1
|
Harpaz E, Cazzaniga FA, Tran L, Vuong TT, Bufano G, Salvesen Ø, Gravdal M, Aldaz D, Sun J, Kim S, Celauro L, Legname G, Telling GC, Tranulis MA, Benestad SL, Espenes A, Moda F, Ersdal C. Transmission of Norwegian reindeer CWD to sheep by intracerebral inoculation results in an unusual phenotype and prion distribution. Vet Res 2024; 55:94. [PMID: 39075607 PMCID: PMC11285437 DOI: 10.1186/s13567-024-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic wasting disease (CWD), a prion disease affecting cervids, has been known in North America (NA) since the 1960s and emerged in Norway in 2016. Surveillance and studies have revealed that there are different forms of CWD in Fennoscandia: contagious CWD in Norwegian reindeer and sporadic CWD in moose and red deer. Experimental studies have demonstrated that NA CWD prions can infect various species, but thus far, there have been no reports of natural transmission to non-cervid species. In vitro and laboratory animal studies of the Norwegian CWD strains suggest that these strains are different from the NA strains. In this work, we describe the intracerebral transmission of reindeer CWD to six scrapie-susceptible sheep. Detection methods included immunohistochemistry (IHC), western blot (WB), enzyme-linked immunosorbent assay (ELISA), real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). In the brain, grey matter vacuolation was limited, while all sheep exhibited vacuolation of the white matter. IHC and WB conventional detection techniques failed to detect prions; however, positive seeding activity with the RT-QuIC and PMCA amplification techniques was observed in the central nervous system of all but one sheep. Prions were robustly amplified in the lymph nodes of all animals, mainly by RT-QuIC. Additionally, two lymph nodes were positive by WB, and one was positive by ELISA. These findings suggest that sheep can propagate reindeer CWD prions after intracerebral inoculation, resulting in an unusual disease phenotype and prion distribution with a low amount of detectable prions.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Federico Angelo Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Linh Tran
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Tram T Vuong
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Giuseppe Bufano
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
- Åkerblå AS, Haugesund, Norway
| | - Maiken Gravdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Devin Aldaz
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julianna Sun
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sehun Kim
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Sylvie L Benestad
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| |
Collapse
|
2
|
Burgener K, Lichtenberg SS, Walsh DP, Inzalaco HN, Lomax A, Pedersen JA. Prion Seeding Activity in Plant Tissues Detected by RT-QuIC. Pathogens 2024; 13:452. [PMID: 38921750 PMCID: PMC11206635 DOI: 10.3390/pathogens13060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Prion diseases such as scrapie, bovine spongiform encephalopathy (BSE), and chronic wasting disease (CWD) affect domesticated and wild herbivorous mammals. Animals afflicted with CWD, the transmissible spongiform encephalopathy of cervids (deer, elk, and moose), shed prions into the environment, where they may persist and remain infectious for years. These environmental prions may remain in soil, be transported in surface waters, or assimilated into plants. Environmental sampling is an emerging area of TSE research and can provide more information about prion fate and transport once shed by infected animals. In this study, we have developed the first published method for the extraction and detection of prions in plant tissue using the real-time quaking-induced conversion (RT-QuIC) assay. Incubation with a zwitterionic surfactant followed by precipitation with sodium phosphotungstate concentrates the prions within samples and allows for sensitive detection of prion seeding activity. Using this protocol, we demonstrate that prions can be detected within plant tissues and on plant surfaces using the RT-QuIC assay.
Collapse
Affiliation(s)
- Kate Burgener
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.)
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stuart Siegfried Lichtenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for Prion Research and Outreach, University of Minnesota, St. Paul, MN 55108, USA
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | - Heather N. Inzalaco
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron Lomax
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Varizymes, Middleton, WI 53562, USA
| | - Joel A. Pedersen
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.)
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
3
|
Kokemuller RD, Moore SJ, Bian J, West Greenlee MH, Greenlee JJ. Disease phenotype of classical sheep scrapie is changed upon experimental passage through white-tailed deer. PLoS Pathog 2023; 19:e1011815. [PMID: 38048370 PMCID: PMC10721168 DOI: 10.1371/journal.ppat.1011815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Prion agents occur in strains that are encoded by the structure of the misfolded prion protein (PrPSc). Prion strains can influence disease phenotype and the potential for interspecies transmission. Little is known about the potential transmission of prions between sheep and deer. Previously, the classical US scrapie isolate (No.13-7) had a 100% attack rate in white-tailed deer after oronasal challenge. The purpose of this study was to test the susceptibility of sheep to challenge with the scrapie agent after passage through white-tailed deer (WTD scrapie). Lambs of various prion protein genotypes were oronasally challenged with WTD scrapie. Sheep were euthanized and necropsied upon development of clinical signs or at the end of the experiment (72 months post-inoculation). Enzyme immunoassay, western blot, and immunohistochemistry demonstrated PrPSc in 4 of 10 sheep with the fastest incubation occurring in VRQ/VRQ sheep, which contrasts the original No.13-7 inoculum with a faster incubation in ARQ/ARQ sheep. Shorter incubation periods in VRQ/VRQ sheep than ARQ/ARQ sheep after passage through deer was suggestive of a phenotype change, so comparisons were made in ovinized mice and with sheep with known strains of classical sheep scrapie: No. 13-7 and x-124 (that has a more rapid incubation in VRQ/VRQ sheep). After mouse bioassay, the WTD scrapie and x-124 isolates have similar incubation periods and PrPSc conformational stability that are markedly different than the original No. 13-7 inoculum. Furthermore, brain tissues of sheep with WTD scrapie and x-124 scrapie have similar patterns of immunoreactivity that are distinct from sheep with No. 13-7 scrapie. Multiple lines of evidence suggest a phenotype switch when No. 13-7 scrapie prions are passaged through deer. This represents one example of interspecies transmission of prions resulting in the emergence or selection of new strain properties that could confound disease eradication and control efforts.
Collapse
Affiliation(s)
- Robyn D. Kokemuller
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, United States of America
| | - S. Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, United States of America
| | - Jifeng Bian
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, United States of America
| | - M. Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, ARS, Ames, Iowa, United States of America
| |
Collapse
|
4
|
Harpaz E, Vuong TT, Tran L, Tranulis MA, Benestad SL, Ersdal C. Inter- and intra-species conversion efficacies of Norwegian prion isolates estimated by serial protein misfolding cyclic amplification. Vet Res 2023; 54:84. [PMID: 37773068 PMCID: PMC10542671 DOI: 10.1186/s13567-023-01220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Prion diseases, including chronic wasting disease (CWD) in cervids, are fatal neurodegenerative disorders caused by the misfolding of cellular prion proteins. CWD is known to spread among captive and free-ranging deer in North America. In 2016, an outbreak of contagious CWD was detected among wild reindeer in Norway, marking the first occurrence of the disease in Europe. Additionally, new sporadic forms of CWD have been discovered in red deer in Norway and moose in Fennoscandia. We used serial protein misfolding cyclic amplification to study the ability of Norwegian prion isolates from reindeer, red deer, and moose (two isolates), as well as experimental classical scrapie from sheep, to convert a panel of 16 brain homogenates (substrates) from six different species with various prion protein genotypes. The reindeer CWD isolate successfully converted substrates from all species except goats. The red deer isolate failed to convert sheep and goat substrates but exhibited amplification in all cervid substrates. The two moose isolates demonstrated lower conversion efficacies. The wild type isolate propagated in all moose substrates and in the wild type red deer substrate, while the other isolate only converted two of the moose substrates. The experimental classical scrapie isolate was successfully propagated in substrates from all species tested. Thus, reindeer CWD and classical sheep scrapie isolates were similarly propagated in substrates from different species, suggesting the potential for spillover of these contagious diseases. Furthermore, the roe deer substrate supported conversion of three isolates suggesting that this species may be vulnerable to prion disease.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway
| | - Tram Thu Vuong
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Linh Tran
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Sylvie L Benestad
- Department of Biohazard and Pathology, Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien 112, 4325, Sandnes, Norway.
| |
Collapse
|
5
|
Harpaz E, Salvesen Ø, Rauset GR, Mahmood A, Tran L, Ytrehus B, Benestad SL, Tranulis MA, Espenes A, Ersdal C. No evidence of uptake or propagation of reindeer CWD prions in environmentally exposed sheep. Acta Vet Scand 2022; 64:13. [PMID: 35668456 PMCID: PMC9169292 DOI: 10.1186/s13028-022-00632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic wasting disease (CWD) is a prion disease of cervids first reported in North America in the 1960s. In Europe, CWD was first diagnosed in 2016 in a wild reindeer in Norway. Detection of two more cases in the same mountain area led to the complete culling of this partially confined reindeer population of about 2400 animals. A total of 19 CWD positive animals were identified. The affected area is extensively used for the grazing of sheep during summers. There are many mineral licks intended for sheep in the area, but these have also been used by reindeer. This overlap in area use raised concerns for cross-species prion transmission between reindeer and sheep. In this study, we have used global positioning system (GPS) data from sheep and reindeer, including tracking one of the CWD positive reindeer, to investigate spatial and time-relevant overlaps between these two species. Since prions can accumulate in lymphoid follicles following oral uptake, samples of gut-associated lymphoid tissue (GALT) from 425 lambs and 78 adult sheep, which had grazed in the region during the relevant timeframe, were analyzed for the presence of prions. The recto-anal mucosa associated lymphoid tissue (RAMALT) from all the animals were examined by histology, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA), and the ileal Peyer's patch (IPP) from a subsample of 37 lambs were examined by histology and IHC, for the detection of prions. RESULTS GPS data showed an overlap in area use between the infected reindeer herd and the sheep. In addition, the GPS positions of an infected reindeer and some of the sampled sheep showed temporospatial overlap. No prions were detected in the GALT of the investigated sheep even though the mean lymphoid follicle number in RAMALT and IPP samples were high. CONCLUSION The absence of prions in the GALT of sheep that have shared pasture with CWD-infected reindeer, may suggest that transmission of this novel CWD strain to sheep does not easily occur under the conditions found in these mountains. We document that the lymphoid follicle rich RAMALT could be a useful tool to screen for prions in sheep.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Geir Rune Rauset
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485, Trondheim, Norway
| | - Aqsa Mahmood
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485, Trondheim, Norway.,Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07, Uppsala, Sweden
| | | | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway.
| |
Collapse
|
6
|
Susceptibility of Beavers to Chronic Wasting Disease. BIOLOGY 2022; 11:biology11050667. [PMID: 35625395 PMCID: PMC9137852 DOI: 10.3390/biology11050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Chronic wasting disease (CWD) is a contagious, fatal, neurodegenerative prion disease of cervids. The expanding geographical range and rising prevalence of CWD are increasing the risk of pathogen transfer and spillover of CWD to non-cervid sympatric species. As beavers have close contact with environmental and food sources of CWD infectivity, we hypothesized that they may be susceptible to CWD prions. We evaluated the susceptibility of beavers to prion diseases by challenging transgenic mice expressing beaver prion protein (tgBeaver) with five strains of CWD, four isolates of rodent-adapted prions and one strain of Creutzfeldt-Jakob disease. All CWD strains transmitted to the tgBeaver mice, with attack rates highest from moose CWD and the 116AG and H95+ strains of deer CWD. Mouse-, rat-, and especially hamster-adapted prions were also transmitted with complete attack rates and short incubation periods. We conclude that the beaver prion protein is an excellent substrate for sustaining prion replication and that beavers are at risk for CWD pathogen transfer and spillover.
Collapse
|
7
|
Assessment of Real-Time Quaking-Induced Conversion (RT-QuIC) Assay, Immunohistochemistry and ELISA for Detection of Chronic Wasting Disease under Field Conditions in White-Tailed Deer: A Bayesian Approach. Pathogens 2022; 11:pathogens11050489. [PMID: 35631010 PMCID: PMC9144059 DOI: 10.3390/pathogens11050489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible prion disease of the cervidae family. ELISA and IHC tests performed postmortem on the medial retropharyngeal lymph nodes (RPLN) or obex are considered diagnostic gold standards for prion detection. However, differences in CWD transmission, stage of infection, pathogenesis, and strain can limit performance. To overcome these uncertainties, we used Bayesian statistics to assess the accuracy of RT-QuIC, an increasingly used prion amplification assay, to diagnose CWD on tonsil (TLN), parotid (PLN) and submandibular lymph nodes (SMLN), and ELISA/IHC on RPLN of white-tailed deer (WTD) sampled from Minnesota. Dichotomous RT-QuIC and ELISA/IHC results from wild (n = 61) and captive (n = 46) WTD were analyzed with two-dependent-test, one-population models. RT-QuIC performed on TLN and SMLN of the wild WTD population had similar sensitivity (median range (MR): 92.2–95.1) to ELISA/IHC on RPLN (MR: 91.1–92.3). Slightly lower (4–7%) sensitivity estimates were obtained from farmed animal and PLN models. RT-QuIC specificity estimates were high (MR: 94.5–98.5%) and similar to ELISA/IHC estimates (MR: 95.7–97.6%) in all models. This study offers new insights on RT-QuIC and ELISA/IHC performance at the population level and under field conditions, an important step in CWD diagnosis and management.
Collapse
|