1
|
Rodríguez-Medina N, Rodríguez-Santiago J, Alvarado-Delgado A, Sagal-Prado A, Silva-Sánchez J, De la Cruz MA, Ares MA, Sánchez-Arias M, Morfín-Otero R, Hernández-Castro R, Cornejo-Juárez P, Jiménez-Villanueva E, Sánchez-Francia D, Garza-Ramos U. Comprehensive study reveals phenotypic heterogeneity in Klebsiella pneumoniae species complex isolates. Sci Rep 2024; 14:5876. [PMID: 38467675 PMCID: PMC10928225 DOI: 10.1038/s41598-024-55546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/25/2024] [Indexed: 03/13/2024] Open
Abstract
Here, we conducted a comprehensive analysis of 356 Klebsiella pneumoniae species complex (KpSC) isolates that were classified as classical (cl), presumptive hypervirulent (p-hv) and hypermucoviscous-like (hmv-like). Overall, K. pneumoniae (82.3%), K. variicola (2.5%) and K. quasipneumoniae (2.5%) were identified. These isolates comprised 321 cl-KpSC, 7 p-hv-KpSC and 18 hmv-like-KpSC. A large proportion of cl-KpSC isolates were extended-spectrum-β-lactamases (ESBLs)-producers (64.4%) and 3.4% of isolates were colistin-resistant carrying carbapenemase and ESBL genes. All p-hv-KpSC showed an antibiotic susceptible phenotype and hmv-like isolates were found to be ESBL-producers (8/18). Assays for capsule production and capsule-dependent virulence phenotypes and whole-genome sequencing (WGS) were performed in a subset of isolates. Capsule amount differed in all p-hv strains and hmv-like produced higher capsule amounts than cl strains; these variations had important implications in phagocytosis and virulence. Murine sepsis model showed that most cl strains were nonlethal and the hmv-like caused 100% mortality with 3 × 108 CFUs. Unexpectedly, 3/7 (42.9%) of p-hv strains required 108 CFUs to cause 100% mortality (atypical hypervirulent), and 4/7 (57.1%) strains were considered truly hypervirulent (hv). Genomic analyses confirmed the diverse population, including isolates belonging to hv clonal groups (CG) CG23, CG86, CG380 and CG25 (this corresponded to the ST3999 a novel hv clone) and MDR clones such as CG258 and CG147 (ST392) among others. We noted that the hmv-like and hv-ST3999 isolates showed a close phylogenetic relationship with cl-MDR K. pneumoniae. The information collected here is important to understand the evolution of clinically important phenotypes such as hypervirulent and ESBL-producing-hypermucoviscous-like amongst the KpSC in Mexican healthcare settings. Likewise, this study shows that mgrB inactivation is the main mechanism of colistin resistance in K. pneumoniae isolates from Mexico.
Collapse
Affiliation(s)
- Nadia Rodríguez-Medina
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Jonathan Rodríguez-Santiago
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Alan Sagal-Prado
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Jesús Silva-Sánchez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Miguel A De la Cruz
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel Angel Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Margarita Sánchez-Arias
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde", Instituto de Patología Infecciosa y Experimental, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Instituto Nacional de Salud Pública (INSP), Av. Universidad # 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
2
|
Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health 2023; 117:328-341. [PMID: 36089853 PMCID: PMC10177687 DOI: 10.1080/20477724.2022.2121362] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
For people living in developed countries life span is growing at a faster pace than ever. One of the main reasons for such success is attributable to the introduction and extensive use in the clinical practice of antibiotics over the course of the last seven decades. In hospital settings, Klebsiella pneumoniae represents a well-known and commonly described opportunistic pathogen, typically characterized by resistance to several antibiotic classes. On the other hand, the broad wedge of population living in Low and/or Middle Income Countries is increasing rapidly, allowing the spread of several commensal bacteria which are transmitted via human contact. Community transmission has been the original milieu of K. pneumoniae isolates characterized by an outstanding virulence (hypervirulent). These two characteristics, also defined as "pathotypes", originally emerged as different pathways in the evolutionary history of K. pneumoniae. For a long time, the Sequence Type (ST), which is defined by the combination of alleles of the 7 housekeeping genes of the Multi-Locus Sequence Typing, has been a reliable marker of the pathotype: multidrug-resistant clones (e.g. ST258, ST147, ST101) in the Western world and hypervirulent clones (e.g. ST23, ST65, ST86) in the Eastern. Currently, the boundaries separating the two pathotypes are fading away due to several factors, and we are witnessing a worrisome convergence in certain high-risk clones. Here we review the evidence available on confluence of multidrug-resistance and hypervirulence in specific K. pneumoniae clones.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
3
|
Morgado S, Fonseca E, Vicente AC. Genomics of Klebsiella pneumoniae Species Complex Reveals the Circulation of High-Risk Multidrug-Resistant Pandemic Clones in Human, Animal, and Environmental Sources. Microorganisms 2022; 10:2281. [PMID: 36422351 PMCID: PMC9697336 DOI: 10.3390/microorganisms10112281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/03/2023] Open
Abstract
The Klebsiella species present a remarkable genetic and ecological diversity, being ubiquitous in nature. In particular, the Klebsiella pneumoniae species complex (KpSC) has emerged as a major public health threat in the world, being an interesting model to assess the risk posed by strains recovered from animals and the environment to humans. We therefore performed a genomic surveillance analysis of the KpSC using every public genome in Brazil, aiming to show their local and global relationships, and the connectivity of antibiotic resistance and virulence considering human, animal, and environmental sources. The 390 genomes from distinct sources encompassed the K. pneumoniae, Klebsiella quasipneumoniae subsp. quasipneumoniae, Klebsiella quasipneumoniae subsp. similipneumoniae, Klebsiella variicola subsp. variicola, Klebsiella variicola subsp. tropica, and Klebsiella grimontii species and subspecies. K. pneumoniae harbored dozens of antibiotic resistance genes, while most of the genomes belong to the high-risk pandemic CC258 occurring in humans, animals, and the environment. In K. pneumoniae ST11, a high prevalence of the virulence determinants yersiniabactin, colibactin, and T6SS was revealed in association with multi-drug resistance (MDR), including carbapenem resistance. A diversity of resistance genes is carried by plasmids, some shared between strains from different STs, regions, and sources. Therefore, here were revealed some factors driving the success of KpSC as a pathogen.
Collapse
Affiliation(s)
| | | | - Ana Carolina Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Av. Brasil, 4365—Manguinhos, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
4
|
Pinpimai K, Banlunara W, Roe WD, Dittmer K, Biggs PJ, Tantilertcharoen R, Chankow K, Bunpapong N, Boonkam P, Pirarat N. Genetic characterization of hypervirulent Klebsiella pneumoniae responsible for acute death in captive marmosets. Front Vet Sci 2022; 9:940912. [PMID: 36016808 PMCID: PMC9397405 DOI: 10.3389/fvets.2022.940912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium implicated as the causative pathogen in several medical health issues with different strains causing different pathologies including pneumonia, bloodstream infections, meningitis and infections from wounds or surgery. In this study, four captive African marmosets housed in Thailand were found dead. Necropsy and histology revealed congestion of hearts, kidneys and adrenal glands. Twenty-four bacterial isolates were obtained from these four animals with all isolates yielding identical phenotypes indicative of K. pneumoniae based on classical identification schema. All the isolates show the susceptibility to amikacin, cephalexin, doxycycline, gentamicin, and enrofloxacin with intermediate susceptibility to amoxycillin/clavulanic acid. One isolate (20P167W) was chosen for genome analysis and determined to belong to sequence type 65 (ST65). The genome of 20P167W possessed multiple virulence genes including mrk gene cluster and iro and iuc gene cluster (salmochelin and aerobactin, respectively) as well as multiple antibiotic resistance genes including bla SHV-67, bla SHV-11, oqxA, oqxB, and fosA genes resembling those found in human isolates; this isolate has a close genetic relationship with isolates from humans in Ireland, but not from Thailand and California sea lions. Phylogenetic studies using SNP show that there was no relation between genetic and geographic distributions of all known strains typing ST65, suggesting that ST65 strains may spread worldwide through multiple international transmission events rather than by local expansions in humans and/or animals. We also predict that K. pneumoniae ST65 has an ability to acquire genetic mobile element from other bacteria, which would allow Klebsiella to become an even greater public health concern.
Collapse
Affiliation(s)
- Komkiew Pinpimai
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wendi D. Roe
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Keren Dittmer
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Rachod Tantilertcharoen
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Katriya Chankow
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Napawan Bunpapong
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Emerging and Re-Emerging Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
| | - Pongthai Boonkam
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nopadon Pirarat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Wildlife Exotic and Aquatic Pathology Research Unit (WEAP RU), Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Han HJ, Powers SJ, Gabrielson KL. The Common Marmoset-Biomedical Research Animal Model Applications and Common Spontaneous Diseases. Toxicol Pathol 2022; 50:628-637. [PMID: 35535728 PMCID: PMC9310150 DOI: 10.1177/01926233221095449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Collapse
Affiliation(s)
- Hyo-Jeong Han
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- University of Ulsan, College of Medicine, Seoul, Korea
| | - Sarah J Powers
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Oliveira AR, de Castro MF, Pimentel SP, de Carvalho TP, Santana CH, Santos DDO, Tinoco HP, Coelho CM, Pessanha AT, da Paixão TA, Santos RL. Streptococcus pasteurianus-induced valvular endocarditis and sepsis in a puerperal emperor tamarin (Saguinus imperator). J Med Primatol 2022; 51:388-391. [PMID: 35451506 DOI: 10.1111/jmp.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Streptococcus pasteurianus is associated with endocarditis and sepsis in humans. A puerperal emperor tamarin died, and necropsy showed a bacterial endocarditis with sepsis. DNA sequencing from the paraffinized heart tissue was compatible with S. pasteurianus. S. pasteurianus could be an important agent associated with sepsis in tamarins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carlyle Mendes Coelho
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Li J, Tang M, Xia F, Min C, Hu Y, Wang H, Zou M. Emergence of polymyxin B-heteroresistant hypervirulent Klebsiella pneumoniae from an individual in the community with asymptomatic bacteriuria. BMC Microbiol 2022; 22:47. [PMID: 35130831 PMCID: PMC8818840 DOI: 10.1186/s12866-022-02462-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Background The heteroresistance of polymyxin B, a last-resort antibiotic used to treat many serious bacterial infections, may lead to antibiotic treatment failure. However, polymyxin B-heteroresistant isolates are rare in individuals living in the community. We report a polymyxin B-heteroresistant hypervirulent Klebsiella pneumoniae (hvKP) isolate from an individual in the community with asymptomatic bacteriuria. Results The NYTJ35 isolate had multiple virulence genes that encoded a mucoid phenotype regulator (rmpA), aerobactin (iucABCD-iutA), salmochelin (iroBCDN), yersiniabactin (irp1–2 and ybtAEPQSTUX), and a truncated rmpA2. Infection of galleria mellonella larvae indicated the isolate was hypervirulent. Antimicrobial susceptibility testing showed it was susceptible to all tested antibiotics except polymyxin B. The proportion of surviving bacteria was 1.2 × 10− 7 based on the population analysis profile (PAP) method, suggesting the presence of polymyxin B heteroresistance. The isolate was not hypermucoviscous, but it was a strong biofilm producer. It had capsular serotype K1 and belonged to sequence type 23 (ST23). The isolate also had the D150G substitution in phoQ, which is known to confer polymyxin B resistance. Conclusions We identified the co-occurrence of hypervirulence and polymyxin B heteroresistance in a K. pneumoniae isolate from an individual with asymptomatic bacteriuria. We suggest the use of increased screening for hvKP in individuals living in the community.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengli Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fengjun Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Changhang Min
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Draft Whole-Genome Sequence of a Klebsiella pneumoniae Strain Isolated from a Marmoset in Thailand. Microbiol Resour Announc 2021; 10:e0050321. [PMID: 34351230 PMCID: PMC8340863 DOI: 10.1128/mra.00503-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that can cause infection in various kinds of animals and humans. Here, we report the genome sequence of K. pneumoniae isolated from a captive marmoset in Thailand.
Collapse
|