1
|
İnkaya AÇ. Mpox: what sexual health physicians need to know? Int J Impot Res 2024; 36:556-561. [PMID: 39154147 DOI: 10.1038/s41443-024-00964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Monkeypox virus (MPXV) is another zoonotic virus spilled over to the man and resulted in pandemic. World Health Organization declared it as a 'Public Health Emergency of International Concern (PHEIC) on July 22, 2022. Mpox affected over 95226 individuals among them claimed the lives of 185. Despite the fact that Mpox is generally mild and self-limited, immunocompromised people with low CD4 counts may experience severe disease course. Management of Mpox patients has three pillars. First symptomatic approach includes pain management, prophylaxis for secondary infections and when needed effective treatment of superinfections. Second, vaccines developed against smallpox can be used in preexposure or postexposure prophylaxis strategies against Mpox. Third, current antiviral options include tecovirimat, cidofovir and birincidofovir all of which have been recommended relying on experience from animal studies, clinical case reports or case series. Results of well-planned randomized control trials are not available. Occupational exposure to MPXV is especially a manageable risk for health care workers. Prevention of Mpox also requires risk communication with vulnerable population and their involvement in mitigation efforts.
Collapse
Affiliation(s)
- Ahmet Çağkan İnkaya
- Hacettepe University Faculty of Medicine, Department of Infectious Diseases, Sihhiye, Ankara, 06230, Turkey.
| |
Collapse
|
2
|
Gu C, Huang Z, Sun Y, Shi S, Li X, Li N, Liu Y, Guo Z, Jin N, Zhao Z, Li X, Wang H. Characterization of Human Immortalized Keratinocyte Cells Infected by Monkeypox Virus. Viruses 2024; 16:1206. [PMID: 39205180 PMCID: PMC11359611 DOI: 10.3390/v16081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Monkeypox virus (MPXV) can induce systemic skin lesions after infection. This research focused on studying MPXV proliferation and the response of keratinocytes. Using transmission electron microscopy (TEM), we visualized different stages of MPXV development in human immortalized keratinocytes (HaCaT). We identified exocytosis of enveloped viruses as the exit mechanism for MPXV in HaCaT cells. Infected keratinocytes showed submicroscopic changes, such as the formation of vesicle-like structures through the recombination of rough endoplasmic reticulum membranes and alterations in mitochondrial morphology. Transcriptome analysis revealed the suppressed genes related to interferon pathway activation and the reduced expression of antimicrobial peptides and chemokines, which may facilitate viral immune evasion. In addition, pathway enrichment analysis highlighted systemic lupus erythematosus pathway activation and the inhibition of the Toll-like receptor signaling and retinol metabolism pathways, providing insights into the mechanisms underlying MPXV-induced skin lesions. This study advances our understanding of MPXV's interaction with keratinocytes and the complex mechanisms leading to skin lesions.
Collapse
Affiliation(s)
- Chaode Gu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (C.G.); (Z.H.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (C.G.); (Z.H.)
| | - Yongyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Shaowen Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xiubo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
| | - Yang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130118, China; (Y.S.); (S.S.); (X.L.); (N.L.); (Y.L.); (Z.G.); (N.J.)
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (C.G.); (Z.H.)
| |
Collapse
|
3
|
Meister TL, Frericks N, Kleinert RDV, Rodríguez E, Steinmann J, Todt D, Brown RJP, Steinmann E. Inactivation of yellow fever virus by WHO-recommended hand rub formulations and surface disinfectants. PLoS Negl Trop Dis 2024; 18:e0012264. [PMID: 38900788 PMCID: PMC11218936 DOI: 10.1371/journal.pntd.0012264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.
Collapse
Affiliation(s)
- Toni Luise Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Nicola Frericks
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | | | - Estefanía Rodríguez
- German Centre for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany
| |
Collapse
|
4
|
Li Y, Lv S, Zeng Y, Chen Z, Xia F, Zhang H, Dan D, Hu C, Tang Y, Yang Q, Ji Y, Lu J, Wang Z. Evaluation of Stability, Inactivation, and Disinfection Effectiveness of Mpox Virus. Viruses 2024; 16:104. [PMID: 38257804 PMCID: PMC10820592 DOI: 10.3390/v16010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Mpox virus (MPXV) infections have increased in many countries since May 2022, increasing demand for diagnostic tests and research on the virus. To ensure personnel safety, appropriate and reliable measures are needed to disinfect and inactivate infectious samples; Methods: We evaluated the stability of infectious MPXV cultures stored at different temperatures and through freeze-thaw cycles. Heat physical treatment (56 °C, 70 °C, 95 °C), chemical treatment (beta-propiolactone (BPL)) and two commercialized disinfectants (Micro-Chem Plus (MCP) and ethanol) were tested against infectious MPXV cultures; Results: The results indicated that MPXV stability increases with lower temperatures. The MPXV titer was stable within three freeze-thaw cycles and only decreased by 1.04 log10 (lg) 50% cell culture infective dose (CCID50) per milliliter (12.44%) after twelve cycles. MPXV could be effectively inactivated at 56 °C for 40 min, 70 °C for 10 min, and 95 °C for 5 min. For BPL inactivation, a 1:1000 volume ratio (BPL:virus) could also effectively inactivate MPXV. A total of 2% or 5% MCP and 75% ethanol treated with MPXV for at least 1 min could reduce >4.25 lg; Conclusions: MPXV shows high stability to temperature and freeze-thaw. Heat and BPL treatments are effective for the inactivation of MPXV, while MCP and ethanol are effective for disinfection, which could help laboratory staff operate the MPXV under safer conditions and improve operational protocols.
Collapse
Affiliation(s)
- Yuwei Li
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Shiyun Lv
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Yan Zeng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Zhuo Chen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Fei Xia
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Hao Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Demiao Dan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Chunxia Hu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Yi Tang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Qiao Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
| | - Yaqi Ji
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
| | - Jia Lu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430200, China; (Y.L.); (S.L.); (Y.Z.); (Z.C.); (F.X.); (H.Z.); (D.D.); (C.H.); (Y.T.); (Q.Y.); (Y.J.)
- State Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan 430200, China
| |
Collapse
|
5
|
Taha AM, Katamesh BE, Hassan AR, Abdelwahab OA, Rustagi S, Nguyen D, Silva-Cajaleon K, Rodriguez-Morales AJ, Mohanty A, Bonilla-Aldana DK, Sah R. Environmental detection and spreading of mpox in healthcare settings: a narrative review. Front Microbiol 2023; 14:1272498. [PMID: 38179458 PMCID: PMC10764434 DOI: 10.3389/fmicb.2023.1272498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Monkeypox virus (MPXV), which causes Monkeypox (Mpox), has recently been found outside its usual geographic distribution and has spread to 117 different nations. The World Health Organization (WHO) designated the epidemic a Public Health Emergency of International Concern (PHEIC). Humans are at risk from MPXV's spread, which has raised concerns, particularly in the wake of the SARS-CoV-2 epidemic. The risk of virus transmission may rise due to the persistence of MPXV on surfaces or in wastewater. The risk of infection may also increase due to insufficient wastewater treatment allowing the virus to survive in the environment. To manage the infection cycle, it is essential to investigate the viral shedding from various lesions, the persistence of MPXV on multiple surfaces, and the length of surface contamination. Environmental contamination may contribute to virus persistence and future infection transmission. The best possible infection control and disinfection techniques depend on this knowledge. It is thought to spread mainly through intimate contact. However, the idea of virus transmission by environmental contamination creates great concern and discussion. There are more cases of environmental surfaces and wastewater contamination. We will talk about wastewater contamination, methods of disinfection, and the present wastewater treatment in this review as well as the persistence of MPXV on various environmental surfaces.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, United States
| | - Basant E. Katamesh
- Faculty of Medicine, Tanta University, Tanta, Egypt
- Mayo Clinic, Rochester, MN, United States
| | | | - Omar Ahmed Abdelwahab
- Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, United States
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Dang Nguyen
- Massachusetts General Hospital, Corrigan Minehan Heart Center and Harvard Medical School, Boston, MA, United States
| | | | - Alfonso J. Rodriguez-Morales
- Faculty of Environmental Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de lasAméricas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, India
| |
Collapse
|
6
|
Meister TL, Brüggemann Y, Todt D, Tao R, Müller L, Steinmann J, Steinmann J, Timm J, Drexler I, Steinmann E. Stability and Inactivation of Monkeypox Virus on Inanimate Surfaces. J Infect Dis 2023; 228:1227-1230. [PMID: 37129073 PMCID: PMC10629702 DOI: 10.1093/infdis/jiad127] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
The spread of nonzoonotic monkeypox virus (MPXV) infections necessitates the reevaluation of hygiene measures. To date, only limited data are available on MPXV surface stability. Here, we evaluate the stability of infectious MPXV on stainless steel stored at different temperatures, while using different interfering substances to mimic environmental contamination. MPXV persistence increased with decreasing temperature. Additionally, we were able to show that MPXV could efficiently be inactivated by alcohol- and aldehyde-based surface disinfectants. These findings underline the stability of MPXV on inanimate surfaces and support the recommendations to use alcohol-based disinfectants as prevention measures or in outbreak situations.
Collapse
Affiliation(s)
- Toni Luise Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum
- European Virus Bioinformatics Center, Jena
| | - Ronny Tao
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, Düsseldorf
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, Düsseldorf
| | - Jochen Steinmann
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Bremen
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nuremberg
- Institute of Medical Microbiology, University Hospital of Essen, Essen
| | - Joerg Timm
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, Düsseldorf
| | - Ingo Drexler
- Institute of Virology, Medical Faculty, Heinrich-Heine-University, Düsseldorf
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum
- German Centre for Infection Research, External Partner Site Bochum, Germany
| |
Collapse
|
7
|
Meister TL, Friesland M, Frericks N, Wetzke M, Haid S, Steinmann J, Todt D, Pietschmann T, Steinmann E. Virucidal activity of oral, hand, and surface disinfectants against respiratory syncytial virus. J Hosp Infect 2023; 141:25-32. [PMID: 37625461 DOI: 10.1016/j.jhin.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is known as a major cause of respiratory tract infection in adults and children. Human-to-human transmission occurs via droplets as well as direct and indirect contact (e.g. contaminated surfaces or hands of medical staff). Therefore, applicable hygiene measures and knowledge about viral inactivation are of utmost importance. AIM To elucidate the disinfection profile of RSV. METHODS The study evaluated the virucidal efficacy of oral rinses specifically designed for children, World Health Organization (WHO)-recommended hand-rub formulations, and ethanol, as well as 2-propanol against RSV in a quantitative suspension test (EN14476). The stability of RSV on stainless steel discs was assessed and its inactivation by different surface disinfectants (EN16777) investigated. FINDINGS All tested oral rinses except one reduced infectious viral titres to the lower limit of quantification. The two WHO-recommended hand-rub formulations as well as 30% ethanol and 2-propanol completely abolished the detection of infectious virus. Infectious RSV was recovered after several days on stainless steel discs. However, RSV was efficiently inactivated by all tested surface disinfectants based on alcohol, aldehyde, or hydrogen peroxide. CONCLUSION Oral rinses, all tested hand-rub formulations as well as surface inactivation reagents were sufficient for RSV inactivation in vitro.
Collapse
Affiliation(s)
- T L Meister
- Department for Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - M Friesland
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - N Frericks
- Department for Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - M Wetzke
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | - S Haid
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - J Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nuremberg, Germany; Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - D Todt
- Department for Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - T Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - E Steinmann
- Department for Molecular & Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
8
|
Yinda CK, Morris DH, Fischer RJ, Gallogly S, Weishampel ZA, Port JR, Bushmaker T, Schulz JE, Bibby K, van Doremalen N, Lloyd-Smith JO, Munster VJ. Stability of Monkeypox Virus in Body Fluids and Wastewater. Emerg Infect Dis 2023; 29:2065-2072. [PMID: 37735747 PMCID: PMC10521604 DOI: 10.3201/eid2910.230824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
An outbreak of human mpox infection in nonendemic countries appears to have been driven largely by transmission through body fluids or skin-to-skin contact during sexual activity. We evaluated the stability of monkeypox virus (MPXV) in different environments and specific body fluids and tested the effectiveness of decontamination methodologies. MPXV decayed faster at higher temperatures, and rates varied considerably depending on the medium in which virus was suspended, both in solution and on surfaces. More proteinaceous fluids supported greater persistence. Chlorination was an effective decontamination technique, but only at higher concentrations. Wastewater was more difficult to decontaminate than plain deionized water; testing for infectious MPXV could be a helpful addition to PCR-based wastewater surveillance when high levels of viral DNA are detected. Our findings suggest that, because virus stability is sufficient to support environmental MPXV transmission in healthcare settings, exposure and dose-response will be limiting factors for those transmission routes.
Collapse
|