1
|
Gharib A, Marquez C, Meseguer-Beltran M, Sanchez-Sarasua S, Sanchez-Perez AM. Abscisic acid, an evolutionary conserved hormone: Biosynthesis, therapeutic and diagnostic applications in mammals. Biochem Pharmacol 2024; 229:116521. [PMID: 39251140 DOI: 10.1016/j.bcp.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Abscisic acid (ABA), a phytohormone traditionally recognized for its role in plant stress responses, has recently emerged as a significant player in mammalian defense mechanisms. Like plants, various mammalian cell types synthesize ABA in response to specific health challenges, although the precise pathways remain not fully elucidated. ABA is associated with the regulation of inflammation and insulin signaling, prompting extensive research into its potential as a therapeutic agent for various diseases. ABA exerts its effects through its receptors, particularly PPAR-γ and LANCL-2, which serve as signaling hubs regulating numerous pathways. Through these interactions, ABA profoundly impacts mammalian health, and new ABA targets continue to be identified. Numerous studies in animal models demonstrate ABA's benefit in managing conditions such as neurological and psychiatric disorders, cancer, and malaria infections, all of which involve significant inflammatory dysregulation. In this manuscript we review the studies covering ABA synthesis and release in cell cultures, the signaling pathways regulated by ABA, and how these impact health in preclinical models. Furthermore, we highlight recent research suggesting that measuring ABA levels in human body fluids could serve as a useful biomarker for pathological conditions, providing insights into disease progression and treatment efficacy. This comprehensive review outlines the current understanding of ABA in mammalian pathophysiology, identifying gaps in knowledge, particularly concerning ABA biosynthesis and metabolism in mammals. In addition, this study emphasizes the need for clinical trials to validate the effectiveness of ABA-based therapies and its reliability as a biomarker for various diseases.
Collapse
Affiliation(s)
- Amir Gharib
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain; Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Carlee Marquez
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain
| | - Maria Meseguer-Beltran
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain
| | - Sandra Sanchez-Sarasua
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain; CNRS UMR 5293, Institut Des Maladies Neurodégénératives, Centre Paul Broca-Nouvelle Aquitaine, University of Bordeaux, Bordeaux, France.
| | - Ana M Sanchez-Perez
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain.
| |
Collapse
|
2
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|