1
|
Palmosi T, Tolomeo AM, Cirillo C, Sandrin D, Sciro M, Negrisolo S, Todesco M, Caicci F, Santoro M, Dal Lago E, Marchesan M, Modesti M, Bagno A, Romanato F, Grumati P, Fabozzo A, Gerosa G. Small intestinal submucosa-derived extracellular matrix as a heterotopic scaffold for cardiovascular applications. Front Bioeng Biotechnol 2022; 10:1042434. [PMID: 36578513 PMCID: PMC9792098 DOI: 10.3389/fbioe.2022.1042434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Structural cardiac lesions are often surgically repaired using prosthetic patches, which can be biological or synthetic. In the current clinical scenario, biological patches derived from the decellularization of a xenogeneic scaffold are gaining more interest as they maintain the natural architecture of the extracellular matrix (ECM) after the removal of the native cells and remnants. Once implanted in the host, these patches can induce tissue regeneration and repair, encouraging angiogenesis, migration, proliferation, and host cell differentiation. Lastly, decellularized xenogeneic patches undergo cell repopulation, thus reducing host immuno-mediated response against the graft and preventing device failure. Porcine small intestinal submucosa (pSIS) showed such properties in alternative clinical scenarios. Specifically, the US FDA approved its use in humans for urogenital procedures such as hernia repair, cystoplasties, ureteral reconstructions, stress incontinence, Peyronie's disease, penile chordee, and even urethral reconstruction for hypospadias and strictures. In addition, it has also been successfully used for skeletal muscle tissue reconstruction in young patients. However, for cardiovascular applications, the results are controversial. In this study, we aimed to validate our decellularization protocol for SIS, which is based on the use of Tergitol 15 S 9, by comparing it to our previous and efficient method (Triton X 100), which is not more available in the market. For both treatments, we evaluated the preservation of the ECM ultrastructure, biomechanical features, biocompatibility, and final bioinductive capabilities. The overall analysis shows that the SIS tissue is macroscopically distinguishable into two regions, one smooth and one wrinkle, equivalent to the ultrastructure and biochemical and proteomic profile. Furthermore, Tergitol 15 S 9 treatment does not modify tissue biomechanics, resulting in comparable to the native one and confirming the superior preservation of the collagen fibers. In summary, the present study showed that the SIS decellularized with Tergitol 15 S 9 guarantees higher performances, compared to the Triton X 100 method, in all the explored fields and for both SIS regions: smooth and wrinkle.
Collapse
Affiliation(s)
- Tiziana Palmosi
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Anna Maria Tolomeo
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Debora Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Optics and Bioimaging Lab, Department of Physics and Astronomy, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, University of Padova, Padua, Italy
| | | | - Susanna Negrisolo
- Laboratory of Immunopathology and Molecular Biology of the Kidney, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Santoro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Eleonora Dal Lago
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Modesti
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Physics and Astronomy “G. Galilei”, University of Padova, Padua, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, University of Napoli Federico II, Naples, Italy
| | - Assunta Fabozzo
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy,*Correspondence: Assunta Fabozzo,
| | - Gino Gerosa
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy
| |
Collapse
|
2
|
Massaro MS, Kochová P, Pálek R, Rosendorf J, Červenková L, Dahmen U, Liška V, Moulisová V. Decellularization of Porcine Carotid Arteries: From the Vessel to the High-Quality Scaffold in Five Hours. Front Bioeng Biotechnol 2022; 10:833244. [PMID: 35651544 PMCID: PMC9150822 DOI: 10.3389/fbioe.2022.833244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The use of biologically derived vessels as small-diameter vascular grafts in vascular diseases is currently intensely studied. Vessel decellularization provides a biocompatible scaffold with very low immunogenicity that avoids immunosuppression after transplantation. Good scaffold preservation is important as it facilitates successful cell repopulation. In addition, mechanical characteristics have to be carefully evaluated when the graft is intended to be used as an artery due to the high pressures the vessel is subjected to. Here, we present a new and fast decellularization protocol for porcine carotid arteries, followed by investigation of the quality of obtained vessel scaffolds in terms of maintenance of important extracellular matrix components, mechanical resistance, and compatibility with human endothelial cells. Our results evidence that our decellularization protocol minimally alters both the presence of scaffold proteins and their mechanical behavior and human endothelial cells could adhere to the scaffold in vitro. We conclude that if a suitable protocol is used, a high-quality decellularized arterial scaffold of non-human origin can be promptly obtained, having a great potential to be recellularized and used as an arterial graft in transplantation medicine.
Collapse
Affiliation(s)
| | - Petra Kochová
- New Technologies for Information Society-NTIS, University of West Bohemia, Pilsen, Czechia
| | - Richard Pálek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jáchym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Lenka Červenková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Václav Liška
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Vladimíra Moulisová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
3
|
Cai Z, Gu Y, Xiao Y, Wang C, Wang Z. Porcine carotid arteries decellularized with a suitable concentration combination of Triton X-100 and sodium dodecyl sulfate for tissue engineering vascular grafts. Cell Tissue Bank 2020; 22:277-286. [PMID: 33123849 DOI: 10.1007/s10561-020-09876-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Tissue engineering vascular grafts (TEVGs) constructed by decellularized arteries have the potential to replace autologous blood vessels in bypass surgery for patients with cardiovascular disease. There are various methods of decellularization without a standard protocol. Detergents approaches are simple, and easy control of experimental conditions. Non-ionic detergent Triton X-100 and ionic detergent sodium dodecyl sulfate (SDS) are the most commonly used detergents. In this study, we used Triton X-100 and SDS with different concentrations to decellularize porcine carotid arteries. After that, we investigated the acellular effect and mechanical properties of decellularized arteries to find a promising concentration combination for decellularization. Results showed that any detergents' combination would damage the inherent structure of extracellular matrix, and the destruction increased with the increase of detergents' concentration. We concluded that the decellularization approach of 0.5% Triton X-100 for 24 h combined with 0.25% SDS for 72 h could help to obtain decellularized arteries with minimum destruction. This protocol may be able to prepare a clinically suitable vascular scaffold for TEVGs.
Collapse
Affiliation(s)
- Zhiwen Cai
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Zhonggao Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
6
|
Ahmed E, Saleh T, Yu L, Kwak HH, Kim BM, Park KM, Lee YS, Kang BJ, Choi KY, Kang KS, Woo HM. Micro and ultrastructural changes monitoring during decellularization for the generation of a biocompatible liver. J Biosci Bioeng 2019; 128:218-225. [PMID: 30904455 DOI: 10.1016/j.jbiosc.2019.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 01/07/2023]
Abstract
Decellularization of a whole organ is an attractive process that has been used to create 3D scaffolds structurally and micro-architecturally similar to the native one. Currently used decellularization protocols exhibit disrupted extracellular matrix (ECM) structure and denatured ECM proteins. Therefore, maintaining a balance between ECM preservation and cellular removal is a major challenge. The aim of this study was to optimize a multistep Triton X-100 based protocol (either using Triton X-100/ammonium hydroxide mixture alone or after its modification with DNase, sodium dodecyl sulfate or trypsin) that could achieve maximum decellularization with minimal liver ECM destruction suitable for subsequent organ implantation without immune rejection. Based on our findings, Triton X-100 multistep protocol was insufficient for whole liver decellularization and needed to be modified with other detergents. Among all Triton X-100 modified protocols, a Triton X-100/DNase-based one was considered the most suitable. It maintains a gradual but sufficient removal of cells to generate decellularized biocompatible liver scaffolds without any significant alteration to ECM micro- and ultra-structure.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Tarek Saleh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Lina Yu
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Ho-Hyun Kwak
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Byeong-Moo Kim
- Department of Medicine, GI Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yun-Suk Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Byung-Jae Kang
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Ki-Young Choi
- Department of Controlled Agriculture, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Kyung-Sun Kang
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Heung Myong Woo
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| |
Collapse
|