess the sensitivity and specificity of the test. The patients’ diagnoses were based on other commercial or quality assured in-house assays, i.e. each laboratory’s conventional routine methods. For specificity analysis, serum samples from patients with infections known to cause problems in serology were employed. These samples tested positive for e.g. Epstein–Barr virus, cytomegalovirus and Anaplasma phagocytophilum, or for flaviviruses other than TBEV, i.e. dengue, Japanese encephalitis, West Nile and Zika viruses. Samples from individuals vaccinated against flaviviruses other than TBEV were also included. Altogether, 172 serum samples from patients with acute TBE and 306 TBE IgM negative samples were analysed. Results Compared with each laboratory’s conventional methods, the tested assay had similar sensitivity and specificity (99.4% and 97.7%, respectively). Samples containing potentially interfering antibodies did not cause specificity problems. Conclusion Regarding diagnosis of acute TBEV infections, ReaScan TBE offers rapid and convenient complementary IgM detection. If used as a stand-alone, it can provide preliminary results in a laboratory or point of care setting.
Collapse
Affiliation(s)
- Bo Albinsson
- Laboratory of Clinical Microbiology, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Anu E Jääskeläinen
- Helsinki University Hospital Laboratory Services (HUSLAB), Department of Virology and Immunology, Helsinki, Finland.,Department of Virology, University of Helsinki, Helsinki, Finland
| | - Kairi Värv
- Department of Virology and Immunology, National Institute for Health Development, Tallinn, Estonia.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Mateja Jelovšek
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Corine GeurtsvanKessel
- WHO Collaborating Centre for Arbovirus and Viral Haemorrhagic Fever Reference and Research, Department of Virology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Sirkka Vene
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.,WHO Collaborating Centre for Arbovirus and Viral Haemorrhagic Fever Reference and Research, Department of Virology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Irina Golovljova
- Department of Virology and Immunology, National Institute for Health Development, Tallinn, Estonia.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Tatjana Avšič-Županc
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Olli Vapalahti
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Laboratory Services (HUSLAB), Department of Virology and Immunology, Helsinki, Finland.,Department of Virology, University of Helsinki, Helsinki, Finland
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Deviatkin AA, Karganova GG, Vakulenko YA, Lukashev AN. TBEV Subtyping in Terms of Genetic Distance. Viruses 2020; 12:E1240. [PMID: 33142676 PMCID: PMC7692686 DOI: 10.3390/v12111240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Currently, the lowest formal taxon in virus classification is species; however, unofficial lower-level units are commonly used in everyday work. Tick-borne encephalitis virus (TBEV) is a species of mammalian tick-borne flaviviruses that may cause encephalitis. Many known representatives of TBEV are grouped into subtypes, mostly according to their phylogenetic relationship. However, the emergence of novel sequences could dissolve this phylogenetic grouping; in the absence of strict quantitative criterion, it may be hard to define the borders of the first TBEV taxonomic unit below the species level. In this study, the nucleotide/amino-acid space of all known TBEV sequences was analyzed. Amino-acid sequence p-distances could not reliably distinguish TBEV subtypes. Viruses that differed by less than 10% of nucleotides in the polyprotein-coding gene belonged to the same subtype. At the same time, more divergent viruses were representatives of different subtypes. According to this distance criterion, TBEV species may be divided into seven subtypes: TBEV-Eur, TBEV-Sib, TBEV-FE, TBEV-2871 (TBEV-Ob), TBEV-Him, TBEV-178-79 (TBEV-Bkl-1), and TBEV-886-84 (TBEV-Bkl-2).
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
| | - Galina G. Karganova
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
12
|
Diaz-Arias LA, Pardo CA, Probasco JC. Infectious Encephalitis in the Neurocritical Care Unit. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Uusitalo R, Siljander M, Dub T, Sane J, Sormunen JJ, Pellikka P, Vapalahti O. Modelling habitat suitability for occurrence of human tick-borne encephalitis (TBE) cases in Finland. Ticks Tick Borne Dis 2020; 11:101457. [PMID: 32723626 DOI: 10.1016/j.ttbdis.2020.101457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
The numbers of reported human tick-borne encephalitis (TBE) cases in Europe have increased in several endemic regions (including Finland) in recent decades, indicative of an increasing threat to public health. As such, it is important to identify the regions at risk and the most influential factors associated with TBE distributions, particularly in understudied regions. This study aimed to identify the risk areas of TBE transmission in two different datasets based on human TBE disease cases from 2007 to 2011 (n = 86) and 2012-2017 (n = 244). We also examined which factors best explain the presence of human TBE cases. We used ensemble modelling to determine the relationship of TBE occurrence with environmental, ecological, and anthropogenic factors in Finland. Geospatial data including these variables were acquired from several open data sources and satellite and aerial imagery and, were processed in GIS software. Biomod2, an ensemble platform designed for species distribution modelling, was used to generate ensemble models in R. The proportion of built-up areas, field, forest, and snow-covered land in November, people working in the primary sector, human population density, mean precipitation in April and July, and densities of European hares, white-tailed deer, and raccoon dogs best estimated distribution of human TBE disease cases in the two datasets. Random forest and generalized boosted regression models performed with a very good to excellent predictive power (ROC = 0.89-0.96) in both time periods. Based on the predictive maps, high-risk areas for TBE transmission were located in the coastal regions in Southern and Western Finland (including the Åland Islands), several municipalities in Central and Eastern Finland, and coastal municipalities in Southern Lapland. To explore potential changes in TBE distributions in future climate, we used bioclimatic factors with current and future climate forecast data to reveal possible future hotspot areas. Based on the future forecasts, a slightly wider geographical extent of TBE risk was introduced in the Åland Islands and Southern, Western and Northern Finland, even though the risk itself was not increased. Our results are the first steps towards TBE-risk area mapping in current and future climate in Finland.
Collapse
Affiliation(s)
- Ruut Uusitalo
- Department of Geosciences and Geography, P.O. Box 64, FI-00014, University of Helsinki, Finland; Department of Virology, Haartmaninkatu 3, P.O. Box 21, FI-00014, University of Helsinki, Finland; Department of Veterinary Biosciences, Agnes Sjöberginkatu 2, P.O. Box 66, FI-00014, University of Helsinki, Finland.
| | - Mika Siljander
- Department of Geosciences and Geography, P.O. Box 64, FI-00014, University of Helsinki, Finland.
| | - Timothée Dub
- National Institute for Health and Welfare, Helsinki, Finland; European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | - Jussi Sane
- National Institute for Health and Welfare, Helsinki, Finland.
| | | | - Petri Pellikka
- Department of Geosciences and Geography, P.O. Box 64, FI-00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research, University of Helsinki, Finland.
| | - Olli Vapalahti
- Department of Virology, Haartmaninkatu 3, P.O. Box 21, FI-00014, University of Helsinki, Finland; Department of Veterinary Biosciences, Agnes Sjöberginkatu 2, P.O. Box 66, FI-00014, University of Helsinki, Finland; Virology and Immunology, HUSLAB, Helsinki University Hospital, Finland.
| |
Collapse
|
14
|
Neill L, Checkley AM, Benjamin LA, Herdman MT, Carter DP, Pullan ST, Aarons E, Griffiths K, Monaghan B, Karunaratne K, Ciccarelli O, Spillane J, Moore DAJ, Kullmann DM. Rhombencephalitis and Myeloradiculitis Caused by a European Subtype of Tick-Borne Encephalitis Virus. Emerg Infect Dis 2020; 25:2317-2319. [PMID: 31742526 PMCID: PMC6874248 DOI: 10.3201/eid2512.191017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a case of a previously healthy man returning to the United Kingdom from Lithuania who developed rhombencephalitis and myeloradiculitis due to tick-borne encephalitis. These findings add to sparse data on tick-borne encephalitis virus phylogeny and associated neurologic syndromes and underscore the importance of vaccinating people traveling to endemic regions.
Collapse
|
15
|
Deviatkin AA, Kholodilov IS, Vakulenko YA, Karganova GG, Lukashev AN. Tick-Borne Encephalitis Virus: An Emerging Ancient Zoonosis? Viruses 2020; 12:v12020247. [PMID: 32102228 PMCID: PMC7077300 DOI: 10.3390/v12020247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Tick-borne encephalitis (TBE) is one of the most important viral zoonosis transmitted by the bite of infected ticks. In this study, all tick-borne encephalitis virus (TBEV) E gene sequences available in GenBank as of June 2019 with known date of isolation (n = 551) were analyzed. Simulation studies showed that a sample bias could significantly affect earlier studies, because small TBEV datasets (n = 50) produced non-overlapping intervals for evolutionary rate estimates. An apparent lack of a temporal signal in TBEV, in general, was found, precluding molecular clock analysis of all TBEV subtypes in one dataset. Within all subtypes and most of the smaller groups in these subtypes, there was evidence of many medium- and long-distance virus transfers. These multiple random events may play a key role in the virus spreading. For some groups, virus diversity within one territory was similar to diversity over the whole geographic range. This is best exemplified by the virus diversity observed in Switzerland or Czech Republic. These two countries yielded most of the known European subtype Eu3 subgroup sequences, and the diversity of viruses found within each of these small countries is comparable to that of the whole Eu3 subgroup, which is prevalent all over Central and Eastern Europe. Most of the deep tree nodes within all three established TBEV subtypes dated less than 300 years back. This could be explained by the recent emergence of most of the known TBEV diversity. Results of bioinformatics analysis presented here, together with multiple field findings, suggest that TBEV may be regarded as an emerging disease.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Laboratory of Postgenomic Technologies, Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
- Correspondence: ; Tel.: +7-906-739-0860
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (G.G.K.)
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (G.G.K.)
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
16
|
Smura T, Tonteri E, Jääskeläinen A, von Troil G, Kuivanen S, Huitu O, Kareinen L, Uusitalo J, Uusitalo R, Hannila-Handelberg T, Voutilainen L, Nikkari S, Sironen T, Sane J, Castrén J, Vapalahti O. Recent establishment of tick-borne encephalitis foci with distinct viral lineages in the Helsinki area, Finland. Emerg Microbes Infect 2019; 8:675-683. [PMID: 31084456 PMCID: PMC6522972 DOI: 10.1080/22221751.2019.1612279] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Number of tick-borne encephalitis (TBE) cases has increased and new foci have emerged in Finland during the last decade. We evaluated risk for locally acquired TBE in the capital region inhabited by 1.2 million people. We screened ticks and small mammals from probable places of TBE virus (TBEV) transmission and places without reported circulation. The TBEV positive samples were sequenced and subjected to phylogenetic analysis. Within the study period 2007–2017, there was a clear increase of both all TBE cases and locally acquired cases in the Helsinki area. The surveillance of ticks and small mammals for TBEV confirmed four distinct TBEV foci in the Helsinki area. All detected TBEV strains were of the European subtype. TBEV genome sequences indicated that distinct TBEV lineages circulate in each focus. Molecular clock analysis suggested that the virus lineages were introduced to these foci decades ago. In conclusion, TBE has emerged in the mainland of Helsinki area during the last decade, with at least four distinct virus lineages independently introduced into the region previously. Although the overall annual TBE incidence is below the threshold for recommending general vaccinations, the situation requires further surveillance to detect and prevent possible further emergence of local TBE clusters.
Collapse
Affiliation(s)
- Teemu Smura
- a Department of Virology , University of Helsinki , Helsinki , Finland.,b Division of Clinical Microbiology , Helsinki University Hospital Laboratory Services (HUSLAB) , Helsinki , Finland
| | - Elina Tonteri
- c Centers for Military Medicine and Biothreat Preparedness , Helsinki , Finland
| | - Anu Jääskeläinen
- b Division of Clinical Microbiology , Helsinki University Hospital Laboratory Services (HUSLAB) , Helsinki , Finland
| | | | - Suvi Kuivanen
- a Department of Virology , University of Helsinki , Helsinki , Finland
| | - Otso Huitu
- e Natural Resources Institute Finland (Luke) , Helsinki , Finland
| | - Lauri Kareinen
- a Department of Virology , University of Helsinki , Helsinki , Finland
| | - Joni Uusitalo
- a Department of Virology , University of Helsinki , Helsinki , Finland
| | - Ruut Uusitalo
- a Department of Virology , University of Helsinki , Helsinki , Finland.,f Department of Geosciences and Geography , University of Helsinki , Helsinki , Finland.,g Department of Veterinary Biosciences , University of Helsinki , Helsinki , Finland
| | | | - Liina Voutilainen
- c Centers for Military Medicine and Biothreat Preparedness , Helsinki , Finland
| | - Simo Nikkari
- c Centers for Military Medicine and Biothreat Preparedness , Helsinki , Finland
| | - Tarja Sironen
- a Department of Virology , University of Helsinki , Helsinki , Finland
| | - Jussi Sane
- h Department of Health Security, Infectious Disease Control and Vaccinations Unit , National Institute for Health and Welfare , Helsinki , Finland
| | | | - Olli Vapalahti
- a Department of Virology , University of Helsinki , Helsinki , Finland.,b Division of Clinical Microbiology , Helsinki University Hospital Laboratory Services (HUSLAB) , Helsinki , Finland.,g Department of Veterinary Biosciences , University of Helsinki , Helsinki , Finland
| |
Collapse
|
17
|
Velay A, Paz M, Cesbron M, Gantner P, Solis M, Soulier E, Argemi X, Martinot M, Hansmann Y, Fafi-Kremer S. Tick-borne encephalitis virus: molecular determinants of neuropathogenesis of an emerging pathogen. Crit Rev Microbiol 2019; 45:472-493. [PMID: 31267816 DOI: 10.1080/1040841x.2019.1629872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. The transmission cycle involves the virus, the Ixodes tick vector, and a vertebrate reservoir, such as small mammals (rodents, or shrews). Humans are accidentally involved in this transmission cycle. Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and Asia over the past 30 years. The mechanisms involved in the development of TBE are very complex and likely multifactorial, involving both host and viral factors. The purpose of this review is to provide an overview of the current literature on TBE neuropathogenesis in the human host and to demonstrate the emergence of common themes in the molecular pathogenesis of TBE in humans. We discuss and review data on experimental study models and on both viral (molecular genetics of TBEV) and host (immune response, and genetic background) factors involved in TBE neuropathogenesis in the context of human infection.
Collapse
Affiliation(s)
- Aurélie Velay
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Magali Paz
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Marlène Cesbron
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Pierre Gantner
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Morgane Solis
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | | | - Xavier Argemi
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Martin Martinot
- Service de Médecine Interne et de Rhumatologie, Hôpitaux Civils de Colmar , Colmar , France
| | - Yves Hansmann
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Samira Fafi-Kremer
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| |
Collapse
|
18
|
A case series of fatal meningoencephalitis in Mongolia: epidemiological and molecular characteristics of tick-borne encephalitis virus. Western Pac Surveill Response J 2019; 10:25-31. [PMID: 31110839 PMCID: PMC6507128 DOI: 10.5365/wpsar.2018.9.1.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Mongolia, the incidence and fatality rates of tick-borne encephalitis (TBE) have been increasing. We aimed to identify the epidemiological and molecular characteristics of tick-borne encephalitis virus (TBEV) associated with fatal meningoencephalitis in Mongolia. We conducted a descriptive study of 14 fatal cases of TBE that occurred between 2008 and 2017 in Mongolia. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect viral RNA in brain tissue. RT-PCR products from six patients who died from TBE between 2013 and 2017 were directly sequenced and analysed phylogenetically. Ticks collected from Selenge and Bulgan provinces were also tested for TBEV by RT-PCR. Between 2008 and 2017, there were 14 fatal TBE cases in hospitals in Mongolia. The 14 patients who died reported receiving tick bites in Bulgan or Selenge province; 71.4% of deaths resulted from tick bites in Bulgan province. The TBE case fatality rate was 28.6% for patients in Bulgan province and 2.7% for those in Selenge province. All of the fatalities were men; the median age was 45 ± 12.6 years. Tick bites occurred between April and June in forested areas. In 2013, a 388 base pair fragment of the envelope (E) gene was obtained from a hospitalized patient. The closest relatives of this virus are Far-Eastern TBEV isolates. The case fatality rate differed between two provinces where tick bites occurred. A higher number of TBE cases and the virulent Far-Eastern subtype occurred in patients in Bulgan province. This province should increase vaccination coverage, training, education and investigations.
Collapse
|
19
|
Veje M, Studahl M, Bergström T. Intrathecal complement activation by the classical pathway in tick-borne encephalitis. J Neurovirol 2019; 25:397-404. [PMID: 30850976 PMCID: PMC6647885 DOI: 10.1007/s13365-019-00734-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Tick-borne encephalitis (TBE) is one of the most prevalent viral central nervous system (CNS) infections in Eurasia and neurological sequelae are common. The immune responses are considered crucial for the pathogenesis. The aim of this study was to explore the activation of the complement system in TBE. The complement system is a part of the innate immune response in the CNS, which previously has been reported to be activated in other flavivirus infections. We analyzed complement factors in 44 paired cerebrospinal fluid (CSF) and serum samples from 20 cases of TBE in the acute and later stages, as well as in serum and CSF from 32 healthy controls. The concentrations of complement factors C1q, C3a, C3b, and C5a were determined with commercially available ELISA kits. Clinical data to categorize the severity of disease and outcome was retrieved from the medical records of the TBE patients. We found significantly higher concentrations of all of the analyzed complement factors in the CSF from TBE patients compared to the healthy controls. In particular, the marked increment of C1q concentrations in the CSF (p < 0,001 as compared to controls) indicated an intrathecal activation by the classical pathway. There was no correlation between complement factor concentrations in the CSF and severity of the disease in the acute phase or with sequelae at 6 months follow-up. We have found an intrathecal complement activation in TBE, and the marked increase of complement factor C1q indicated an activation by the classical pathway.
Collapse
Affiliation(s)
- Malin Veje
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Barzon L. Ongoing and emerging arbovirus threats in Europe. J Clin Virol 2018; 107:38-47. [PMID: 30176404 DOI: 10.1016/j.jcv.2018.08.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022]
Abstract
During the last decades, arboviruses that are endemic in Europe have expanded their geographic range and caused an increasing number of human outbreaks. These viruses include West Nile virus, which is expanding its area of circulation in central and southern Europe; Usutu virus, with increasing evidence of a role in human disease; tick-borne encephalitis virus, which is being detected in northern areas and at higher altitudes as a consequence of climate warming; Crimean-Congo hemorrhagic fever virus, which is endemic in Eastern Europe and the Middle East, but has been recently detected in Spain; other viruses, such as California encephalitis virus antigenic group, which circulate in northern and central Europe but whose relevance for human disease in largely unknown. In addition, the rise in global travel and trade has posed Europe to an increased risk of introduction and expansion of exotic arthropod vectors and autochthonous transmission of arboviruses, like dengue and chikungunya viruses, following new introductions from endemic areas. Implementation of integrated arbovirus surveillance programs has been crucial to adopt proper control measures. The identification of emerging outbreaks is however challenging and requires a high degree of awareness and laboratory capacity, especially for the most neglected but potentially threatening pathogens.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121, Padova, Italy.
| |
Collapse
|
21
|
Abstract
Tick-borne encephalitis (TBE) is the most important tick-transmitted human viral disease in Europe and Asia with up to 10000 human cases annually. The etiologic agents of TBE are the three subtypes of tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus in the family Flaviviridae. The Far-Eastern subtype and the Siberian subtype are both mainly transmitted by Ixodes persulcatus; the European subtype is mainly transmitted by Ixodes ricinus. Besides tick bite, TBEV can be transmitted by unpasteurised milk from goat, sheep and cattle during the viremic phase of infection by the oral route of infection (alimentary form of TBE). There is no treatment for TBE available, but there are effective and well tolerated vaccines against TBE, which are recommended for people living or travelling to endemic countries with a risk of infection.
Collapse
|