1
|
Matschegewski C, Kohse S, Markhoff J, Teske M, Wulf K, Grabow N, Schmitz KP, Illner S. Accelerated Endothelialization of Nanofibrous Scaffolds for Biomimetic Cardiovascular Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2014. [PMID: 35329466 PMCID: PMC8955317 DOI: 10.3390/ma15062014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023]
Abstract
Nanofiber nonwovens are highly promising to serve as biomimetic scaffolds for pioneering cardiac implants such as drug-eluting stent systems or heart valve prosthetics. For successful implant integration, rapid and homogeneous endothelialization is of utmost importance as it forms a hemocompatible surface. This study aims at physicochemical and biological evaluation of various electrospun polymer scaffolds, made of FDA approved medical-grade plastics. Human endothelial cells (EA.hy926) were examined for cell attachment, morphology, viability, as well as actin and PECAM 1 expression. The appraisal of the untreated poly-L-lactide (PLLA L210), poly-ε-caprolactone (PCL) and polyamide-6 (PA-6) nonwovens shows that the hydrophilicity (water contact angle > 80°) and surface free energy (<60 mN/m) is mostly insufficient for rapid cell colonization. Therefore, modification of the surface tension of nonpolar polymer scaffolds by plasma energy was initiated, leading to more than 60% increased wettability and improved colonization. Additionally, NH3-plasma surface functionalization resulted in a more physiological localization of cell−cell contact markers, promoting endothelialization on all polymeric surfaces, while fiber diameter remained unaltered. Our data indicates that hydrophobic nonwovens are often insufficient to mimic the native extracellular matrix but also that they can be easily adapted by targeted post-processing steps such as plasma treatment. The results achieved increase the understanding of cell−implant interactions of nanostructured polymer-based biomaterial surfaces in blood contact while also advocating for plasma technology to increase the surface energy of nonpolar biostable, as well as biodegradable polymer scaffolds. Thus, we highlight the potential of plasma-activated electrospun polymer scaffolds for the development of advanced cardiac implants.
Collapse
Affiliation(s)
- Claudia Matschegewski
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (C.M.); (K.-P.S.)
| | - Stefanie Kohse
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Jana Markhoff
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Michael Teske
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Katharina Wulf
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Klaus-Peter Schmitz
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (C.M.); (K.-P.S.)
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| | - Sabine Illner
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (S.K.); (J.M.); (M.T.); (K.W.); (N.G.)
| |
Collapse
|
2
|
Estermann M, Spiaggia G, Septiadi D, Dijkhoff IM, Drasler B, Petri-Fink A, Rothen-Rutishauser B. Design of Perfused PTFE Vessel-Like Constructs for In Vitro Applications. Macromol Biosci 2021; 21:e2100016. [PMID: 33624920 DOI: 10.1002/mabi.202100016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/18/2022]
Abstract
Tissue models mimic the complex 3D structure of human tissues, which allows the study of pathologies and the development of new therapeutic strategies. The introduction of perfusion overcomes the diffusion limitation and enables the formation of larger tissue constructs. Furthermore, it provides the possibility to investigate the effects of hematogenously administered medications. In this study, the applicability of hydrophilic polytetrafluoroethylene (PTFE) membranes as vessel-like constructs for further use in perfused tissue models is evaluated. The presented approach allows the formation of stable and leakproof tubes with a mean diameter of 654.7 µm and a wall thickness of 84.2 µm. A polydimethylsiloxane (PDMS) chip acts as a perfusion bioreactor and provides sterile conditions. As proof of concept, endothelial cells adhere to the tube's wall, express vascular endothelial cadherin (VE-cadherin) between neighboring cells, and resist perfusion at a shear rate of 0.036 N m-2 for 48 h. Furthermore, the endothelial cell layer delays significantly the diffusion of fluorescently labeled molecules into the surrounding collagen matrix and leads to a twofold reduced diffusion velocity. This approach represents a cost-effective alternative to introduce stable vessel-like constructs into tissue models, which allows adapting the surrounding matrix to the tissue properties in vivo.
Collapse
Affiliation(s)
- Manuela Estermann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Giovanni Spiaggia
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Irini Magdelina Dijkhoff
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland.,Department of Chemistry, University of Fribourg, Chemin du Museé 9, Fribourg, 1700, Switzerland
| | | |
Collapse
|
3
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|