1
|
Chen X, Wei J, Zhang M, Su B, Ren M, Cai M, Zhang Y, Zhang T. Prevalence, incidence, and case fatality of tuberculous meningitis in adults living with HIV: a systematic review and meta-analysis. BMC Public Health 2024; 24:2145. [PMID: 39112980 PMCID: PMC11308199 DOI: 10.1186/s12889-024-19683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Tuberculous meningitis (TBM) emerges as a grave complication of tuberculosis in people living with HIV (PLWH). The diagnosis and treatment of TBM pose significant challenges, leading to elevated mortality rates. To comprehensively grasp the epidemiological landscape of TBM in PLWH, a systematic review and meta-analysis were meticulously undertaken. METHODS We performed a comprehensive search in PubMed, Embase, and Web of Science from database inception to September 19th, 2023, with no limitations on the publication type. The search terms were HIV/AIDS terms (AIDS OR HIV OR PLWH) and TBM-related terms (tuberculous meningitis OR TBM). Studies included in this meta-analysis evaluated the incidence of TBM among PLWH, or we were able to calculate the incidence of TBM among PLWH from the research. RESULTS The analysis revealed that the prevalence of TBM among PLWH was 13.6% (95% CI: 6.6-25.9%), with an incidence rate of 1.5 cases per 1000 persons per year. The case fatality rate was found to be 38.1% (95% CI: 24.3-54.1%). No significant publication bias was observed. Meta-regression analysis identified the proportion of females and finance situation as factors influencing the outcomes. CONCLUSIONS Our study highlights TBM as a prevalent opportunistic infection that targets the central nervous system in PLWH. The elevated case fatality rate is especially prominent among PLWH in impoverished regions, underscores the pressing necessity for enhanced management strategies for PLWH suffering from TBM. TRIAL REGISTRATION PROSPERO; No: CRD42022338586.
Collapse
Affiliation(s)
- Xue Chen
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Key Laboratory for HIV/AIDS Research, Capital Medical University, Beijing, 100069, China
- Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Jiaqi Wei
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Key Laboratory for HIV/AIDS Research, Capital Medical University, Beijing, 100069, China
| | - Mei Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Key Laboratory for HIV/AIDS Research, Capital Medical University, Beijing, 100069, China
| | - Bin Su
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Key Laboratory for HIV/AIDS Research, Capital Medical University, Beijing, 100069, China
| | - Meixin Ren
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Key Laboratory for HIV/AIDS Research, Capital Medical University, Beijing, 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, 100069, China.
| | - Tong Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Key Laboratory for HIV/AIDS Research, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Zarra F, Shahid AH, Gandhi DN, Salazar LRM, Chaurasia B. Migration of the anal distal end due to ventriculoperitoneal shunt placement: an atypical case report of a 9-month-old infant with tuberculous meningitis and review of the literature. Childs Nerv Syst 2024; 40:2583-2592. [PMID: 38625589 DOI: 10.1007/s00381-024-06405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Ventriculoperitoneal shunt (VPS) represents one of the most classic and widely used treatments for hydrocephalus in pediatric patients. Migration and externalization of the distal end of the catheter through the rectum are extremely rare complications of intestinal perforation with devastating consequences such as meningitis or peritonitis due to enteric bacteria that are significantly life-threatening. Besides, one of the biggest topics with that is that it can happen without producing symptoms, like the patient we present in this case report, which further masks the condition and puts the patient's life more at risk. CASE PRESENTATION We present a case of a 9-month-old infant patient, with a history of prematurity, tuberculous meningitis (TBM), and hydrocephalus, who came to ED with a functional VPS and the distal end of the catheter protruding outside the rectum for 7 days, without presenting neurological or intestinal symptoms accompanying. One of the parameters that guided the diagnosis and made us suspicious of asymptomatic intestinal perforation (IP) was the background of TMB. The patient was immediately transferred to the OR where both ends of the shunt were removed: in the first instance, the shunt tube was disconnected through the abdomen, thus withdrawing through the anus, and subsequently, the proximal end of the catheter was exteriorized. In turn, the intestinal fistula was successfully repaired laparoscopically, and prophylactic antibiotic treatment was early administered. On the 6th postop day, a shunt was internalized, and a child was discharged on postop day 15 without complications with alarm guidelines. CONCLUSIONS The authors of this article strongly suggest that (1) anal extrusion of catheters is an uncommon complication but real: for this reason, its development should be considered in all patients with VPS, especially in infants. (2) The patients are often asymptomatic since false tracts can form around the catheter protecting it from spillage, and thus can be removed without complications. (3) Special care should be taken in patients with conditions that increase the risk of developing IP, such as TMB.
Collapse
Affiliation(s)
- Francisco Zarra
- Department of Neurosurgery, University of Buenos Aires School of Medicine, Buenos Aires, Argentina.
| | | | | | | | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| |
Collapse
|
3
|
Amuge PM, Becker GL, Ssebunya RN, Nalumansi E, Adaku A, Juma M, Jackson JB, Kekitiinwa AR, Elyanu PJ, Wobudeya E, Blount R. Patient characteristics and predictors of mortality among children hospitalised with tuberculosis: A six-year case series study in Uganda. PLoS One 2024; 19:e0301107. [PMID: 38805452 PMCID: PMC11132474 DOI: 10.1371/journal.pone.0301107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/11/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The high case-fatality rates among children with tuberculosis (TB) are reportedly driven by in-hospital mortality and severe forms of TB. Therefore, there is need to better understand the predictors of mortality among children hospitalised with TB. We examined the patient clinical profiles, length of hospital stay from date of admission to date of final admission outcome, and predictors of mortality among children hospitalised with TB at two tertiary hospitals in Uganda. METHODS We conducted a case-series study of children below 15 years of age hospitalised with TB, from January 1st, 2016, to December 31st, 2021. Convenience sampling was done to select TB cases from paper-based medical records at Mulago National Referral Hospital (MNRH) in urban Kampala, and Fort Portal Regional Referral Hospital (FRRH) in rural Fort Portal. We fitted linear and logistic regression models with length of stay and in-hospital mortality as key outcomes. RESULTS Out of the 201 children hospitalised with TB, 50 were at FRRH, and 151 at MNRH. The male to female ratio was 1.5 with median age of 2.6 years (Interquartile range-IQR 1-6). There was a high prevalence of HIV (67/171, 39%), severe malnutrition reported as weight-for-age Z-score <-3SD (51/168, 30%). Among children with pulmonary TB who initiated anti-tuberculosis therapy (ATT) either during hospitalisation or within seven days prior to hospitalisation; cough (134/143, 94%), fever (111/143, 78%), and dyspnoea (78/143, 55%) were common symptoms. Children with TB meningitis commonly presented with fever (17/24, 71%), convulsions (14/24 58%), and cough (13/24, 54%). The median length of hospital stay was 8 days (IQR 5-15). Of the 199 children with known in-hospital outcomes, 34 (17.1%) died during hospitalisation. TB meningitis was associated with in-hospital mortality (aOR = 3.50, 95% CI = 1.10-11.17, p = 0.035), while male sex was associated with reduced mortality (aOR = 0.33, 95% CI = 0.12-0.95, p = 0.035). Hospitalisation in the urban hospital predicted a 0.48-day increase in natural log-transformed length of hospital stay (ln-length of stay) (95% CI 0.15-0.82, p = 0.005), but not age, sex, HIV, malnutrition, or TB meningitis. CONCLUSIONS In-hospital mortality was high, and significantly driven almost four times higher by TB meningitis, with longer hospital stay among children in urban hospitals. The high in-hospital mortality and long hospital stay may be reduced by timely TB diagnosis and treatment initiation among children.
Collapse
Affiliation(s)
- Pauline Mary Amuge
- Research Department, Baylor College of Medicine Children’s Foundation-Uganda, Kampala, Uganda
| | - Greta Lassance Becker
- Division of Pulmonary and Critical Care Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Rogers Nelson Ssebunya
- Research Department, Baylor College of Medicine Children’s Foundation-Uganda, Kampala, Uganda
| | - Esther Nalumansi
- Department of Medical Records, Mulago National Referral Hospital, Kampala, Uganda
| | - Alex Adaku
- Fort Portal Regional Referral Hospital, Kabarole District, Fort Portal City, Uganda
| | - Michael Juma
- Research Department, Baylor College of Medicine Children’s Foundation-Uganda, Kampala, Uganda
| | - Jay Brooks Jackson
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | | | - Peter James Elyanu
- Research Department, Baylor College of Medicine Children’s Foundation-Uganda, Kampala, Uganda
| | - Eric Wobudeya
- Department of Paediatrics & Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Robert Blount
- Division of Pulmonary and Critical Care Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
4
|
Madadi AK, Sohn MJ. Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics 2024; 16:540. [PMID: 38675201 PMCID: PMC11054600 DOI: 10.3390/pharmaceutics16040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculous meningitis (TBM) presents a critical neurologic emergency characterized by high mortality and morbidity rates, necessitating immediate therapeutic intervention, often ahead of definitive microbiological and molecular diagnoses. The primary hurdle in effective TBM treatment is the blood-brain barrier (BBB), which significantly restricts the delivery of anti-tuberculous medications to the central nervous system (CNS), leading to subtherapeutic drug levels and poor treatment outcomes. The standard regimen for initial TBM treatment frequently falls short, followed by adverse side effects, vasculitis, and hydrocephalus, driving the condition toward a refractory state. To overcome this obstacle, intrathecal (IT) sustained release of anti-TB medication emerges as a promising approach. This method enables a steady, uninterrupted, and prolonged release of medication directly into the cerebrospinal fluid (CSF), thus preventing systemic side effects by limiting drug exposure to the rest of the body. Our review diligently investigates the existing literature and treatment methodologies, aiming to highlight their shortcomings. As part of our enhanced strategy for sustained IT anti-TB delivery, we particularly seek to explore the utilization of nanoparticle-infused hydrogels containing isoniazid (INH) and rifampicin (RIF), alongside osmotic pump usage, as innovative treatments for TBM. This comprehensive review delineates an optimized framework for the management of TBM, including an integrated approach that combines pharmacokinetic insights, concomitant drug administration strategies, and the latest advancements in IT and intraventricular (IVT) therapy for CNS infections. By proposing a multifaceted treatment strategy, this analysis aims to enhance the clinical outcomes for TBM patients, highlighting the critical role of targeted drug delivery in overcoming the formidable challenges presented by the blood-brain barrier and the complex pathophysiology of TBM.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, College of Medicine, Inje University Ilsan Paik Hospital, 170, Juhwa-ro, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
5
|
Zhang X, Li P, Wen J, Chang J, Chen Y, Yin R, Xu H, Liu X, Yang L, Wei J. Ventriculoperitoneal shunt for tuberculous meningitis-associated hydrocephalus: long-term outcomes and complications. BMC Infect Dis 2023; 23:742. [PMID: 37904093 PMCID: PMC10614362 DOI: 10.1186/s12879-023-08661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Hydrocephalus is a frequent complication of tuberculous meningitis (TBM), and ventriculoperitoneal shunt (VPS) has been shown to improve short-term prognosis for patients with TBM-associated hydrocephalus. However, questions remain about long-term prognosis and shunt-related complications. This study aims to provide a comprehensive assessment of both long-term prognosis and shunt-related complications in patients with TBM-induced hydrocephalus who have undergone VPS treatment. METHODS This retrospective study analyzed the clinical data of TBM patients with hydrocephalus treated with VPS at Peking Union Medical College Hospital between December 1999 and February 2023. Both short-term outcomes at discharge and long-term outcomes during follow-up were examined. Prognosis and shunt-related complications were assessed using the modified Rankin Scale (mRS) and the Activity of Daily Living (ADL) score to evaluate neurological function and autonomic living ability, respectively. RESULTS A total of 14 patients with TBM-associated hydrocephalus were included in this study. Of these, 92.9% (13/14) exhibited favorable short-term outcomes, while 57.1% (8/14) showed positive long-term outcomes. Initial results indicated 6 complete recoveries (CR), 7 partial recoveries (PR), and 1 treatment failure. No catheter-related complications were observed initially. Long-term results included 4 CRs, 4 PRs, and 6 treatment failures. A variety of shunt surgery-related complications were noted, including three instances of catheter obstruction, one of incision infection, one of catheter-related infection, one of acute cerebral infarction, and one of transient peritoneal irritation accompanied by diarrhea. CONCLUSIONS VPS appears to be an effective and well-tolerated treatment for TBM-associated hydrocephalus, efficiently alleviating acute intracranial hypertension. Nonetheless, continuous long-term monitoring and proactive management are essential to mitigate the risk of catheter-related complications.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengtao Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junxian Wen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yin
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Houshi Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lang Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Chiang SS, Graham SM, Schaaf HS, Marais BJ, Sant'Anna CC, Sharma S, Starke JR, Triasih R, Achar J, Amanullah F, Armitage LY, Aurilio RB, Buck WC, Centis R, Chabala C, Cruz AT, Demers AM, du Preez K, Enimil A, Furin J, Garcia-Prats AJ, Gonzalez NE, Hoddinott G, Isaakidis P, Jaganath D, Kabra SK, Kampmann B, Kay A, Kitai I, Lopez-Varela E, Maleche-Obimbo E, Malaspina FM, Velásquez JN, Nuttall JJC, Oliwa JN, Andrade IO, Perez-Velez CM, Rabie H, Seddon JA, Sekadde MP, Shen A, Skrahina A, Soriano-Arandes A, Steenhoff AP, Tebruegge M, Tovar MA, Tsogt B, van der Zalm MM, Welch H, Migliori GB. Clinical standards for drug-susceptible TB in children and adolescents. Int J Tuberc Lung Dis 2023; 27:584-598. [PMID: 37491754 PMCID: PMC10365562 DOI: 10.5588/ijtld.23.0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND: These clinical standards aim to provide guidance for diagnosis, treatment, and management of drug-susceptible TB in children and adolescents.METHODS: Fifty-two global experts in paediatric TB participated in a Delphi consensus process. After eight rounds of revisions, 51/52 (98%) participants endorsed the final document.RESULTS: Eight standards were identified: Standard 1, Age and developmental stage are critical considerations in the assessment and management of TB; Standard 2, Children and adolescents with symptoms and signs of TB disease should undergo prompt evaluation, and diagnosis and treatment initiation should not depend on microbiological confirmation; Standard 3, Treatment initiation is particularly urgent in children and adolescents with presumptive TB meningitis and disseminated (miliary) TB; Standard 4, Children and adolescents should be treated with an appropriate weight-based regimen; Standard 5, Treating TB infection (TBI) is important to prevent disease; Standard 6, Children and adolescents should receive home-based/community-based treatment support whenever possible; Standard 7, Children, adolescents, and their families should be provided age-appropriate support to optimise engagement in care and clinical outcomes; and Standard 8, Case reporting and contact tracing should be conducted for each child and adolescent.CONCLUSION: These consensus-based clinical standards, which should be adapted to local contexts, will improve the care of children and adolescents affected by TB.
Collapse
Affiliation(s)
- S S Chiang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Alpert Medical School of Brown University, Providence, RI, Center for International Health Research, Rhode Island Hospital, Providence, RI, USA
| | - S M Graham
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Burnet Institute, Melbourne, VIC, Australia
| | - H S Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - B J Marais
- Department of Paediatrics and Child Health and the Sydney Infectious Diseases Institute (Sydney ID), Sydney, NSW, Department of Infectious Diseases, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - C C Sant'Anna
- Department of Paediatrics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - S Sharma
- Department of Paediatrics, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - J R Starke
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, Section of Infectious Diseases, Texas Children's Hospital, Houston, TX, USA
| | - R Triasih
- Department of Paediatrics, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito Hospital, Yogyakarta, Indonesia
| | - J Achar
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - F Amanullah
- Department of Paediatrics, The Indus Hospital and Health Network, Karachi, Department of Paediatrics, The Aga Khan University Hospital, Karachi, Pakistan
| | - L Y Armitage
- Heartland National TB Center, University of Texas Health Science Center at Tyler, San Antonio, TX, USA
| | - R B Aurilio
- Department of Paediatrics, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Department of Paediatrics, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - W C Buck
- Department of Pediatrics, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - R Centis
- Respiratory Diseases Clinical Epidemiology Unit, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico, Tradate, Italy
| | - C Chabala
- School of Medicine, Department of Paediatrics and Child Health, University of Zambia, Lusaka, Children's Hospital, University Teaching Hospitals, Lusaka, Zambia
| | - A T Cruz
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - A-M Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa, Division of Microbiology, Department of Laboratory Medicine, CHU Sainte-Justine, Montreal, Canada
| | - K du Preez
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - A Enimil
- Department of Child Health, Kwame Nkrumah University of Science and Technology, Kumasi, Department of Child Health, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - J Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - A J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa, Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - N E Gonzalez
- División Neumotisiología, Hospital de Niños Pedro de Elizalde, Buenos Aires, Dirección General de Posgrado, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - G Hoddinott
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - P Isaakidis
- Southern Africa Medical Unit (SAMU), Médecins Sans Frontières, Cape Town, South Africa, Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - D Jaganath
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - S K Kabra
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - B Kampmann
- Charite Centre for Global Health, Charite Universitatsmedizin Berlin, Berlin, Germany, Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - A Kay
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - I Kitai
- Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - E Lopez-Varela
- Hospital Clínic and ISGlobal, Universitat de Barcelona, Barcelona, Spain, Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - E Maleche-Obimbo
- Department of Paediatrics & Child Health, University of Nairobi, Nairobi, Kenya
| | - F Mestanza Malaspina
- Department of Paediatrics, Hospital San Bartólome, Lima, Red Peruana de Tuberculosis Pediátrica, Dirección de Prevención y Control de Tuberculosis, Ministerio de Salud, Lima, Perú
| | - J Niederbacher Velásquez
- Department of Paediatrics, Universidad Industrial de Santander, Bucaramanga, Board of Directors, Asociación Colombiana de Neumología Pediátrica, Bogotá, Colombia
| | - J J C Nuttall
- Paediatric Infectious Diseases Unit, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - J N Oliwa
- Faculty of Health Sciences, Department of Paediatrics and Child Health, The University of Nairobi, Nairobi, Health Services Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - I Orozco Andrade
- Center of Diagnosis and Integral Treatment for Tuberculosis, Servicios Médicos de la Frontera, Juárez, Medical Coordination, Juntos Binational Tuberculosis Project, Juárez, México
| | - C M Perez-Velez
- Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - H Rabie
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - J A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa, Department of Infectious Disease, Imperial College London, London, UK
| | - M P Sekadde
- National TB and Leprosy Program, Ministry of Health, Kampala, Uganda
| | - A Shen
- Beijing Paediatric Research Institute, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, Pediatric Research Institute, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - A Skrahina
- Clinical Department, The Republican Scientific and Practical Centre for Pulmonology and TB, Minsk, Belarus
| | - A Soriano-Arandes
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Barcelona, Infection and Immunity in Children, Vall d'Hebron Research Institute, Barcelona, Spain
| | - A P Steenhoff
- Global Health Center and Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA, Department of Paediatric & Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - M Tebruegge
- Department of Infection, Immunity & Inflammation, University College London, Great Ormond Street Institute of Child Health, London, UK, Department of Paediatrics, Klinik Ottakring, Wiener Gesundheitsverbund, Vienna, Austria
| | - M A Tovar
- Socios En Salud Sucursal Perú, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Perú
| | - B Tsogt
- Research and Innovation, Mongolian Anti-TB Coalition, Ulaanbaatar, Mongolia
| | - M M van der Zalm
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - H Welch
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, Department of Paediatrics, The University of Papua New Guinea School of Medicine and Health Sciences, Port Moresby, Papua New Guinea
| | - G B Migliori
- Respiratory Diseases Clinical Epidemiology Unit, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico, Tradate, Italy
| |
Collapse
|
7
|
Burusie A, Enquesilassie F, Salazar-Austin N, Addissie A. Epidemiology of childhood tuberculosis and predictors of death among children on tuberculosis treatment in central Ethiopia: an extended Cox model challenged survival analysis. BMC Public Health 2023; 23:1287. [PMID: 37403013 DOI: 10.1186/s12889-023-16183-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Childhood tuberculosis (TB) was poorly studied in Ethiopia. This study aimed to describe the epidemiology of childhood TB and identify predictors of death among children on TB treatment. METHODS This is a retrospective cohort study of children aged 16 and younger who were treated for TB between 2014 and 2022. Data were extracted from TB registers of 32 healthcare facilities in central Ethiopia. Phone interview was also conducted to measure variables without a space and not recorded in the registers. Frequency tables and a graph were used to describe the epidemiology of childhood TB. To perform survival analysis, we used a Cox proportional hazards model, which was then challenged with an extended Cox model. RESULTS We enrolled 640 children with TB, 80 (12.5%) of whom were under the age of two. Five hundred and fifty-seven (87.0%) of the enrolled children had not had known household TB contact. Thirty-six (5.6%) children died while being treated for TB. Nine (25%) of those who died were under the age of two. HIV infection (aHR = 4.2; 95% CI = 1.9-9.3), under nutrition (aHR = 4.2; 95% CI = 2.2-10.48), being under 10 years old (aHR = 4.1; 95% CI = 1.7-9.7), and relapsed TB (aHR = 3.7; 95% CI = 1.1-13.1) were all independent predictors of death. Children who were found to be still undernourished two months after starting TB treatment also had a higher risk of death (aHR = 5.64, 95% CI = 2.42-13.14) than normally nourished children. CONCLUSIONS The majority of children had no known pulmonary TB household contact implying that they contracted TB from the community. The death rate among children on TB treatment was unacceptably high, with children under the age of two being disproportionately impacted. HIV infection, baseline as well as persistent under nutrition, age < 10 years, and relapsed TB all increased the risk of death in children undergoing TB treatment.
Collapse
Affiliation(s)
- Abay Burusie
- Department of Public Health, College of Health Sciences, Arsi University, Asella, Ethiopia.
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Fikre Enquesilassie
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nicole Salazar-Austin
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adamu Addissie
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Kashyap B, Jhanjharia S, Saha R, Gomber S. Missed phenotypic drug resistance in pediatric tuberculosis: A cause of concern in a resource-limited setting. Indian J Tuberc 2023; 70 Suppl 1:S59-S64. [PMID: 38110261 DOI: 10.1016/j.ijtb.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Multi-drug resistance (MDR) in pediatric tuberculosis (TB) is a growing global threat. Unavailability of conventional or molecular drug susceptibility test (DST) in resource-limited settings often impede the determination of the extent of first line anti-tubercular drugs deployed in national programs. MATERIALS AND METHOD Pulmonary and extra pulmonary specimens were collected from clinically suspected pediatric TB cases, who were microbiologically confirmed. Resistance to first-line anti-TB was detected by 1% proportion method. KatG315 and inhA-15 genes were amplified by PCR and detection of mutations were done by sequencing. Genotypic resistance for rifampicin was detected by Xpert MTB/RIF assay (Cepheid Inc., Sunnyvale, California). RESULTS Fifty-one cases of pediatric tuberculosis were confirmed microbiologically. Resistance to isoniazid, streptomycin, rifampicin and ethambutol were 5 (14%), 4 (11%), 2 (5.5%) and 2 (5.5%) respectively by 1% proportion method. Genotypic Rifampicin and isoniazid resistance was found in 2 (5.5%) and 7 (14%) samples respectively. CONCLUSION Existing genotypic methods, detect targeted mutations conferring rifampicin resistance, however isoniazid (INH) resistance often go undetected. Since the resistance to pivotal anti-TB drugs are often encoded by multiple genes which may not be targeted by widely available molecular tests, discrepancies in molecular and culture-based DST reports should be interpreted with caution.
Collapse
Affiliation(s)
- Bineeta Kashyap
- Department of Microbiology, University College of Medical Sciences & Guru Teg Bahadur Hospital, Delhi, India.
| | - Sapna Jhanjharia
- Department of Microbiology, University College of Medical Sciences & Guru Teg Bahadur Hospital, Delhi, India
| | - Rituparna Saha
- Department of Microbiology, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Sunil Gomber
- Department of Pediatrics, University College of Medical Sciences & Guru Teg Bahadur Hospital, Delhi, India
| |
Collapse
|
9
|
Gafar F, Wasmann RE, McIlleron HM, Aarnoutse RE, Schaaf HS, Marais BJ, Agarwal D, Antwi S, Bang ND, Bekker A, Bell DJ, Chabala C, Choo L, Davies GR, Day JN, Dayal R, Denti P, Donald PR, Engidawork E, Garcia-Prats AJ, Gibb D, Graham SM, Hesseling AC, Heysell SK, Idris MI, Kabra SK, Kinikar A, Kumar AKH, Kwara A, Lodha R, Magis-Escurra C, Martinez N, Mathew BS, Mave V, Mduma E, Mlotha-Mitole R, Mpagama SG, Mukherjee A, Nataprawira HM, Peloquin CA, Pouplin T, Ramachandran G, Ranjalkar J, Roy V, Ruslami R, Shah I, Singh Y, Sturkenboom MGG, Svensson EM, Swaminathan S, Thatte U, Thee S, Thomas TA, Tikiso T, Touw DJ, Turkova A, Velpandian T, Verhagen LM, Winckler JL, Yang H, Yunivita V, Taxis K, Stevens J, Alffenaar JWC. Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents: a systematic review and individual patient data meta-analysis. Eur Respir J 2023; 61:2201596. [PMID: 36328357 PMCID: PMC9996834 DOI: 10.1183/13993003.01596-2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level. METHODS We systematically searched MEDLINE, Embase and Web of Science (1990-2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration-time curve from 0 to 24 h post-dose (AUC0-24) and peak plasma concentration (C max) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0-24 and C max were assessed with linear mixed-effects models. RESULTS Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0-24 were summarised for isoniazid (18.7 (95% CI 15.5-22.6) h·mg·L-1), rifampicin (34.4 (95% CI 29.4-40.3) h·mg·L-1), pyrazinamide (375.0 (95% CI 339.9-413.7) h·mg·L-1) and ethambutol (8.0 (95% CI 6.4-10.0) h·mg·L-1). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC0-24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0-24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0-24 and slow acetylators had higher isoniazid AUC0-24 than intermediate acetylators. Determinants of C max were generally similar to those for AUC0-24. CONCLUSIONS This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.
Collapse
Affiliation(s)
- Fajri Gafar
- University of Groningen, Groningen Research Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics, Groningen, The Netherlands
| | - Roeland E Wasmann
- University of Cape Town, Department of Medicine, Division of Clinical Pharmacology, Cape Town, South Africa
| | - Helen M McIlleron
- University of Cape Town, Department of Medicine, Division of Clinical Pharmacology, Cape Town, South Africa
- University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Cape Town, South Africa
| | - Rob E Aarnoutse
- Radboud University Medical Center, Radboud Institute of Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
| | - H Simon Schaaf
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu Tuberculosis Centre, Tygerberg, South Africa
| | - Ben J Marais
- The Children's Hospital at Westmead, Sydney, Australia
- The University of Sydney, Sydney Institute for Infectious Diseases, Sydney, Australia
| | - Dipti Agarwal
- Ram Manohar Lohia Institute of Medical Sciences, Department of Paediatrics, Lucknow, India
| | - Sampson Antwi
- Komfo Anokye Teaching Hospital, Department of Child Health, Kumasi, Ghana
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Department of Child Health, Kumasi, Ghana
| | | | - Adrie Bekker
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu Tuberculosis Centre, Tygerberg, South Africa
| | - David J Bell
- NHS Greater Glasgow and Clyde, Infectious Diseases Unit, Glasgow, UK
| | - Chishala Chabala
- University of Cape Town, Department of Medicine, Division of Clinical Pharmacology, Cape Town, South Africa
- University of Zambia, School of Medicine, Department of Paediatrics, Lusaka, Zambia
- University Teaching Hospitals - Children's Hospital, Lusaka, Zambia
| | - Louise Choo
- University College London, Medical Research Council Clinical Trials Unit, London, UK
| | - Geraint R Davies
- Malawi Liverpool Wellcome Clinical Research Programme, Clinical Department, Blantyre, Malawi
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Jeremy N Day
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- University of Oxford, Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Oxford, UK
| | - Rajeshwar Dayal
- Sarojini Naidu Medical College, Department of Pediatrics, Agra, India
| | - Paolo Denti
- University of Cape Town, Department of Medicine, Division of Clinical Pharmacology, Cape Town, South Africa
| | - Peter R Donald
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu Tuberculosis Centre, Tygerberg, South Africa
| | - Ephrem Engidawork
- Addis Ababa University, College of Health Sciences, School of Pharmacy, Department of Pharmacology and Clinical Pharmacy, Addis Ababa, Ethiopia
| | - Anthony J Garcia-Prats
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu Tuberculosis Centre, Tygerberg, South Africa
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Pediatrics, Madison, WI, USA
| | - Diana Gibb
- University College London, Medical Research Council Clinical Trials Unit, London, UK
| | - Stephen M Graham
- University of Melbourne, Department of Paediatrics and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- International Union Against Tuberculosis and Lung Disease, Paris, France
| | - Anneke C Hesseling
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu Tuberculosis Centre, Tygerberg, South Africa
| | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Misgana I Idris
- University of Alabama at Birmingham, Department of Biology, Birmingham, AL, USA
| | - Sushil K Kabra
- All India Institute of Medical Sciences, Departments of Pediatrics, New Delhi, India
| | - Aarti Kinikar
- Byramjee Jeejeebhoy Government Medical College - Johns Hopkins University Clinical Research Site, Pune, India
| | - Agibothu K Hemanth Kumar
- Indian Council of Medical Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Awewura Kwara
- University of Florida, Emerging Pathogens Institute, College of Medicine, Gainesville, FL, USA
| | - Rakesh Lodha
- All India Institute of Medical Sciences, Departments of Pediatrics, New Delhi, India
| | | | - Nilza Martinez
- Instituto Nacional de Enfermedades Respiratorias y Del Ambiente, Asunción, Paraguay
| | - Binu S Mathew
- Christian Medical College and Hospital, Department of Pharmacology and Clinical Pharmacology, Vellore, India
| | - Vidya Mave
- Byramjee Jeejeebhoy Government Medical College - Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins University, Department of Medicine and Infectious Diseases, Baltimore, MD, USA
| | - Estomih Mduma
- Haydom Lutheran Hospital, Center for Global Health Research, Haydom, Tanzania
| | | | | | - Aparna Mukherjee
- All India Institute of Medical Sciences, Departments of Pediatrics, New Delhi, India
| | - Heda M Nataprawira
- Universitas Padjadjaran, Hasan Sadikin Hospital, Faculty of Medicine, Department of Child Health, Division of Paediatric Respirology, Bandung, Indonesia
| | | | - Thomas Pouplin
- Mahidol University, Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Geetha Ramachandran
- Indian Council of Medical Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Jaya Ranjalkar
- Christian Medical College and Hospital, Department of Pharmacology and Clinical Pharmacology, Vellore, India
| | - Vandana Roy
- Maulana Azad Medical College, Department of Pharmacology, New Delhi, India
| | - Rovina Ruslami
- Universitas Padjadjaran, Faculty of Medicine, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Bandung, Indonesia
| | - Ira Shah
- Bai Jerbai Wadia Hospital for Children, Department of Pediatric Infectious Diseases, Pediatric TB Clinic, Mumbai, India
| | - Yatish Singh
- Sarojini Naidu Medical College, Department of Pediatrics, Agra, India
| | - Marieke G G Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Elin M Svensson
- Radboud University Medical Center, Radboud Institute of Health Sciences, Department of Pharmacy, Nijmegen, The Netherlands
- Uppsala University, Department of Pharmacy, Uppsala, Sweden
| | - Soumya Swaminathan
- Indian Council of Medical Research, National Institute for Research in Tuberculosis, Chennai, India
- World Health Organization, Public Health Division, Geneva, Switzerland
| | - Urmila Thatte
- Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Department of Clinical Pharmacology, Mumbai, India
| | - Stephanie Thee
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin, Germany
| | - Tania A Thomas
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Tjokosela Tikiso
- University of Cape Town, Department of Medicine, Division of Clinical Pharmacology, Cape Town, South Africa
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Anna Turkova
- University College London, Medical Research Council Clinical Trials Unit, London, UK
| | - Thirumurthy Velpandian
- All India Institute of Medical Sciences, Ocular Pharmacology and Pharmacy Division, Dr R.P. Centre, New Delhi, India
| | - Lilly M Verhagen
- Radboud University Medical Center, Radboud Center for Infectious Diseases, Laboratory of Medical Immunology, Section of Pediatric Infectious Diseases, Nijmegen, The Netherlands
- Radboud University Medical Center, Amalia Children's Hospital, Department of Paediatric Infectious Diseases and Immunology, Nijmegen, The Netherlands
- Stellenbosch University, Family Centre for Research with UBUNTU, Department of Paediatrics and Child Health, Cape Town, South Africa
| | - Jana L Winckler
- Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu Tuberculosis Centre, Tygerberg, South Africa
| | - Hongmei Yang
- University of Rochester, School of Medicine and Dentistry, Department of Biostatistics and Computational Biology, Rochester, NY, USA
| | - Vycke Yunivita
- Universitas Padjadjaran, Faculty of Medicine, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Bandung, Indonesia
| | - Katja Taxis
- University of Groningen, Groningen Research Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics, Groningen, The Netherlands
| | - Jasper Stevens
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- Both authors contributed equally and shared senior authorship
| | - Jan-Willem C Alffenaar
- The University of Sydney, Sydney Institute for Infectious Diseases, Sydney, Australia
- The University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia
- Westmead Hospital, Sydney, Australia
- Both authors contributed equally and shared senior authorship
| |
Collapse
|
10
|
Liang Z, Liao W, Chen Q, Li H, Ye M, Zou J, Deng G, Zhang P. Pharmacokinetics of Antituberculosis Drugs in Plasma and Cerebrospinal Fluid in a Patient with Pre-Extensive Drug Resistant Tuberculosis Meningitis. Infect Drug Resist 2023; 16:1669-1676. [PMID: 36992966 PMCID: PMC10041991 DOI: 10.2147/idr.s401281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
Drug-resistant tuberculous meningitis (TBM) is the most devastating and critical form of extrapulmonary tuberculosis. Here, we present a case of a 45-year-old male with pre-extensive drug-resistant tuberculosis meningitis (pre-XDR-TBM). He underwent emergency surgery for the long-tunneled external ventricular drainage (LTEVD). Molecular test and phenotypic drug sensitivity test (DST) of Mycobacterium tuberculosis in cerebrospinal fluid (CSF) showed that the isolate was resistant to both rifampin and fluoroquinolones. An anti-tuberculous regimen of isoniazid, pyrazinamide, cycloserine, moxifloxacin, clofazimine, and linezolid was tailored accordingly. We monitored the drug concentration in his plasma and CSF before (at 0-hour) and after anti-TB drugs administration (at 1-hour, 2-hour, 6-hour, and 12-hour) on 10th day after treatment initiation. We hope to provide reference values of drug exposures in plasma and CSF for patients with pre-XDR-TBM.
Collapse
Affiliation(s)
- Zhilin Liang
- Department of Pulmonary Medicine & Tuberculosis, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Weiming Liao
- Department of Thoracic Oncology, Jiangxi Provincial Cancer Hospital, Nanchang, People’s Republic of China
| | - Qifu Chen
- Department of Neurosurgery, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Hui Li
- Department of Pulmonary Medicine & Tuberculosis, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Meiling Ye
- Department of Pulmonary Medicine & Tuberculosis, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jin Zou
- Department of Clinical Laboratory, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Guofang Deng
- Department of Pulmonary Medicine & Tuberculosis, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Peize Zhang
- Department of Pulmonary Medicine & Tuberculosis, The Third People’s Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Correspondence: Peize Zhang; Guofang Deng, Tel +8613509650204; +8613530027001, Email ;
| |
Collapse
|
11
|
Ahmadpour E, Ebrahimzadeh A, Mortazavi-Moghaddam S, Pagheh A, Barac A. Tuberculous meningitis and miliary tuberculosis in Iran: A review. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.343880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|