1
|
Arita Y, Kwee TC, Akin O, Shigeta K, Paudyal R, Roest C, Ueda R, Lema-Dopico A, Nalavenkata S, Ruby L, Nissan N, Edo H, Yoshida S, Shukla-Dave A, Schwartz LH. Multiparametric MRI and artificial intelligence in predicting and monitoring treatment response in bladder cancer. Insights Imaging 2025; 16:7. [PMID: 39747744 PMCID: PMC11695553 DOI: 10.1186/s13244-024-01884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Bladder cancer is the 10th most common and 13th most deadly cancer worldwide, with urothelial carcinomas being the most common type. Distinguishing between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is essential due to significant differences in management and prognosis. MRI may play an important diagnostic role in this setting. The Vesical Imaging Reporting and Data System (VI-RADS), a multiparametric MRI (mpMRI)-based consensus reporting platform, allows for standardized preoperative muscle invasion assessment in BCa with proven diagnostic accuracy. However, post-treatment assessment using VI-RADS is challenging because of anatomical changes, especially in the interpretation of the muscle layer. MRI techniques that provide tumor tissue physiological information, including diffusion-weighted (DW)- and dynamic contrast-enhanced (DCE)-MRI, combined with derived quantitative imaging biomarkers (QIBs), may potentially overcome the limitations of BCa evaluation when predominantly focusing on anatomic changes at MRI, particularly in the therapy response setting. Delta-radiomics, which encompasses the assessment of changes (Δ) in image features extracted from mpMRI data, has the potential to monitor treatment response. In comparison to the current Response Evaluation Criteria in Solid Tumors (RECIST), QIBs and mpMRI-based radiomics, in combination with artificial intelligence (AI)-based image analysis, may potentially allow for earlier identification of therapy-induced tumor changes. This review provides an update on the potential of QIBs and mpMRI-based radiomics and discusses the future applications of AI in BCa management, particularly in assessing treatment response. CRITICAL RELEVANCE STATEMENT: Incorporating mpMRI-based quantitative imaging biomarkers, radiomics, and artificial intelligence into bladder cancer management has the potential to enhance treatment response assessment and prognosis prediction. KEY POINTS: Quantitative imaging biomarkers (QIBs) from mpMRI and radiomics can outperform RECIST for bladder cancer treatments. AI improves mpMRI segmentation and enhances radiomics feature extraction effectively. Predictive models integrate imaging biomarkers and clinical data using AI tools. Multicenter studies with strict criteria validate radiomics and QIBs clinically. Consistent mpMRI and AI applications need reliable validation in clinical practice.
Collapse
Affiliation(s)
- Yuki Arita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Thomas C Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keisuke Shigeta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Urology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Roest
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Alfonso Lema-Dopico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sunny Nalavenkata
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Ruby
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noam Nissan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiromi Edo
- Department of Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Soichiro Yoshida
- Department of Urology, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence H Schwartz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Ahn H. Current Status of Magnetic Resonance Imaging Use in Bladder Cancer. Invest Radiol 2025; 60:72-83. [PMID: 39110851 DOI: 10.1097/rli.0000000000001099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
ABSTRACT Bladder cancer (BC) is a significant global health concern, with over 500,000 new cases and 200,000 deaths annually, emphasizing the need for accurate staging and effective management. Traditional diagnostic techniques, such as cystoscopy and transurethral resection, are fundamental but have limitations in accurately assessing the depth of invasion. These limitations include the possibility of understaging and procedural variability, which can significantly impact treatment decisions. This review focuses on the role of multiparametric magnetic resonance imaging (mpMRI) in the diagnosis and staging of BC, particularly emphasizing the Vesical Imaging-Reporting and Data System (VI-RADS) framework. By enhancing interpretive consistency and diagnostic accuracy, mpMRI and VI-RADS offer detailed visualization of tumor characteristics and depth of invasion, while reducing the need for more invasive traditional methods. These advancements not only improve staging accuracy but also enhance treatment planning, underscoring the importance of advanced imaging in evolving BC management and positively influencing patient outcomes.
Collapse
Affiliation(s)
- Hyungwoo Ahn
- From the Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
3
|
Dehghanpour A, Pecoraro M, Messina E, Laschena L, Borrelli A, Novelli S, Santini D, Simone G, Girometti R, Panebianco V. Diagnostic accuracy and inter-reader agreement of the nacVI-RADS for bladder cancer treated with neoadjuvant chemotherapy: a prospective validation study. Eur Radiol 2024:10.1007/s00330-024-11327-w. [PMID: 39738561 DOI: 10.1007/s00330-024-11327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/28/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVE The primary aim was to determine the performance of neoadjuvant chemotherapy VI-RADS (nacVI-RADS) in predicting response to systemic therapy in patients with MIBC and to evaluate its inter-reader agreement. MATERIALS AND METHODS Prospective study, including patients with non-metastatic muscle-invasive bladder cancer (MIBC) who underwent neoadjuvant chemotherapy before radical cystectomy (RC). Patients underwent pre- and post-treatment MRI. Radiological response was evaluated by two experienced radiologists using nacVI-RADS scoring system. Reference standard was defined using histopathological findings. Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy were calculated to assess nacVI-RADS performance for each reader. Inter-reader agreement was determined with Cohen's k statistics. RESULTS Fifty-five patients with non-metastatic MIBC, 46 males (84%) and 9 females (16%) with a median age of 69 (interquartile range (IQR) 66-72 years) were enrolled. Diagnostic performance of nacVI-RADS in detecting complete response to neoadjuvant chemotherapy showed a sensitivity of 76.5-85.3% and specificity of 76.2-81%. The area under the curve was 0.93 (95% CI: 0.86-0.99) for detecting any residual tissue, for the more experienced reader. Inter-reader agreement was optimal with a K of 0.85. In the multivariable logistic regression model, the variables showing independent correlation with response prediction to neoadjuvant therapy were nacVI-RADS score (p = 0.01 for the more experienced reader) and tumor regression grade (TRG; p < 0.001). CONCLUSION NacVI-RADS scoring system offers a reliable and reproducible approach, employing a well-structured and easily interpretable method, to assess the response to systemic therapy in patients with MIBC. KEY POINTS Question There is a lack of a standardized approach to distinguish between responders and non-responders to neoadjuvant chemotherapy for muscle-invasive bladder cancer. Findings The neoadjuvant chemotherapy VI-RADS (nacVI-RADS) score diagnostic performance for detecting complete response to neoadjuvant chemotherapy showed 85.3% sensitivity, 81% specificity, and an AUC of 0.93. Clinical relevance NacVI-RADS score represents a valid predictor of response to neoadjuvant systemic therapy, impacting therapeutic decision-making and improving overall patients' management.
Collapse
Affiliation(s)
- Ailin Dehghanpour
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Martina Pecoraro
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Emanuele Messina
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Ludovica Laschena
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Antonella Borrelli
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Simone Novelli
- Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Italy
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Daniele Santini
- Division of Medical Oncology A, Policlinico Umberto I, Rome, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Giuseppe Simone
- Department of Urology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Rossano Girometti
- Institute of Radiology, Department of Medicine, University of Udine, University Hospital S. Maria della Misericordia, Udine, Italy
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy.
| |
Collapse
|
4
|
Takeuchi M, Higaki A, Kojima Y, Ono K, Maruhisa T, Yokoyama T, Watanabe H, Yamamoto A, Tamada T. Comparative analysis of image quality and diagnostic performance among SS-EPI, MS-EPI, and rFOV DWI in bladder cancer. Jpn J Radiol 2024:10.1007/s11604-024-01694-1. [PMID: 39548050 DOI: 10.1007/s11604-024-01694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE To compare image quality and diagnostic performance among SS-EPI diffusion weighted imaging (DWI), multi-shot (MS) EPI DWI, and reduced field-of-view (rFOV) DWI for muscle-invasive bladder cancer (MIBC). MATERIALS AND METHODS This retrospective study included 73 patients with bladder cancer who underwent multiparametric MRI in our referral center between August 2020 and February 2023. Qualitative image assessment was performed in 73; and quantitative assessment was performed in 66 patients with maximum lesion diameter > 10 mm. The diagnostic performance of the imaging finding of muscle invasion was evaluated in 47 patients with pathological confirmation of MIBC. T2-weighted imaging, SS-EPI DWI, MS-EPI DWI, rFOV DWI, and dynamic contrast-enhanced imaging were acquired with 3 T-MRI. Qualitative image assessment was performed by three readers who rated anatomical distortion, clarity of bladder wall, and lesion conspicuity using a four-point scale. Quantitative assessment included calculation of SNR and CNR, and grading of the presence of muscle layer invasion according to the VI-RADS diagnostic criteria. Wilcoxon matched pairs signed rank test was used to compare qualitative and quantitative image quality. McNemar test and receiver-operating characteristic analysis were used to compare diagnostic performance. RESULTS Anatomical distortion was less in MS-EPI DWI, rFOV DWI, and SS-EPI DWI, in that order with significant difference. Clarity of bladder wall was greater for MS-EPI DWI, SS-EPI DWI, and rFOV DWI, in that order. There were significant differences between any two combinations of the three DWI types, except between SS-EPI DWI and MS-EPI in Reader 1. Lesion conspicuity, diagnostic performance, SNR and CNR were not significantly different among the three DWI types. CONCLUSIONS Among the three DWI sequences evaluated, MS-EPI DWI showed the least anatomical distortion and superior bladder wall delineation but no improvement in diagnostic performance for MIBC. MS-EPI DWI may be considered for additional imaging if SS-EPI DWI is of poor quality.
Collapse
Affiliation(s)
- Mitsuru Takeuchi
- Department of Radiology, Radiolonet Tokai, Nagoya, Japan.
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Atsushi Higaki
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yuichi Kojima
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Kentaro Ono
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takuma Maruhisa
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takatoshi Yokoyama
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroyuki Watanabe
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akira Yamamoto
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Tsutomu Tamada
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
5
|
Panebianco V, Briganti A, Boellaard TN, Catto J, Comperat E, Efstathiou J, van der Heijden AG, Giannarini G, Girometti R, Mertens L, Takeuchi M, Muglia VF, Narumi Y, Novara G, Pecoraro M, Roupret M, Sanguedolce F, Santini D, Shariat SF, Simone G, Vargas HA, Woo S, Barentsz J, Witjes JA. Clinical application of bladder MRI and the Vesical Imaging-Reporting and Data System. Nat Rev Urol 2024; 21:243-251. [PMID: 38036666 DOI: 10.1038/s41585-023-00830-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
Diagnostic work-up and risk stratification in patients with bladder cancer before and after treatment must be refined to optimize management and improve outcomes. MRI has been suggested as a non-invasive technique for bladder cancer staging and assessment of response to systemic therapy. The Vesical Imaging-Reporting And Data System (VI-RADS) was developed to standardize bladder MRI image acquisition, interpretation and reporting and enables accurate prediction of muscle-wall invasion of bladder cancer. MRI is available in many centres but is not yet recommended as a first-line test for bladder cancer owing to a lack of high-quality evidence. Consensus-based evidence on the use of MRI-VI-RADS for bladder cancer care is needed to serve as a benchmark for formulating guidelines and research agendas until further evidence from randomized trials becomes available.
Collapse
Affiliation(s)
- Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy.
| | - Alberto Briganti
- Unit of Urology/Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Thierry N Boellaard
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - James Catto
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Eva Comperat
- Department of Pathology, Sorbonne University, Assistance Publique-Hôpitaux de Paris, Hopital Tenon, Paris, France
| | - Jason Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Gianluca Giannarini
- Urology Unit, Academic Medical Centre "Santa Maria della Misericordia", Udine, Italy
| | - Rossano Girometti
- Institute of Radiology, Academic Medical Centre "Santa Maria della Misericordia", Udine, Italy
| | - Laura Mertens
- Department of Surgical Oncology (Urology), Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Valdair F Muglia
- Department of Medical Images, Radiation Therapy and Oncohematology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Giacomo Novara
- Department of Surgery, Oncology, and Gastroenterology - Urology Clinic, University of Padua, Padua, Italy
| | - Martina Pecoraro
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Morgan Roupret
- Department of Urology, Sorbonne University, AP-HP, Pitié Salpétrière Hospital, Paris, France
| | - Francesco Sanguedolce
- Department of Urology, Fundació Puigvert, Autonomous University of Barcelona, Barcelona, Spain
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Daniele Santini
- Division of Medical Oncology A, Policlinico Umberto I, Rome, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Shahrokh F Shariat
- Department of Urology, Teaching Hospital Motol and 2nd Faculty of Medicine, Charles University Praha, Prague, Czech Republic
- Department of Urology, Comprehensive Cancer Center, Medical University Vienna, Vienna General Hospital, Vienna, Austria
| | - Giuseppe Simone
- IRCCS "Regina Elena" National Cancer Institute, Department of Urology, Rome, Italy
| | - Hebert A Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jelle Barentsz
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - J Alfred Witjes
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Huang Y, Liao C, Shen Z, Zou Y, Xie W, Gan Q, Yao Y, Zheng J, Kong J. A bibliometric insight into neoadjuvant chemotherapy in bladder cancer: trends, collaborations, and future avenues. Front Immunol 2024; 15:1297542. [PMID: 38444854 PMCID: PMC10912866 DOI: 10.3389/fimmu.2024.1297542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background Neoadjuvant chemotherapy (NAC) followed by radical cystectomy (RC) remains the cornerstone of treatment for muscle-invasive bladder cancer (MIBC). While platinum-based regimens have demonstrated benefits in tumor downstaging and improved long-term survival for selected patients, they may pose risks for those who are ineligible or unresponsive to chemotherapy. Objective We undertook a bibliometric analysis to elucidate the breadth of literature on NAC in bladder cancer, discern research trajectories, and underscore emerging avenues of investigation. Methods A systematic search of the Web of Science Core Collection (WoSCC) was conducted to identify articles pertaining to NAC in bladder cancer from 1999 to 2022. Advanced bibliometric tools, such as VOSviewer, CiteSpace, and SCImago Graphica, facilitated the examination and depicted the publication trends, geographic contributions, institutional affiliations, journal prominence, author collaborations, and salient keywords, emphasizing the top 25 citation bursts. Results Our analysis included 1836 publications spanning 1999 to 2022, indicating a growing trend in both annual publications and citations related to NAC in bladder cancer. The United States emerged as the predominant contributor in terms of publications, citations, and international collaborations. The University of Texas was the leading institution in publication output. "Urologic Oncology Seminars and Original Investigations" was the primary publishing journal, while "European Urology" boasted the highest impact factor. Shariat, Shahrokh F., and Grossman, H.B., were identified as the most prolific and co-cited authors, respectively. Keyword analysis revealed both frequency of occurrence and citation bursts, highlighting areas of concentrated study. Notably, the integration of immunochemotherapy is projected to experience substantial growth in forthcoming research. Conclusions Our bibliometric assessment provides a panoramic view of the research milieu surrounding neoadjuvant chemotherapy for bladder cancer, encapsulating the present state, evolving trends, and potential future directions, with a particular emphasis on the promise of immunochemotherapy.
Collapse
Affiliation(s)
- Yi Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chengxiao Liao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zefeng Shen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yitong Zou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weibin Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qinghua Gan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuhui Yao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - JunJiong Zheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
He K, Meng X, Wang Y, Feng C, Liu Z, Li Z, Niu Y. Progress of Multiparameter Magnetic Resonance Imaging in Bladder Cancer: A Comprehensive Literature Review. Diagnostics (Basel) 2024; 14:442. [PMID: 38396481 PMCID: PMC10888296 DOI: 10.3390/diagnostics14040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) has been proven to be an indispensable imaging method in bladder cancer, and it can accurately identify muscular invasion of bladder cancer. Multiparameter MRI is a promising tool widely used for preoperative staging evaluation of bladder cancer. Vesical Imaging-Reporting and Data System (VI-RADS) scoring has proven to be a reliable tool for local staging of bladder cancer with high accuracy in preoperative staging, but VI-RADS still faces challenges and needs further improvement. Artificial intelligence (AI) holds great promise in improving the accuracy of diagnosis and predicting the prognosis of bladder cancer. Automated machine learning techniques based on radiomics features derived from MRI have been utilized in bladder cancer diagnosis and have demonstrated promising potential for practical implementation. Future work should focus on conducting more prospective, multicenter studies to validate the additional value of quantitative studies and optimize prediction models by combining other biomarkers, such as urine and serum biomarkers. This review assesses the value of multiparameter MRI in the accurate evaluation of muscular invasion of bladder cancer, as well as the current status and progress of its application in the evaluation of efficacy and prognosis.
Collapse
Affiliation(s)
- Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Xiaoyan Meng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Yanchun Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Cui Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China (X.M.); (Z.L.)
| | - Yonghua Niu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Akin O, Lema-Dopico A, Paudyal R, Konar AS, Chenevert TL, Malyarenko D, Hadjiiski L, Al-Ahmadie H, Goh AC, Bochner B, Rosenberg J, Schwartz LH, Shukla-Dave A. Multiparametric MRI in Era of Artificial Intelligence for Bladder Cancer Therapies. Cancers (Basel) 2023; 15:5468. [PMID: 38001728 PMCID: PMC10670574 DOI: 10.3390/cancers15225468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
This review focuses on the principles, applications, and performance of mpMRI for bladder imaging. Quantitative imaging biomarkers (QIBs) derived from mpMRI are increasingly used in oncological applications, including tumor staging, prognosis, and assessment of treatment response. To standardize mpMRI acquisition and interpretation, an expert panel developed the Vesical Imaging-Reporting and Data System (VI-RADS). Many studies confirm the standardization and high degree of inter-reader agreement to discriminate muscle invasiveness in bladder cancer, supporting VI-RADS implementation in routine clinical practice. The standard MRI sequences for VI-RADS scoring are anatomical imaging, including T2w images, and physiological imaging with diffusion-weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI). Physiological QIBs derived from analysis of DW- and DCE-MRI data and radiomic image features extracted from mpMRI images play an important role in bladder cancer. The current development of AI tools for analyzing mpMRI data and their potential impact on bladder imaging are surveyed. AI architectures are often implemented based on convolutional neural networks (CNNs), focusing on narrow/specific tasks. The application of AI can substantially impact bladder imaging clinical workflows; for example, manual tumor segmentation, which demands high time commitment and has inter-reader variability, can be replaced by an autosegmentation tool. The use of mpMRI and AI is projected to drive the field toward the personalized management of bladder cancer patients.
Collapse
Affiliation(s)
- Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alfonso Lema-Dopico
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | | | | | - Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lubomir Hadjiiski
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin C. Goh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bernard Bochner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Rosenberg
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lawrence H. Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| |
Collapse
|
9
|
Panebianco V. VI-RADS for the diagnosis and management of urinary bladder cancer. Eur Radiol 2023; 33:7209-7211. [PMID: 37106110 DOI: 10.1007/s00330-023-09677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Affiliation(s)
- Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Zong R, Ma X, Shi Y, Geng L. The assessment of pathological response to neoadjuvant chemotherapy in muscle-invasive bladder cancer patients with DCE-MRI and DWI: a systematic review and meta-analysis. Br J Radiol 2023; 96:20230239. [PMID: 37660472 PMCID: PMC10546436 DOI: 10.1259/bjr.20230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE The purpose of this meta-analysis was to determine the value of dynamic contrast-enhanced-MRI (DCE-MRI) and diffusion-weighted imaging (DWI) in evaluating the pathological response of muscle invasive bladder cancer (MIBC) to neoadjuvant chemotherapy (NAC), and further indirectly compare the diagnostic performance of DCE-MRI and DWI. METHODS Literatures associated to DCE-MRI and DWI in the evaluation of pathological response of MIBC to NAC were searched from PubMed, Cochrane Library, web of science, and EMBASE databases. The quality assessment of diagnostic accuracy studies 2 tool was used to assess the quality of studies. Pooled sensitivity (SE), specificity (SP), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the receiver operating characteristic curves (AUC) with their 95% confidence intervals (CIs) were calculated to evaluate the diagnostic performance of DCE-MRI and DWI in predicting the pathological response to NAC in patients with MIBC. RESULTS There were 11 studies involved, 6 of which only underwent DCE- MRI examination, 4 of which only underwent DWI examination, and 1 of which underwent both DCE- MRI and DWI examination. The pooled SE, SP, PLR, NLR, DOR of DCE-MRI were 0.88 (95% CI: 0.78-0.93), 0.88 (95% CI: 0.67-0.96), 7.4 (95% CI: 2.3-24.2), 0.14 (95% CI: 0.07-0.27), and 53 (95% CI: 10-288), respectively. The pooled SE, SP, PLR, NLR, DOR of DWI were 0.83 (95% CI: 0.75-0.88), 0.88 (95% CI: 0.81-0.93), 7.1 (95% CI: 4.3-11.7), 0.20 (95% CI: 0.14-0.28), and 36 (95% CI:18-73), respectively. The AUCs of SROC curve for DCE-MRI and DWI were 0.93 (95% CI: 0.91-0.95) and 0.92 (95% CI: 0.89-0.94), respectively. There were no significant differences between DWI and DCE-MRI for SE, SP, and AUC. CONCLUSION This meta-analysis demonstrated high diagnostic performance of both DCE-MRI and DWI in predicting the pathological response to NAC in MIBC. DWI might be a potential substitute for DCE-MRI, with no significant difference in diagnostic performance between the two. However, caution should be taken when applying our results, as our results were based on indirect comparison. ADVANCES IN KNOWLEDGE No previous studies have comprehensively analysed the value of DCE-MRI and DWI in evaluating the pathological response to NAC in MIBC. According to the current study, both DCE-MRI and DWI yielded high diagnostic performance, with the AUCs of 0.93 and 0.92, respectively. Indirect comparison no significant difference in the diagnostic performanceof DCE-MRI and DWI.
Collapse
Affiliation(s)
- Ruilong Zong
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Xijuan Ma
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Yibing Shi
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, 221000, China
| | - Li Geng
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Miyagi H, Kwenda E, Ramnaraign BH, Chatzkel JA, Brisbane WG, O’Malley P, Crispen PL. Predicting Complete Response to Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2022; 15:168. [PMID: 36612164 PMCID: PMC9817944 DOI: 10.3390/cancers15010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Muscle-invasive bladder cancer is a life-threatening disease best managed with multimodal therapy. Neoadjuvant chemotherapy prior to cystectomy significantly improves survival with the greatest benefit noted in patients with a complete pathologic response noted at cystectomy. While radical cystectomy is currently an important part of the treatment plan, surgical morbidity remains high. Accurate prediction of complete responses to chemotherapy would enable avoiding the morbidity of radical cystectomy. Multiple clinical, pathologic, molecular, and radiographic predictors have been evaluated. Clinical and standard pathologic findings have not been found to be accurate predictors of complete response. To date, tumor genomic findings have been the most promising and have led to multiple clinical trials to evaluate if bladder preservation is possible in select patients. Radiomics has shown initial promise with larger validation series needed. These predictors can be further characterized as treatment specific and non-treatment specific. With the potential changing landscape of neoadjuvant therapy prior to radical cystectomy and the limitations of individual predictors of a complete response, a panel of several biomarkers may enhance patient selection for bladder preservation. The aim of this review is to summarize predictors of complete response to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Hiroko Miyagi
- Department of Urology, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Kwenda
- Department of Urology, University of Florida, Gainesville, FL 32611, USA
| | | | | | - Wayne G. Brisbane
- Department of Urology, University of Florida, Gainesville, FL 32611, USA
| | - Padraic O’Malley
- Department of Urology, University of Florida, Gainesville, FL 32611, USA
| | - Paul L. Crispen
- Department of Urology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Yang X, Yuan B, Zhang Y, Zhuang J, Cai L, Wu Q, Cao Q, Li P, Lu Q, Sun X. Quantitative Multiparametric MRI as a Promising Tool for the Assessment of Early Response to Neoadjuvant Chemotherapy in Bladder Cancer. Eur J Radiol 2022; 157:110587. [DOI: 10.1016/j.ejrad.2022.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
|
13
|
The use of MRI in urothelial carcinoma. Curr Opin Urol 2022; 32:536-544. [DOI: 10.1097/mou.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Nicola R, Pecoraro M, Lucciola S, Dos Reis RB, Narumi Y, Panebianco V, Muglia VF. VI-RADS score system - A primer for urologists. Int Braz J Urol 2022; 48:609-622. [PMID: 35195385 PMCID: PMC9306377 DOI: 10.1590/s1677-5538.ibju.2021.0560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BCa) is one of the most common cancers worldwide and is also considered to be one of the most relapsing and aggressive neoplasms. About 30% of patients will present with muscle invasive disease, which is associated with a higher risk for metastatic disease. The aim of this article is to review the state of art imaging in Radiology, while providing a complete guide to urologists, with case examples, for the rationale of the development of the Vesical Imaging Reporting and Data System (VI-RADS), a scoring system emphasizing a standardized approach to multiparametric Magnetic Resonance Imaging (mpMRI) acquisition, interpretation, and reporting for BCa. Also, we examine relevant external validation studies and the consolidated literature of mpMRI for bladder cancer. In addition, this article discusses some of the potential clinical implications of this scoring system for disease management and follow-up.
Collapse
Affiliation(s)
- Refky Nicola
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Martina Pecoraro
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy
| | - Sara Lucciola
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy
| | - Rodolfo Borges Dos Reis
- Departamento de Cirurgia, Divisão de Urologia - Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP, Brasil
| | | | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy
| | - Valdair Francisco Muglia
- Departamento de Imagens Médicas, Oncologia e Hematologia - Divisão de Imagem, Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP, Brasil
| |
Collapse
|
15
|
Zhang X, Wang Y, Zhang J, Zhang L, Wang S, Chen Y. Development of a MRI-Based Radiomics Nomogram for Prediction of Response of Patients With Muscle-Invasive Bladder Cancer to Neoadjuvant Chemotherapy. Front Oncol 2022; 12:878499. [PMID: 35646654 PMCID: PMC9132152 DOI: 10.3389/fonc.2022.878499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To develop and evaluate the performance of a magnetic resonance imaging (MRI)-based radiomics nomogram for prediction of response of patients with muscle-invasive bladder cancer (MIBC) to neoadjuvant chemotherapy (NAC). Methods A total of 70 patients with clinical T2-4aN0M0 MIBC were enrolled in this retrospective study. For each patient, 1316 radiomics features were extracted from T2-weighted images (T2WI), diffusion-weighted images (DWI), and apparent diffusion coefficient (ADC) maps. The variance threshold algorithm and the Student's t-test or the Mann-Whitney U test were applied to select optimal features. Multivariate logistic regression analysis was used to eliminate irrelevant features, and the retained features were incorporated into the final single-modality radiomics model. Combined radiomic models were generated by combining single-modality radiomics models. A radiomics nomogram, incorporating radiomics signatures and independent clinical risk factors, was developed to determine whether the performance of the model in predicting tumor response to NAC could be further improved. Results Based on pathological T stage post-surgery, 36 (51%) patients were classified as good responders (GR) and 34 (49%) patients as non-good responders (non-GR). In addition, 3 single-modality radiomics models and 4 combined radiomics models were established. Among all radiomics models, the combined radiomics model based on T2WI_Score, DWI_Score, and ADC_Score yielded the highest area under the receiver operating characteristics curve (AUC) (0.967, 95% confidence interval (CI): 0.930-0.995). A radiomics nomogram, integrating the clinical T stage and 3 single-modality radiomics models, yielded a higher AUC (0.973, 95%CI: 0.934-0.998) than other combined radiomics models. Conclusion The proposed MRI-based radiomics nomogram has the potential to be used as a non-invasive tool for the quantitatively prediction of tumor response to NAC in patients with MIBC.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yichen Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianyu Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sicong Wang
- Magnetic Resonance Imaging Research, General Electric Healthcare, Beijing, China
| | - Yan Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Zhang X, Wang Y, Zhang J, Xu X, Zhang L, Zhang M, Xie L, Shou J, Chen Y. Muscle-invasive bladder cancer: pretreatment prediction of response to neoadjuvant chemotherapy with diffusion-weighted MR imaging. Abdom Radiol (NY) 2022; 47:2148-2157. [PMID: 35306580 DOI: 10.1007/s00261-022-03455-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To investigate the usefulness of diffusion-weighted MR imaging with ADC value and histogram analysis of ADC in the prediction of response to neoadjuvant chemotherapy (NAC) in patients with muscle-invasive bladder cancer (MIBC). METHODS Fifty-eight consecutive patients with clinical T2-4aN0M0 MIBC who underwent MRI before and after NAC were enrolled in the prospective study. The evaluation of response to NAC was based on the pathologic T (pT) stage after surgery. Patients with non-muscle-invasive residual cancer (pTa, pTis, pT1) were defined as responders, while those with muscle-invasive residual cancer (≥ pT2) were defined as non-responders. The ADC value measured from a single-section region of interest and ADC histogram parameters derived from whole-tumor volume of interest in responder and non-responder were compared using the Mann-Whitney U test or independent samples t test. ROC curve analysis was used to evaluate the diagnostic performance of ADC value and ADC histogram parameters in predicting the response to NAC. RESULTS The pretreatment ADC value of responders ([1.33 (± 0.21)] × 10-3mm2/s) was significantly higher than that of non-responders ([1.09 (± 0.08)] × 10-3mm2/s) (P < .001). Most of the pretreatment ADC histogram parameters (Mean, 10th, 25th, 50th, 75th, and 90th percentiles) of responders were significantly higher than that of non-responders (P < .001). The AUC was highest for the pretreatment ADC value (0.88; 95% confidence interval: 0.77, 0.95; P < .001). CONCLUSION Diffusion-weighted MR imaging with ADC value and histogram analysis of ADC are useful to predict NAC response in patients with MIBC.
Collapse
|
17
|
Chen H, Hong Y, Yu B, Ruiqian L, Jun L, Hongyi W, Ziyong W, Haiyang J, Chongjian Z, Ying B, Qilin W. Retrospective analysis of bladder cancer morphology and depth of invasion under cystoscopy. BMC Urol 2022; 22:12. [PMID: 35101015 PMCID: PMC8802509 DOI: 10.1186/s12894-022-00958-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The pathological diagnosis of bladder cancer workup relies on cystoscopy, however, due to sampling restriction, the depth of local invasion is often understaged. METHODS A total of 386 patients with bladder urothelial carcinoma underwent follow-up. The data collected included age, sex, tumor size, surgical options, histologic grade, invasive depth, lymph node metastasis, and oncological outcomes, and the patients were divided into coral-like and crumb-like groups. These data were analyzed with the chi-square test, binary logistic regression, Kaplan-Meier analysis, univariable and multivariable logistic regression and Spearman correlation test. RESULTS Bladder tumor morphology was moderately correlated with invasion depth (ρ = 0.492, p < 0.001; Spearman correlation), which was associated with invasion status (HR = 8.27; 95% CI 4.3-15.79, p < 0.001). Tumor morphology was not an independent factor for OS but was associated with PFS. Outer invasion depth was an independent factor that was significantly associated with inferior OS and PFS. CONCLUSIONS Tumor morphology (coral-like and crumb-like) under cystoscopy was related to the depth of invasion. The outer invasive depth of BC was an independent factor that was significantly associated with inferior OS and PFS.
Collapse
Affiliation(s)
- Hu Chen
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Yang Hong
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China.
| | - Bai Yu
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Li Ruiqian
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Li Jun
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Wu Hongyi
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Wang Ziyong
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Jiang Haiyang
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Zhang Chongjian
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Bi Ying
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Wang Qilin
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| |
Collapse
|
18
|
Rouprêt M, Pignot G, Masson-Lecomte A, Compérat E, Audenet F, Roumiguié M, Houédé N, Larré S, Brunelle S, Xylinas E, Neuzillet Y, Méjean A. [French ccAFU guidelines - update 2020-2022: bladder cancer]. Prog Urol 2021; 30:S78-S135. [PMID: 33349431 DOI: 10.1016/s1166-7087(20)30751-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE - To update French guidelines for the management of bladder cancer specifically non-muscle invasive (NMIBC) and muscle-invasive bladder cancers (MIBC). METHODS - A Medline search was achieved between 2018 and 2020, notably regarding diagnosis, options of treatment and follow-up of bladder cancer, to evaluate different references with levels of evidence. RESULTS - Diagnosis of NMIBC (Ta, T1, CIS) is based on a complete deep resection of the tumor. The use of fluorescence and a second-look indication are essential to improve initial diagnosis. Risks of both recurrence and progression can be estimated using the EORTC score. A stratification of patients into low, intermediate and high risk groups is pivotal for recommending adjuvant treatment: instillation of chemotherapy (immediate post-operative, standard schedule) or intravesical BCG (standard schedule and maintenance). Cystectomy is recommended in BCG-refractory patients. Extension evaluation of MIBC is based on contrast-enhanced pelvic-abdominal and thoracic CT-scan. Multiparametric MRI can be an alternative. Cystectomy associated with extended lymph nodes dissection is considered the gold standard for non-metastatic MIBC. It should be preceded by cisplatin-based neoadjuvant chemotherapy in eligible patients. An orthotopic bladder substitution should be proposed to both male and female patients with no contraindication and in cases of negative frozen urethral samples; otherwise transileal ureterostomy is recommended as urinary diversion. All patients should be included in an Early Recovery After Surgery (ERAS) protocol. For metastatic MIBC, first-line chemotherapy using platin is recommended (GC or MVAC), when performans status (PS <1) and renal function (creatinine clearance >60 mL/min) allow it (only in 50% of cases). In second line treatment, immunotherapy with pembrolizumab demonstrated a significant improvement in overall survival. CONCLUSION - These updated French guidelines will contribute to increase the level of urological care for the diagnosis and treatment of patients diagnosed with NMIBC and MIBC.
Collapse
Affiliation(s)
- M Rouprêt
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Sorbonne Université, GRC n° 5, Predictive onco-uro, AP-HP, hôpital Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - G Pignot
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, Institut Paoli-Calmettes, 232, boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - A Masson-Lecomte
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital Saint-Louis, Université Paris-Diderot, 10, avenue de Verdun, 75010 Paris, France
| | - E Compérat
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'anatomie pathologique, hôpital Tenon, HUEP, Sorbonne Université, GRC n° 5, ONCOTYPE-URO, 4, rue de la Chine, 75020 Paris, France
| | - F Audenet
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital Foch, Université de Versailles - Saint-Quentin-en-Yvelines, 40, rue Worth, 92150 Suresnes, France
| | - M Roumiguié
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Département d'urologie, CHU Rangueil, 1, avenue du Professeur-Jean-Poulhès, 31400 Toulouse, France
| | - N Houédé
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Département d'oncologie médicale, CHU Carémeau, Université de Montpellier, rue du Professeur-Robert-Debré, 30900 Nîmes, France
| | - S Larré
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, CHU de Reims, rue du Général Koenig, 51100 Reims, France
| | - S Brunelle
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service de radiologie, Institut Paoli-Calmettes, 232, boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - E Xylinas
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital Bichat-Claude-Bernard, Assistance publique-Hôpitaux de Paris, Université Paris-Descartes, 46, rue Henri-Huchard, 75018 Paris, France
| | - Y Neuzillet
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, CHU de Reims, rue du Général Koenig, 51100 Reims, France
| | - A Méjean
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, Maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital européen Georges-Pompidou, AP-HP, Université de Paris, 20, rue Leblanc, 75015 Paris, France
| |
Collapse
|
19
|
Ahmed SA, Taher MGA, Ali WA, Ebrahem MAES. Diagnostic performance of contrast-enhanced dynamic and diffusion-weighted MR imaging in the assessment of tumor response to neoadjuvant therapy in muscle-invasive bladder cancer. Abdom Radiol (NY) 2021; 46:2712-2721. [PMID: 33547919 DOI: 10.1007/s00261-021-02963-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/12/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the diagnostic performance of DCE MRI and DWI in the assessment of pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in patients with muscle-invasive bladder cancer (MIBC). METHODS This prospective study included 90 patients with MIBC who finished NAC. Two radiologists independently assessed MRI for the determination of semi-quantitative parameters (wash-in rate and wash-out rate) and apparent diffusion coefficient (ADC) value. The correlation between pCR and wash-in rate, wash-out rate, ADC value were analyzed. The area under the ROC curve (AUC) was used to evaluate the diagnostic performance for detecting pCR. Inter-reader agreement was assessed using the ICC statistics. RESULTS On cystectomy specimens, pCR was confirmed in (43.3%, 39/90). pCR is negatively correlated with wash-out rate (r = - 0.701, p = 0.01) and ADC value (r = - 0.621, p = 0.01). ADC value is positively correlated with wash-out rate (r = 0.631, p = 0.001). The diagnostic accuracy of ADC value (cut-off value: 0.911 × 10-3mm2/s) and wash-out rate (cut-off value: 0.677 min-1) in the identification of pCR was (92% for reader 1, 91% for reader 2), and (90% for reader 1, 88% for reader 2), respectively. The sensitivity, specificity for predicting pCR using ADC value + washout rate cut off values were 95.4%, 97.7% for reader 1, and 96%, 97% for reader 2, respectively. AUC was 0.981 for reader 1, 0.971 for reader 2. The overall reproducibility of the mean ADC value and wash out rate was excellent (ICC = 0.83-0.90). The ICC values for the mean ADC value, washout rate was 0.89 (95% CI 0.84-0.89) and 0.87 (95% CI 0.86-0.91), respectively. CONCLUSION Semi-quantitative parameter (wash-out) derived from DCE-MRI and ADC has the potential to assess the tumor's complete pathologic response. The two parameters using together can offer the best possibility to identify complete response to NAC in MIBC.
Collapse
|
20
|
Abouelkheir RT, Abdelhamid A, Abou El-Ghar M, El-Diasty T. Imaging of Bladder Cancer: Standard Applications and Future Trends. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57030220. [PMID: 33804350 PMCID: PMC8000909 DOI: 10.3390/medicina57030220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
The evolution in imaging has had an increasing role in the diagnosis, staging and follow up of bladder cancer. Conventional cystoscopy is crucial in the diagnosis of bladder cancer. However, a cystoscopic procedure cannot always depict carcinoma in situ (CIS) or differentiate benign from malignant tumors prior to biopsy. This review will discuss the standard application, novel imaging modalities and their additive role in patients with bladder cancer. Staging can be performed with CT, but distinguishing between T1 and T2 BCa (bladder cancer) cannot be assessed. MRI can distinguish muscle-invasive from non-muscle-invasive tumors with accurate local staging. Vesical Imaging-Reporting and Data System (VI-RADS) score is a new diagnostic modality used for the prediction of tumor aggressiveness and therapeutic response. Bone scintigraphy is recommended in patients with muscle-invasive BCa with suspected bony metastases. CT shows low sensitivity for nodal staging; however, PET (Positron Emission Tomography)/CT is superior and highly recommended for restaging and determining therapeutic effect. PET/MRI is a new imaging technique in bladder cancer imaging and its role is promising. Texture analysis has shown significant steps in discriminating low-grade from high-grade bladder cancer. Radiomics could be a reliable method for quantitative assessment of the muscle invasion of bladder cancer.
Collapse
|
21
|
Séguier D, Puech P, Kool R, Dernis L, Gabert H, Kassouf W, Villers A, Marcq G. Multiparametric magnetic resonance imaging for bladder cancer: a comprehensive systematic review of the Vesical Imaging-Reporting and Data System (VI-RADS) performance and potential clinical applications. Ther Adv Urol 2021; 13:17562872211039583. [PMID: 34457041 PMCID: PMC8392809 DOI: 10.1177/17562872211039583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/28/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The Vesical Imaging-Reporting and Data System (VI-RADS) score is a novel standardized approach to image and report bladder cancer (BC) with multiparametric MRI (mpMRI). OBJECTIVES To describe and evaluate the performance of the VI-RADS score using mpMRI and assess its potential clinical applications and limitations. METHODS A systematic review was conducted using the MEDLINE and EMBASE electronic bibliographic databases between June 2020 and December 2020. All reports deemed relevant to describe the VI-RADS score and assess its performance and applications were retrieved. Results presentation stands as narrative, purely descriptive synthesis based on aggregate studies data. RESULTS A total of 20 relevant studies were retrieved: three meta-analyses, five prospective studies, and twelve retrospective studies. The retrospective studies covered 1676 patients, while the prospective studies included a total number of 468 patients. Pooled sensitivity, specificity to differentiate muscle-invasive from non-muscle-invasive bladder cancer, ranged from 74.1% to 97.3%, and 77% to 100%, respectively. The chosen VI-RADS score thresholds for this discrimination varied across studies. The interreader agreement ranged from 0.73 to 0.95. Currently, the potential clinical applications of VI-RADS consist of initial BC risk stratification, assessment of neoadjuvant therapies response, and bladder sparing approaches, although further validation is required. CONCLUSIONS The VI-RADS score helps to discriminate muscle invasive from non-muscle invasive BC with good performance and reproducibility. A simple algorithm based on four basic questions may enhance its popularization. Further studies are required to validate the clinical applications.
Collapse
Affiliation(s)
- Denis Séguier
- Urology Department, Claude Huriez Hospital, CHU Lille, Lille, Hauts-de-France, France
| | - Philippe Puech
- Univ. Lille, Inserm, CHU Lille, Department of Radiology, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, Lille, France
| | - Ronald Kool
- Division of Urology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Léa Dernis
- Department of Radiology, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, Lille, France
| | - Héléna Gabert
- Urology Department, Claude Huriez Hospital, CHU Lille, Lille, Hauts-de-France, France
| | - Wassim Kassouf
- Division of Urology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Arnauld Villers
- Urology Department, Claude Huriez Hospital, CHU Lille, Lille, Hauts-de-France, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Gautier Marcq
- Lille University, School of Medicine, Urology Department, Claude Huriez Hospital, CHRU Lille, LILLE Cedex, France Researcher - PhD Candidate, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Lille University, School of Medicine, Urology Department, Claude Huriez Hospital, CHRU Lille, LILLE Cedex, France
- Researcher - PhD Candidate, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
22
|
Panebianco V, Pecoraro M, Del Giudice F, Takeuchi M, Muglia VF, Messina E, Cipollari S, Giannarini G, Catalano C, Narumi Y. VI-RADS for Bladder Cancer: Current Applications and Future Developments. J Magn Reson Imaging 2020; 55:23-36. [PMID: 32939939 DOI: 10.1002/jmri.27361] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BCa) is among the ten most frequent cancers globally. It is the tumor with the highest lifetime treatment-associated costs, and among the tumors with the heaviest impacts on postoperative quality of life. The purpose of this article is to review the current applications and future perspectives of the Vesical Imaging Reporting and Data System (VI-RADS). VI-RADS is a newly developed scoring system aimed at standardization of MRI acquisition, interpretation, and reporting for BCa. An insight will be given on the BCa natural history, current MRI applications for local BCa staging with assessment of muscle invasiveness, and clinical implications of the score for disease management. Future applications include risk stratification of nonmuscle invasive BCa, surveillance, and prediction and monitoring of therapy response. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza/Policlinico Umberto I, Rome, Italy
| | - Martina Pecoraro
- Department of Radiological Sciences, Oncology and Pathology, Sapienza/Policlinico Umberto I, Rome, Italy
| | - Francesco Del Giudice
- Department of Maternal-Infant and Urological Sciences, Sapienza/Policlinico Umberto I, Rome, Italy
| | | | - Valdair F Muglia
- Department of Medical Images, Radiation Therapy and Oncohematology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Emanuele Messina
- Department of Radiological Sciences, Oncology and Pathology, Sapienza/Policlinico Umberto I, Rome, Italy
| | - Stefano Cipollari
- Department of Radiological Sciences, Oncology and Pathology, Sapienza/Policlinico Umberto I, Rome, Italy
| | - Gianluca Giannarini
- Urology Unit, Academic Medical Centre "Santa Maria della Misericordia", Udine, Italy
| | - Carlo Catalano
- Department of Radiological Sciences, Oncology and Pathology, Sapienza/Policlinico Umberto I, Rome, Italy
| | | |
Collapse
|
23
|
Rouprêt M, Neuzillet Y, Pignot G, Compérat E, Audenet F, Houédé N, Larré S, Masson-Lecomte A, Colin P, Brunelle S, Xylinas E, Roumiguié M, Méjean A. French ccAFU guidelines – Update 2018–2020: Bladder cancer. Prog Urol 2020; 28:R48-R80. [PMID: 32093463 DOI: 10.1016/j.purol.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Objective To propose updated French guidelines for non-muscle invasive (NMIBC) and muscle-invasive (MIBC) bladder cancers. Methods A Medline search was achieved between 2015 and 2018, as regards diagnosis, options of treatment and follow-up of bladder cancer, to evaluate different references with levels of evidence. Results Diagnosis of NMIBC (Ta, T1, CIS) is based on a complete deep resection of the tumor. The use of fluorescence and a second-look indication are essential to improve initial diagnosis. Risks of both recurrence and progression can be estimated using the EORTC score. A stratification of patients into low, intermediate and high risk groups is pivotal for recommending adjuvant treatment: instillation of chemotherapy (immediate post-operative, standard schedule) or intravesical BCG (standard schedule and maintenance). Cystectomy is recommended in BCG-refractory patients. Extension evaluation of MIBC is based on contrast-enhanced pelvic-abdominal and thoracic CT-scan. Multiparametric MRI can be an alternative. Cystectomy associated with extended lymph nodes dissection is considered the gold standard for non-metastatic MIBC. It should be preceded by cisplatin-based neoadjuvant chemotherapy in eligible patients. An orthotopic bladder substitution should be proposed to both male and female patients with no contraindication and in cases of negative frozen urethral samples; otherwise transileal ureterostomy is recommended as urinary diversion. All patients should be included in an Early Recovery After Surgery (ERAS) protocol. For metastatic MIBC, first-line chemotherapy using platin is recommended (GC or MVAC), when performans status (PS < 1) and renal function (creatinine clearance > 60 mL/min) allow it (only in 50 % of cases). In second line treatment, immunotherapy with pembrolizumab demonstrated a significant improvement in overall survival. Conclusion These updated French guidelines will contribute to increase the level of urological care for the diagnosis and treatment for NMIBC and MIBC.
Collapse
Affiliation(s)
- M Rouprêt
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,GRC no 5, ONCOTYPE-URO, hôpital Pitié-Salpêtrière, Sorbonne université, AP–HP, 75013 Paris, France
| | - Y Neuzillet
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital Foch, université de Versailles-Saint-Quentin-en-Yvelines, 92150 Suresnes, France
| | - G Pignot
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service de chirurgie oncologique 2, institut Paoli-Calmettes, 13008 Marseille, France
| | - E Compérat
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’anatomie pathologique, GRC no 5, ONCOTYPE-URO, hôpital Tenon, HUEP, Sorbonne université, AP-HP, 75020 Paris, France
| | - F Audenet
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP–HP, 75015 Paris, France
| | - N Houédé
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Département d’oncologie médicale, CHU Caremaux, Montpellier université, 30000 Nîmes, France
| | - S Larré
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, CHU de Reims, Reims, 51100 France
| | - A Masson-Lecomte
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital Saint-Louis, université Paris-Diderot, AP–HP, 75010 Paris, France
| | - P Colin
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital privé de la Louvière, 59800 Lille, France
| | - S Brunelle
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service de radiologie, institut Paoli-Calmettes, 13008 Marseille, France
| | - E Xylinas
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie de l’hôpital Bichat-Claude-Bernard, université Paris-Descartes, AP–HP, 75018 Paris, France
| | - M Roumiguié
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Département d’urologie, CHU Rangueil, Toulouse, 31000 France
| | - A Méjean
- Comité de cancérologie de l’Association française d’urologie, groupe vessie, maison de l’urologie, 11, rue Viète, 75017 Paris, France,Service d’urologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP–HP, 75015 Paris, France
| |
Collapse
|
24
|
Motterle G, Andrews JR, Morlacco A, Karnes RJ. Predicting Response to Neoadjuvant Chemotherapy in Bladder Cancer. Eur Urol Focus 2020; 6:642-649. [DOI: 10.1016/j.euf.2019.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
|
25
|
Abstract
OBJECTIVE. The purpose of this article is to review the natural history and management of bladder cancer, with insight into MRI applications for the assessment of muscle invasiveness of bladder cancer using the newly developed Vesical Imaging Reporting and Data System (VI-RADS) score. CONCLUSION. Multiparametric MRI and the VI-RADS score have been consistently validated across several different institutions as appropriate tools for local staging of bladder cancer and have been proven to contribute to the diagnostic workup and management of urinary bladder cancer.
Collapse
|
26
|
Caglic I, Panebianco V, Vargas HA, Bura V, Woo S, Pecoraro M, Cipollari S, Sala E, Barrett T. MRI of Bladder Cancer: Local and Nodal Staging. J Magn Reson Imaging 2020; 52:649-667. [PMID: 32112505 DOI: 10.1002/jmri.27090] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Accurate staging of bladder cancer (BC) is critical, with local tumor staging directly influencing management decisions and affecting prognosis. However, clinical staging based on clinical examination, including cystoscopy and transurethral resection of bladder tumor (TURBT), often understages patients compared to final pathology at radical cystectomy and lymph node (LN) dissection, mainly due to underestimation of the depth of local invasion and the presence of LN metastasis. MRI has now become established as the modality of choice for the local staging of BC and can be additionally utilized for the assessment of regional LN involvement and tumor spread to the pelvic bones and upper urinary tract (UUT). The recent development of the Vesical Imaging-Reporting and Data System (VI-RADS) recommendations has led to further improvements in bladder MRI, enabling standardization of image acquisition and reporting. Multiparametric magnetic resonance imaging (mpMRI) incorporating morphological and functional imaging has been proven to further improve the accuracy of primary and recurrent tumor detection and local staging, and has shown promise in predicting tumor aggressiveness and monitoring response to therapy. These sequences can also be utilized to perform radiomics, which has shown encouraging initial results in predicting BC grade and local stage. In this article, the current state of evidence supporting MRI in local, regional, and distant staging in patients with BC is reviewed. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2 J. Magn. Reson. Imaging 2020;52:649-667.
Collapse
Affiliation(s)
- Iztok Caglic
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Valeria Panebianco
- Department of Radiological, Oncological and Anatomo-pathological sciences, "Sapienza University", Rome, Italy
| | - Hebert A Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vlad Bura
- Department of Radiology, County Clinical Emergency Hospital, Cluj-Napoca, Romania
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Martina Pecoraro
- Department of Radiological, Oncological and Anatomo-pathological sciences, "Sapienza University", Rome, Italy
| | - Stefano Cipollari
- Department of Radiological, Oncological and Anatomo-pathological sciences, "Sapienza University", Rome, Italy
| | - Evis Sala
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Bedeutung der VI-RADS-Klassifikation für die Bildgebung beim Harnblasenkarzinom – Stand der Dinge. Urologe A 2019; 58:1443-1450. [DOI: 10.1007/s00120-019-01061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part II). Mol Diagn Ther 2019; 23:27-51. [PMID: 30387041 DOI: 10.1007/s40291-018-0367-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present era of precision medicine sees "cancer" as a consequence of molecular derangements occurring at the commencement of the disease process, with morphological changes happening much later in the process of tumourigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound (US) and magnetic resonance imaging (MRI) play an integral role in the detection of disease at the macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumourigenesis. MFI has the potential to play a key role in heralding the transition from the concept of "one-size-fits-all" treatment to "precision medicine". Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called "radiogenomics", which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning and artificial intelligence, the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, the majority of these require validation before clinical translation is possible. In this two part review, we discuss the systematic collaboration across structural, anatomical and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
|
29
|
Wang H, Luo C, Zhang F, Guan J, Li S, Yao H, Chen J, Luo J, Chen L, Guo Y. Multiparametric MRI for Bladder Cancer: Validation of VI-RADS for the Detection of Detrusor Muscle Invasion. Radiology 2019; 291:668-674. [PMID: 31012814 DOI: 10.1148/radiol.2019182506] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The Vesical Imaging-Reporting and Data System (VI-RADS) scoring system was created in 2018 to standardize imaging and reporting of bladder cancer staging with multiparametric MRI. The system provides a five-point VI-RADS score, which suggests the likelihood of detrusor muscle invasion. Muscle-invasive disease carries a worse prognosis and requires radical surgery. Purpose To determine the performance of the VI-RADS score in detecting muscle-invasive bladder cancer in a cohort of patients undergoing multiparametric MRI before surgery. Materials and Methods In this retrospective study, a total of 340 patients with bladder cancer were identified from a database of consecutive patients undergoing multiparametric MRI from November 2011 to August 2018. The tumor with the largest burden was selected in those patients with multifocal tumors. Bladder tumors were retrospectively categorized according to the VI-RADS five-point scoring system by two readers, independently and in consensus, who were blinded to histologic findings. The VI-RADS score was compared with postoperative pathology for each tumor, and the performance of VI-RADS for determining detrusor muscle invasion was analyzed by using the Cochran-Armitage test. Results Among the 340 patients, there were 296 men and 44 women; the median age was 64.0 years (interquartile range [IQR], 57.0-87.0 years). Of 340 tumors, 255 (75.0%) were verified as non-muscle-invasive and 85 (25.0%) as muscle-invasive bladder cancer. Both the VI-RADS score and its components were associated with muscle-invasive condition (P < .001). The area under the receiver operating characteristic curve for VI-RADS for muscle invasion was 0.94 (95% confidence interval [CI]: 0.90, 0.98). The sensitivity and specificity of a VI-RADS score of 3 or greater were 87.1% (95% CI: 78%, 93%) and 96.5% (95% CI: 93%, 98%), respectively. Conclusion The Vesical Imaging-Reporting and Data System score effectively defines the likelihood of detrusor muscle invasion in bladder cancer and should be considered for evaluation of tumors prior to surgery. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Margolis and Hu in this issue.
Collapse
Affiliation(s)
- Huanjun Wang
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Cheng Luo
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Fan Zhang
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Jian Guan
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Shurong Li
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Haohua Yao
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Junxing Chen
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Junhang Luo
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Lingwu Chen
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| | - Yan Guo
- From the Departments of Radiology (H.W., J.G., S.L., Y.G.) and Urology (C.L., H.Y., J.C., J.L., L.C.), The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, PR China; and Department of Radiology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, PR China (F.Z.)
| |
Collapse
|
30
|
Rouprêt M, Neuzillet Y, Pignot G, Compérat E, Audenet F, Houédé N, Larré S, Masson-Lecomte A, Colin P, Brunelle S, Xylinas E, Roumiguié M, Méjean A. RETRACTED: Recommandations françaises du Comité de Cancérologie de l’AFU — Actualisation 2018—2020 : tumeurs de la vessie French ccAFU guidelines — Update 2018—2020: Bladder cancer. Prog Urol 2018; 28:S46-S78. [PMID: 30366708 DOI: 10.1016/j.purol.2018.07.283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). Cet article est retiré de la publication à la demande des auteurs car ils ont apporté des modifications significatives sur des points scientifiques après la publication de la première version des recommandations. Le nouvel article est disponible à cette adresse: doi:10.1016/j.purol.2019.01.006. C’est cette nouvelle version qui doit être utilisée pour citer l’article. This article has been retracted at the request of the authors, as it is not based on the definitive version of the text because some scientific data has been corrected since the first issue was published. The replacement has been published at the doi:10.1016/j.purol.2019.01.006. That newer version of the text should be used when citing the article.
Collapse
Affiliation(s)
- M Rouprêt
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Sorbonne université, GRC no5, ONCOTYPE-URO, hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France.
| | - Y Neuzillet
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital Foch, université de Versailles-Saint-Quentin-en-Yvelines, 92150 Suresnes, France
| | - G Pignot
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service de chirurgie oncologique 2, institut Paoli-Calmettes, 13008 Marseille, France
| | - E Compérat
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'anatomie pathologique, hôpital Tenon, HUEP, Sorbonne université, GRC no5, ONCOTYPE-URO, 75020 Paris, France
| | - F Audenet
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP-HP, 75015 Paris, France
| | - N Houédé
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Département d'oncologie médicale, CHU Caremaux, Montpellier université, 30000 Nîmes, France
| | - S Larré
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, CHU de Reims, Reims, 51100 France
| | - A Masson-Lecomte
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital Saint-Louis, université Paris-Diderot, 75010 Paris, France
| | - P Colin
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital privé de la Louvière, 59800 Lille, France
| | - S Brunelle
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service de radiologie, institut Paoli-Calmettes, 13008 Marseille, France
| | - E Xylinas
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie de l'hôpital Bichat-Claude-Bernard, université Paris-Descartes, Assistance publique-Hôpitaux de Paris, 75018 Paris, France
| | - M Roumiguié
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Département d'urologie, CHU Rangueil, Toulouse, 31000 France
| | - A Méjean
- Comité de cancérologie de l'Association française d'urologie, groupe vessie, maison de l'urologie, 11, rue Viète, 75017 Paris, France; Service d'urologie, hôpital européen Georges-Pompidou, université Paris Descartes, AP-HP, 75015 Paris, France
| |
Collapse
|
31
|
Panebianco V, Narumi Y, Altun E, Bochner BH, Efstathiou JA, Hafeez S, Huddart R, Kennish S, Lerner S, Montironi R, Muglia VF, Salomon G, Thomas S, Vargas HA, Witjes JA, Takeuchi M, Barentsz J, Catto JWF. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur Urol 2018; 74:294-306. [PMID: 29755006 PMCID: PMC6690492 DOI: 10.1016/j.eururo.2018.04.029] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 01/10/2023]
Abstract
CONTEXT Management of bladder cancer (BC) is primarily driven by stage, grade, and biological potential. Knowledge of each is derived using clinical, histopathological, and radiological investigations. This multimodal approach reduces the risk of error from one particular test, but may present a staging dilemma when results conflict. Multiparametric magnetic resonance imaging (mpMRI) may improve patient care through imaging of the bladder with better resolution of the tissue planes than computed tomography and without radiation exposure. OBJECTIVE To define a standardized approach to imaging and reporting mpMRI for BC, by developing a VI-RADS score. EVIDENCE ACQUISITION We created VI-RADS (Vesical Imaging-Reporting And Data System) through consensus using existing literature. EVIDENCE SYNTHESIS We describe standard imaging protocols and reporting criteria (including size, location, multiplicity, and morphology) for bladder mpMRI. We propose a five-point VI-RADS score, derived using T2-weighted MRI, diffusion-weighted imaging, and dynamic contrast enhancement, which suggests the risks of muscle invasion. We include sample images used to understand VI-RADS. CONCLUSIONS We hope that VI-RADS will standardize reporting, facilitate comparisons between patients, and in future years, will be tested and refined if necessary. While we do not advocate mpMRI for all patients with BC, this imaging may compliment pathology or reduce radiation-based imaging. Bladder mpMRI may be most useful in patients with non-muscle-invasive cancers, in expediting radical treatment or for determining response to bladder-sparing approaches. PATIENT SUMMARY Magnetic resonance imaging (MRI) scans for bladder cancer are becoming more common and may provide accurate information that helps improve patient care. Here, we describe a standardized reporting criterion for bladder MRI. This should improve communication between doctors and allow better comparisons between patients.
Collapse
Affiliation(s)
- Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Italy.
| | - Yoshifumi Narumi
- Department of Radiology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Ersan Altun
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernard H Bochner
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shaista Hafeez
- The Institute of Cancer Research, Sutton, Surrey, UK; The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Robert Huddart
- The Institute of Cancer Research, Sutton, Surrey, UK; The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Steve Kennish
- Department of Radiology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Seth Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Valdair F Muglia
- Imaging Division, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Georg Salomon
- Martini Clinic, University Clinic Hamburg Eppendorf, Hamburg, Germany
| | - Stephen Thomas
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | | | - J Alfred Witjes
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jelle Barentsz
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James W F Catto
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| |
Collapse
|