1
|
Sotheran E, Lane CR, Horan K, Stevens K, Guglielmino C, Bradbury S, Kennedy K, Cooley L, McEwan B, Kahler CM, Mowlaboccus S, Speers DJ, Baird R, Freeman K, Leong L, Warner M, Williamson DA, McVernon J, Lahra M, Jennison AV, Howden BP, Andersson P. Genomic Surveillance of Invasive Meningococcal Disease During a National MenW Outbreak in Australia, 2017-2018. Open Forum Infect Dis 2024; 11:ofae249. [PMID: 38854393 PMCID: PMC11161896 DOI: 10.1093/ofid/ofae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Background In Australia, invasive meningococcal disease (IMD) incidence rapidly increased between 2014 and 2017 due to rising serogroup W (MenW) and MenY infections. We aimed to better understand the genetic diversity of IMD during 2017 and 2018 using whole genome sequencing data. Methods Whole genome sequencing data from 440 Australian IMD isolates collected during 2017 and 2018 and 1737 international MenW:CC11 isolates collected in Europe, Africa, Asia, North America, and South America between 1974 and 2020 were used in phylogenetic analyses; genetic relatedness was determined from single-nucleotide polymorphisms. Results Australian isolates were as follows: 181 MenW (41%), 144 MenB (33%), 88 MenY (20%), 16 MenC (4%), 1 MenW/Y (0.2%), and 10 nongenogroupable (2%). Eighteen clonal complexes (CCs) were identified, and 3 (CC11, CC23, CC41/44) accounted for 78% of isolates (343/440). These CCs were associated with specific serogroups: CC11 (n = 199) predominated among MenW (n = 181) and MenC (n = 15), CC23 (n = 80) among MenY (n = 78), and CC41/44 (n = 64) among MenB (n = 64). MenB isolates were highly diverse, MenY were intermediately diverse, and MenW and MenC isolates demonstrated the least genetic diversity. Thirty serogroup and CC-specific genomic clusters were identified. International CC11 comparison revealed diversification of MenW in Australia. Conclusions Whole genome sequencing comprehensively characterized Australian IMD isolates, indexed their genetic variability, provided increased within-CC resolution, and elucidated the evolution of CC11 in Australia.
Collapse
Affiliation(s)
- Emily Sotheran
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Courtney R Lane
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Christine Guglielmino
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Australia
| | - Susan Bradbury
- Department of Clinical Microbiology and Infectious Diseases, Canberra Health Services, Australian National University Medical School, Canberra, Australia
| | - Karina Kennedy
- Department of Clinical Microbiology and Infectious Diseases, Canberra Health Services, Australian National University Medical School, Canberra, Australia
| | - Louise Cooley
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Belinda McEwan
- Department of Microbiology and Infectious Diseases, Royal Hobart Hospital, Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Charlene M Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Shakeel Mowlaboccus
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - David J Speers
- PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| | - Robert Baird
- Royal Darwin Hospital Pathology, Darwin, Australia
| | | | | | | | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Jodie McVernon
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Monica Lahra
- New South Wales Health Pathology, Microbiology Randwick, The Prince of Wales Hospital, Sydney, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Patiyan Andersson
- Microbiological Diagnostic Unit Public Health Laboratory at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Kassianos G, Barasheed O, Abbing-Karahagopian V, Khalaf M, Ozturk S, Banzhoff A, Badur S. Meningococcal B Immunisation in Adults and Potential Broader Immunisation Strategies: A Narrative Review. Infect Dis Ther 2023; 12:2193-2219. [PMID: 37428339 PMCID: PMC10581987 DOI: 10.1007/s40121-023-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Recombinant vaccines against invasive meningococcal disease due to Neisseria meningitidis serogroup B (MenB) have shown substantial impact in reducing MenB disease in targeted populations. 4CMenB targets four key N. meningitidis protein antigens; human factor H binding protein (fHbp), Neisserial heparin binding antigen (NHBA), Neisseria adhesin A (NadA) and the porin A protein (PorA P1.4), with one or more of these expressed by most pathogenic MenB strains, while MenB-FHbp targets two distinct fHbp variants. While many countries recommend MenB immunisation in adults considered at high risk due to underlying medical conditions or immunosuppression, there are no recommendations for routine use in the general adult population. We reviewed the burden of MenB in adults, where, while incidence rates remain low (and far lower than in young children < 5 years of age at greatest risk), a substantial proportion of MenB cases (20% or more) is now observed in the adult population; evident in Europe, Australia, and in the United States. We also reviewed immunogenicity data in adults from clinical studies conducted during MenB vaccine development and subsequent post-licensure studies. A 2-dose schedule of 4CMenB generates hSBA titres ≥ 1:4 towards all four key vaccine target antigens in up to 98-100% of subjects. For MenB-FHbp, a ≥ fourfold rise in hSBA titres against the four primary representative test strains was observed in 70-95% of recipients following a 3-dose schedule. While this suggests potential benefits for MenB immunisation if used in adult populations, data are limited (especially for adults > 50 years) and key aspects relating to duration of protection remain unclear. Although a broader adult MenB immunisation policy could provide greater protection of the adult population, additional data are required to support policy decision-making.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London, UK
- The British Global and Travel Health Association, London, UK
| | | | | | | | | | | | | |
Collapse
|
3
|
Yang Z, Guarracino A, Biggs PJ, Black MA, Ismail N, Wold JR, Merriman TR, Prins P, Garrison E, de Ligt J. Pangenome graphs in infectious disease: a comprehensive genetic variation analysis of Neisseria meningitidis leveraging Oxford Nanopore long reads. Front Genet 2023; 14:1225248. [PMID: 37636268 PMCID: PMC10448961 DOI: 10.3389/fgene.2023.1225248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Whole genome sequencing has revolutionized infectious disease surveillance for tracking and monitoring the spread and evolution of pathogens. However, using a linear reference genome for genomic analyses may introduce biases, especially when studies are conducted on highly variable bacterial genomes of the same species. Pangenome graphs provide an efficient model for representing and analyzing multiple genomes and their variants as a graph structure that includes all types of variations. In this study, we present a practical bioinformatics pipeline that employs the PanGenome Graph Builder and the Variation Graph toolkit to build pangenomes from assembled genomes, align whole genome sequencing data and call variants against a graph reference. The pangenome graph enables the identification of structural variants, rearrangements, and small variants (e.g., single nucleotide polymorphisms and insertions/deletions) simultaneously. We demonstrate that using a pangenome graph, instead of a single linear reference genome, improves mapping rates and variant calling for both simulated and real datasets of the pathogen Neisseria meningitidis. Overall, pangenome graphs offer a promising approach for comparative genomics and comprehensive genetic variation analysis in infectious disease. Moreover, this innovative pipeline, leveraging pangenome graphs, can bridge variant analysis, genome assembly, population genetics, and evolutionary biology, expanding the reach of genomic understanding and applications.
Collapse
Affiliation(s)
- Zuyu Yang
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Patrick J. Biggs
- Molecular Biosciences Group, School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nuzla Ismail
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jana Renee Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tony R. Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joep de Ligt
- Institute of Environmental Science and Research, Porirua, New Zealand
| |
Collapse
|
4
|
Lemos APSD, Gorla MCO, de Moraes C, Willemann MC, Sacchi CT, Fukasawa LO, Camargo CH, Barreto G, Rodrigues DS, Gonçalves MG, Higa FT, Salgado MM, de Moraes JC. Emergence of Neisseria meningitidis W South American sublineage strain variant in Brazil: disease and carriage. J Med Microbiol 2022; 71. [PMID: 35144719 DOI: 10.1099/jmm.0.001484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction. Invasive meningococcal disease is a major health problem, impacting morbidity and mortality worldwide. Exploratory genomics has revealed insights into adaptation, transmissibility and virulence to elucidate endemic, outbreaks or epidemics caused by Neisseria meningitidis serogroup W (MenW) strains.Gap Statement. Limited information on the genomics of Neisseria meningitis serogroup W ST11/cc11 is available from emerging countries, especially in contemporary isolates.Aim. To (i) describe the antigenic diversity and distribution of genetic lineages of N. meningitidis serogroup W circulating in Brazil; (ii) study the carriage prevalence of hypervirulent clones in adolescents students and (iii) analyse the potential risk factors for meningococcal carriage.Methodology. Using whole-genome sequencing, we analysed the genomic diversity of 92 invasive N. meningitidis serogroup W isolates circulating in Brazil from 2016 to 2019. A cross-sectional survey of meningococcal carriage was conducted in 2019, in the city of Florianópolis, Brazil, among a representative sample of 538 students.Results. A predominance (58.5 %, 41/82) of ST11/cc11 presenting PorB2-144, PorA VR1-5, VR2-2, FetA 1-1, and a novel fHbp peptide 1241 was found on invasive N. meningitidis W isolates, on the other hand, a high diversity of clonal complexes was found among carriage isolates. The overall carriage rate was 7.5 % (40/538). A total of 28 of 538 swab samples collected were culture positive for N. meningitidis, including four serogroup/genogroup B isolates (14.8 %;4/27), 1 serogroup/genogroup Y isolate (3.7 %;1/27), 22 (81.5 %; 22/27) non-groupable isolates. No MenW isolate was identified among carriages isolates.Conclusion. This report describes the emergence of the new MenW ST11/cc11 South America sublineage variant, named here, 2016 strain, carrying a novel fHbp peptide 1241, but its emergence, was not associated with an increased MenW carriage prevalence. Continuous surveillance is necessary to ascertain the role of this sublineage diversification and how its emergence can impact transmission.
Collapse
Affiliation(s)
| | | | - Camile de Moraes
- Coordenação Geral de Emergências em Saúde Pública, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Gisele Barreto
- Vigilância Epidemiológica de Santa Catarina, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|