1
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
2
|
The Role of Ferroptosis and Cuproptosis in Curcumin against Hepatocellular Carcinoma. Molecules 2023; 28:molecules28041623. [PMID: 36838613 PMCID: PMC9964324 DOI: 10.3390/molecules28041623] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Among cancer-related deaths, hepatocellular carcinoma (HCC) ranks fourth, and traditional Chinese medicine (TCM) treatment is an important complementary alternative therapy for HCC. Curcumin is a natural ingredient extracted from Curcuma longa with anti-HCC activity, while the therapeutic mechanisms of curcumin remain unclear, especially on ferroptosis and cuproptosis. METHODS Differentially expressed genes (DEGs) of curcumin treatment in PLC, KMCH, and Huh7 cells were identified, respectively. The common genes among them were then obtained to perform functional enrichment analysis and prognostic analysis. Moreover, weighted gene co-expression network analysis (WGCNA) was carried out for the construction of the co-expression network. The ferroptosis potential index (FPI) and the cuproptosis potential index (CPI) were subsequently used to quantitatively analyze the levels of ferroptosis and cuproptosis. Finally, single-cell transcriptome analysis of liver cancer was conducted. RESULTS We first identified 702, 515, and 721 DEGs from curcumin-treated PLC, KMCH, and Huh7 cells, respectively. Among them, HMOX1, CYP1A1, HMGCS2, LCN2, and MTTP may play an essential role in metal ion homeostasis. By WGCNA, grey60 co-expression module was associated with curcumin treatment and involved in the regulation of ion homeostasis. Furthermore, FPI and CPI assessment showed that curcumin had cell-specific effects on ferroptosis and cuproptosis in different HCC cells. In addition, there are also significant differences in ferroptosis and cuproptosis levels among 16 HCC cell subtypes according to single-cell transcriptome data analysis. CONCLUSIONS We developed CPI and combined it with FPI to quantitatively analyze curcumin-treated HCC cells. It was found that ferroptosis and cuproptosis, two known metal ion-mediated forms of programmed cell death, may have a vital effect in treating HCC with curcumin, and there are significant differences in various liver cancer cell types and curcumin treatment which should be considered in the clinical application of curcumin.
Collapse
|
3
|
Li Y, Yang S, Jin X, Li D, Lu J, Wang X, Wu M. Mitochondria as novel mediators linking gut microbiota to atherosclerosis that is ameliorated by herbal medicine: A review. Front Pharmacol 2023; 14:1082817. [PMID: 36733506 PMCID: PMC9886688 DOI: 10.3389/fphar.2023.1082817] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of cardiovascular disease (CVD) and is characterized by endothelial damage, lipid deposition, and chronic inflammation. Gut microbiota plays an important role in the occurrence and development of AS by regulating host metabolism and immunity. As human mitochondria evolved from primordial bacteria have homologous characteristics, they are attacked by microbial pathogens as target organelles, thus contributing to energy metabolism disorders, oxidative stress, and apoptosis. Therefore, mitochondria may be a key mediator of intestinal microbiota disorders and AS aggravation. Microbial metabolites, such as short-chain fatty acids, trimethylamine, hydrogen sulfide, and bile acids, also affect mitochondrial function, including mtDNA mutation, oxidative stress, and mitophagy, promoting low-grade inflammation. This further damages cellular homeostasis and the balance of innate immunity, aggravating AS. Herbal medicines and their monomers can effectively ameliorate the intestinal flora and their metabolites, improve mitochondrial function, and inhibit atherosclerotic plaques. This review focuses on the interaction between gut microbiota and mitochondria in AS and explores a therapeutic strategy for restoring mitochondrial function and intestinal microbiota disorders using herbal medicines, aiming to provide new insights for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yujuan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Jin
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Min Wu,
| |
Collapse
|
4
|
Cox FF, Misiou A, Vierkant A, Ale-Agha N, Grandoch M, Haendeler J, Altschmied J. Protective Effects of Curcumin in Cardiovascular Diseases—Impact on Oxidative Stress and Mitochondria. Cells 2022; 11:cells11030342. [PMID: 35159155 PMCID: PMC8833931 DOI: 10.3390/cells11030342] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) contribute to a large part of worldwide mortality. Similarly, two of the major risk factors for these diseases, aging and obesity, are also global problems. Aging, the gradual decline of body functions, is non-modifiable. Obesity, a modifiable risk factor for CVDs, also predisposes to type 2 diabetes mellitus (T2DM). Moreover, it affects not only the vasculature and the heart but also specific fat depots, which themselves have a major impact on the development and progression of CVDs. Common denominators of aging, obesity, and T2DM include oxidative stress, mitochondrial dysfunction, metabolic abnormalities such as altered lipid profiles and glucose metabolism, and inflammation. Several plant substances such as curcumin, the major active compound in turmeric root, have been used for a long time in traditional medicine and for the treatment of CVDs. Newer mechanistic, animal, and human studies provide evidence that curcumin has pleiotropic effects and attenuates numerous parameters which contribute to an increased risk for CVDs in aging as well as in obesity. Thus, curcumin as a nutraceutical could hold promise in the prevention of CVDs, but more standardized clinical trials are required to fully unravel its potential.
Collapse
Affiliation(s)
- Fiona Frederike Cox
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Angelina Misiou
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Annika Vierkant
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| |
Collapse
|
5
|
Singh L, Sharma S, Xu S, Tewari D, Fang J. Curcumin as a Natural Remedy for Atherosclerosis: A Pharmacological Review. Molecules 2021; 26:molecules26134036. [PMID: 34279384 PMCID: PMC8272048 DOI: 10.3390/molecules26134036] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Curcumin, a natural polyphenolic compound present in Curcuma longa L. rhizomes, shows potent antioxidant, anti-inflammatory, anti-cancer, and anti-atherosclerotic properties. Atherosclerosis is a comprehensive term for a series of degenerative and hyperplasic lesions such as thickening or sclerosis in large- and medium-sized arteries, causing decreased vascular-wall elasticity and lumen diameter. Atherosclerotic cerebro-cardiovascular disease has become a major concern for human health in recent years due to its clinical sequalae of strokes and heart attacks. Curcumin concoction treatment modulates several important signaling pathways related to cellular migration, proliferation, cholesterol homeostasis, inflammation, and gene transcription, among other relevant actions. Here, we provide an overview of curcumin in atherosclerosis prevention and disclose the underlying mechanisms of action of its anti-atherosclerotic effects.
Collapse
Affiliation(s)
- Laxman Singh
- Centre of Biodiversity Conservation & Management, G.B.Pant National Institute of Himalayan Environment, Almora 263643, Uttarakhand, India;
| | - Shikha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Suowen Xu
- Department of Endocrinology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230037, China
- Correspondence: (S.X.); (D.T.); (J.F.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Correspondence: (S.X.); (D.T.); (J.F.)
| | - Jian Fang
- Department of Pharmacy, Huadu District People’s Hospital, Southern Medical University, Guangzhou 510800, China
- Correspondence: (S.X.); (D.T.); (J.F.)
| |
Collapse
|
6
|
Lin K, Chen H, Chen X, Qian J, Huang S, Huang W. Efficacy of Curcumin on Aortic Atherosclerosis: A Systematic Review and Meta-Analysis in Mouse Studies and Insights into Possible Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1520747. [PMID: 31998433 PMCID: PMC6973199 DOI: 10.1155/2020/1520747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Since the first report in 2005, accumulating interests have been focused on the effect of curcumin in atherosclerosis with discrepancies. Therefore, we conducted a systematic review and meta-analysis to comprehensively estimate its effect against atherosclerosis. Literature search was performed on the database of PubMed, EMBASE, and Cochrane Library to identify relevant studies which estimated the effect of curcumin in atherosclerosis. Reporting effects on aortic lesion area was the primary outcome while effects on serum lipid profiles and circulating inflammatory markers were the secondary outcome. A total of 10 studies including 14 independent pairwise experiments were included in our analysis. We clarified that curcumin could significantly reduce aortic atherosclerotic lesion area (SMD = -0.89, 95% CI: -1.36 to -0.41, P = 0.0003), decrease serum lipid profiles (Tc, MD = -1.005, 95% CI: -1.885 to -0.124, P = 0.025; TG, MD = -0.045, 95% CI: -0.088 to -0.002, P = 0.042; LDL-c, MD = -0.523, 95% CI: -0.896 to -0.149, P = 0.006) as well as plasma inflammatory indicators (TNF-α, MD = -56.641, 95% CI: -86.848 to -26.433, P < 0.001; IL-1β, MD = -5.089, 95% CI: -8.559 to -1.619, P = 0.004). Dose-response meta-analysis predicted effective dosage of curcumin between 0 and 347 mg/kg BW per day, which was safe and nontoxic according to the existing publications. The underlying mechanisms were also discussed and might be associated with the modulation of lipid transport and inflammation in cells within artery walls as well as indirect modulations in other tissues. Clinical evidence from nonatherosclerosis populations revealed that curcumin would lower the lipid profiles and inflammatory responses as it has in a mouse model. However, standard preclinical animal trial designs are still needed; further studies focusing on the optimal dose of curcumin against atherosclerosis and RCTs directly in atherosclerosis patients are also warranted.
Collapse
Affiliation(s)
- Ke Lin
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310000, China
| | - Xiaojun Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Jinfu Qian
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Shushi Huang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Weijian Huang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| |
Collapse
|
7
|
Ahmed S, Khan H, Mirzaei H. Mechanics insights of curcumin in myocardial ischemia: Where are we standing? Eur J Med Chem 2019; 183:111658. [PMID: 31514063 DOI: 10.1016/j.ejmech.2019.111658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Cardiovascular disorders are known as one of the main health problems which are associated with mortality worldwide. Myocardial ischemia (MI) is improper blood supply to myocardium which leads from serious complications to life-threatening problems like AMI, atherosclerosis, hypertension, cardiac-hypertrophy as well as diabetic associated complications as diabetic atherosclerosis/cardiomyopathy/hypertension. Despite several efforts, the current therapeutic platforms are not related with significant results. Hence, it seems, developing novel therapies are required. In this regard, increasing evidences indicated, curcumin (CRC) acts as cardioprotective agent. Given that CRC and its analogs exert their cardioprotective effects via affecting on a variety of cardiovascular diseases-related mechanisms (i.e., Inflammation, and oxidative stress). Herein, for first time, we have highlighted the protective impacts of CRC against MI. This review might be a steppingstone for further investigation into the clinical implications of the CRC against MI. Furthermore, it pulls in light of a legitimate concern for scientific community, seeking novel techniques and characteristic dynamic biopharmaceuticals for use against myocardial ischemia.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|