1
|
Zhuang ZJ, Li FJ, Lv D, Duan HQ, Chen LY, Chen P, Shen ZQ, He B. Regulation of Autophagy Signaling Pathways by Ginseng Saponins: A Review. Chem Biodivers 2024; 21:e202400934. [PMID: 38898600 DOI: 10.1002/cbdv.202400934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Ginseng saponins (ginsenosides), bioactive compounds derived from ginseng, are widely used natural products with potent therapeutic properties in the management of various ailments, particularly tumors, cardiovascular and cerebrovascular diseases, and immune system disorders. Autophagy, a highly regulated and multistep process involving the breakdown of impaired organelles and macromolecules by autophagolysosomes and autophagy-related genes (ATGs), has gained increasing attention as a potential target for ginsenoside-mediated disease treatment. This review aims to provide a comprehensive overview of recent research advances in the understanding of autophagy-related signaling pathways and the role of ginsenoside-mediated autophagy regulation. By delving into the intricate autophagy signaling pathways underpinning the pharmacological properties of ginsenosides, we highlight their therapeutic potential in addressing various conditions. Our findings serve as a comprehensive reference for further investigation into the medicinal properties of ginseng or ginseng-related products.
Collapse
Affiliation(s)
- Zhu-Jun Zhuang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Fa-Jing Li
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
- The First People's Hospital of Liangshan Prefecture, Sichuan, 615000, People's Republic of China
| | - Di Lv
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Heng-Qian Duan
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Lin-Yi Chen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Peng Chen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Bo He
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| |
Collapse
|
2
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Abbonante V, Benedetto GL, Scalise M, Gambardella A, Parrotta EI, Cuda G. Ascorbic acid mitigates the impact of oxidative stress in a human model of febrile seizure and mesial temporal lobe epilepsy. Sci Rep 2024; 14:5941. [PMID: 38467734 PMCID: PMC10928078 DOI: 10.1038/s41598-024-56680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 03/13/2024] Open
Abstract
Prolonged febrile seizures (FS) in children are linked to the development of temporal lobe epilepsy (MTLE). The association between these two pathologies may be ascribed to the long-term effects that FS exert on neural stem cells, negatively affecting the generation of new neurons. Among the insults associated with FS, oxidative stress is noteworthy. Here, we investigated the consequences of exposure to hydrogen peroxide (H2O2) in an induced pluripotent stem cell-derived neural stem cells (iNSCs) model of a patient affected by FS and MTLE. In our study, we compare the findings from the MTLE patient with those derived from iNSCs of a sibling exhibiting a milder phenotype defined only by FS, as well as a healthy individual. In response to H2O2 treatment, iNSCs derived from MTLE patients demonstrated an elevated production of reactive oxygen species and increased apoptosis, despite the higher expression levels of antioxidant genes and proteins compared to other cell lines analysed. Among the potential causative mechanisms of enhanced vulnerability of MTLE patient iNSCs to oxidative stress, we found that these cells express low levels of the heat shock protein HSPB1 and of the autophagy adaptor SQSTM1/p62. Pre-treatment of diseased iNSCs with the antioxidant molecule ascorbic acid restored HSBP1 and p62 expression and simultaneously reduced the levels of ROS and apoptosis. Our findings suggest the potential for rescuing the impaired oxidative stress response in diseased iNSCs through antioxidant treatment, offering a promising mechanism to prevent FS degeneration in MTLE.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Vittorio Abbonante
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
3
|
Targeting the Erk1/2 and autophagy signaling easily improved the neurobalst differentiation and cognitive function after young transient forebrain ischemia compared to old gerbils. Cell Death Dis 2022; 8:87. [PMID: 35220404 PMCID: PMC8882190 DOI: 10.1038/s41420-022-00888-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
The hippocampal neurogenesis occurs constitutively throughout adulthood in mammalian species, but declines with age. In this study, we overtly found that the neuroblast proliferation and differentiation in the subgranular zone and the maturation into fully functional and integrated neurons in the granule-cell layer in young gerbils following cerebral ischemia/reperfusion was much more than those in old gerbils. The neurological function and cognitive and memory-function rehabilitation in the young gerbils improved faster than those in the old one. These results demonstrated that, during long term after cerebral ischemia/reperfusion, the ability of neurogenesis and recovery of nerve function in young animals were significantly higher than that in the old animals. We found that, after 14- and 28-day cerebral ischemia/reperfusion, the phosphorylation of MEK1/2, ERK1/2, p90RSK, and MSK1/2 protein levels in the hippocampus of young gerbils was significantly much higher than that of old gerbils. The levels of autophagy-related proteins, including Beclin-1, Atg3, Atg5, and LC3 in the hippocampus were effectively maintained and elevated at 28 days after cerebral ischemia/reperfusion in the young gerbils compared with those in the old gerbils. These results indicated that an increase or maintenance of the phosphorylation of ERK1/2 signal pathway and autophagy-related proteins was closely associated with the neuroblast proliferation and differentiation and the process of maturation into neurons. Further, we proved that neuroblast proliferation and differentiation in the dentate gyrus and cognitive function were significantly reversed in young cerebral ischemic gerbils by administering the ERK inhibitor (U0126) and autophagy inhibitor (3MA). In brief, following experimental young ischemic stroke, the long-term promotion of the neurogenesis in the young gerbil’s hippocampal dentate gyrus by upregulating the phosphorylation of ERK signaling pathway and maintaining autophagy-related protein levels, it overtly improved the neurological function and cognitive and memory function.
Collapse
|
4
|
Deng Z, Zhou X, Lu JH, Yue Z. Autophagy deficiency in neurodevelopmental disorders. Cell Biosci 2021; 11:214. [PMID: 34920755 PMCID: PMC8684077 DOI: 10.1186/s13578-021-00726-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Autophagy is a cell self-digestion pathway through lysosome and plays a critical role in maintaining cellular homeostasis and cytoprotection. Characterization of autophagy related genes in cell and animal models reveals diverse physiological functions of autophagy in various cell types and tissues. In central nervous system, by recycling injured organelles and misfolded protein complexes or aggregates, autophagy is integrated into synaptic functions of neurons and subjected to distinct regulation in presynaptic and postsynaptic neuronal compartments. A plethora of studies have shown the neuroprotective function of autophagy in major neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Recent human genetic and genomic evidence has demonstrated an emerging, significant role of autophagy in human brain development and prevention of spectrum of neurodevelopmental disorders. Here we will review the evidence demonstrating the causal link of autophagy deficiency to congenital brain diseases, the mechanism whereby autophagy functions in neurodevelopment, and therapeutic potential of autophagy.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Xiaoting Zhou
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Chatterjee O, Gopalakrishnan L, Mol P, Advani J, Nair B, Shankar SK, Mahadevan A, Prasad TSK. The Normal Human Adult Hypothalamus Proteomic Landscape: Rise of Neuroproteomics in Biological Psychiatry and Systems Biology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:693-710. [PMID: 34714154 DOI: 10.1089/omi.2021.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human hypothalamus is central to the regulation of neuroendocrine and neurovegetative systems, as well as modulation of chronobiology and behavioral aspects in human health and disease. Surprisingly, a deep proteomic analysis of the normal human hypothalamic proteome has been missing for such an important organ so far. In this study, we delineated the human hypothalamus proteome using a high-resolution mass spectrometry approach which resulted in the identification of 5349 proteins, while a multiple post-translational modification (PTM) search identified 191 additional proteins, which were missed in the first search. A proteogenomic analysis resulted in the discovery of multiple novel protein-coding regions as we identified proteins from noncoding regions (pseudogenes) and proteins translated from short open reading frames that can be missed using the traditional pipeline of prediction of protein-coding genes as a part of genome annotation. We also identified several PTMs of hypothalamic proteins that may be required for normal hypothalamic functions. Moreover, we observed an enrichment of proteins pertaining to autophagy and adult neurogenesis in the proteome data. We believe that the hypothalamic proteome reported herein would help to decipher the molecular basis for the diverse range of physiological functions attributed to it, as well as its role in neurological and psychiatric diseases. Extensive proteomic profiling of the hypothalamic nuclei would further elaborate on the role and functional characterization of several hypothalamus-specific proteins and pathways to inform future research and clinical discoveries in biological psychiatry, neurology, and system biology.
Collapse
Affiliation(s)
- Oishi Chatterjee
- Institute of Bioinformatics, Bangalore India.,Amrita School of Biotechnology, Amrita University, Kollam, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, Bangalore India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Praseeda Mol
- Institute of Bioinformatics, Bangalore India.,Amrita School of Biotechnology, Amrita University, Kollam, India
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
6
|
He L, Sun Z, Li J, Zhu R, Niu B, Tam KL, Xiao Q, Li J, Wang W, Tsui CY, Hong Lee VW, So KF, Xu Y, Ramakrishna S, Zhou Q, Chiu K. Electrical stimulation at nanoscale topography boosts neural stem cell neurogenesis through the enhancement of autophagy signaling. Biomaterials 2020; 268:120585. [PMID: 33307364 DOI: 10.1016/j.biomaterials.2020.120585] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Neural stem cells (NSCs) transplantation at the injury site of central nerve system (CNS) makes it possible for neuroregeneration. Long-term cell survival and low proliferation, differentiation, and migration rates of NSCs-graft have been the most challenging aspect on NSCs application. New multichannel electrical stimulation (ES) device was designed to enhance neural stem cells (NSCs) differentiation into mature neurons. Compared to controls, ES at nanoscale topography enhanced the expression of mature neuronal marker, growth of the neurites, concentration of BDNF and electrophysiological activity. RNA sequencing analysis validated that ES promoted NSC-derived neuronal differentiation through enhancing autophagy signaling. Emerging evidences showed that insufficient or excessive autophagy contributes to neurite degeneration. Excessive ES current were able to enhance neuronal autophagy, the neuronal cells showed poor viability, reduced neurite outgrowth and electrophysiological activity. Well-controlled autophagy not only protects against neurodegeneration, but also regulates neurogenesis. Current NSC treatment protocol efficiently enhanced NSC differentiation, maturation and survival through combination of proper ES condition followed by balance of autophagy level in the cell culture system. The successful rate of such protreated NSC at injured CNS site should be significantly improved after transplantation.
Collapse
Affiliation(s)
- Liumin He
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, PR China; College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| | - Zhongqing Sun
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Jianshuang Li
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, PR China; The First Affiliated Hospital, The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Rong Zhu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China
| | - Ben Niu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ka Long Tam
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, PR China
| | - Qiao Xiao
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China
| | - Jun Li
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China
| | - Wenjun Wang
- The First Affiliated Hospital, The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Chi Ying Tsui
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, PR China
| | - Vincent Wing Hong Lee
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Ying Xu
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China
| | - Seeram Ramakrishna
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, PR China; Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Qinghua Zhou
- Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, PR China; The First Affiliated Hospital, The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| | - Kin Chiu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
7
|
Fassio A, Falace A, Esposito A, Aprile D, Guerrini R, Benfenati F. Emerging Role of the Autophagy/Lysosomal Degradative Pathway in Neurodevelopmental Disorders With Epilepsy. Front Cell Neurosci 2020; 14:39. [PMID: 32231521 PMCID: PMC7082311 DOI: 10.3389/fncel.2020.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Autophagy is a highly conserved degradative process that conveys dysfunctional proteins, lipids, and organelles to lysosomes for degradation. The post-mitotic nature, complex and highly polarized morphology, and high degree of specialization of neurons make an efficient autophagy essential for their homeostasis and survival. Dysfunctional autophagy occurs in aging and neurodegenerative diseases, and autophagy at synaptic sites seems to play a crucial role in neurodegeneration. Moreover, a role of autophagy is emerging for neural development, synaptogenesis, and the establishment of a correct connectivity. Thus, it is not surprising that defective autophagy has been demonstrated in a spectrum of neurodevelopmental disorders, often associated with early-onset epilepsy. Here, we discuss the multiple roles of autophagy in neurons and the recent experimental evidence linking neurodevelopmental disorders with epilepsy to genes coding for autophagic/lysosomal system-related proteins and envisage possible pathophysiological mechanisms ranging from synaptic dysfunction to neuronal death.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Alessandro Esposito
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy.,IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
8
|
Kannangara TS, Lagace DC. The Multi-pronged Regulation of Adult Neurogenesis by Forkhead Box O Family Members. Neuron 2019; 99:1099-1101. [PMID: 30236277 DOI: 10.1016/j.neuron.2018.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this issue of Neuron, Schäffner et al. (2018) discover multiple effects of the Forkhead Box O (FoxO) transcription factor family on the different stages of adult neurogenesis, including the genesis of dendrites and spines regulated by FoxO-dependent autophagic activity.
Collapse
Affiliation(s)
- Timal S Kannangara
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, ON, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, and Neuroscience Program, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Puri D, Subramanyam D. Stress - (self) eating: Epigenetic regulation of autophagy in response to psychological stress. FEBS J 2019; 286:2447-2460. [PMID: 30927484 DOI: 10.1111/febs.14826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a constitutive and cytoprotective catabolic process. Aberrations in autophagy lead to a multitude of degenerative disorders, with neurodegeneration being one of the most widely studied autophagy-related disorders. While the field has largely been focusing on the cytosolic constituents and processes of autophagy, recent studies are increasingly appreciating the role of chromatin modifications and epigenetic regulation in autophagy maintenance. Autophagy has been implicated in the regulation of neurogenesis, and disruption of neurogenesis in response to psychological stress is a proximal risk factor for development of neuropsychiatric disorders such as major depressive disorder (MDD). In this review, we will discuss the regulation of autophagy in normal neurogenesis as well as during chronic psychological stress, focusing on the epigenetic control of autophagy in these contexts, and also highlight the lacunae in our understanding of this process. The systematic study of these regulatory mechanisms will provide a novel therapeutic strategy, based on the use epigenetic regulators of autophagy to enhance neurogenesis and potentially alleviate stress-related behavioral disorders.
Collapse
Affiliation(s)
- Deepika Puri
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Deepa Subramanyam
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
10
|
Prenatal Exposure to Benzophenone-3 Impairs Autophagy, Disrupts RXRs/PPARγ Signaling, and Alters Epigenetic and Post-Translational Statuses in Brain Neurons. Mol Neurobiol 2018; 56:4820-4837. [PMID: 30402708 PMCID: PMC6647400 DOI: 10.1007/s12035-018-1401-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
The UV absorber benzophenone-3 (BP-3) is the most extensively used chemical substance in various personal care products. Despite that BP-3 exposure is widespread, knowledge about the impact of BP-3 on the brain development is negligible. The present study aimed to explore the mechanisms of prenatal exposure to BP-3 in neuronal cells, with particular emphasis on autophagy and nuclear receptors signaling as well as the epigenetic and post-translational modifications occurring in response to BP-3. To observe the impact of prenatal exposure to BP-3, we administered BP-3 to pregnant mice, and next, we isolated brain tissue from pretreated embryos for primary cell neocortical culture. Our study revealed that prenatal exposure to BP-3 (used in environmentally relevant doses) impairs autophagy in terms of BECLIN-1, MAP1LC3B, autophagosomes, and autophagy-related factors; disrupts the levels of retinoid X receptors (RXRs) and peroxisome proliferator-activated receptor gamma (PPARγ); alters epigenetic status (i.e., attenuates HDAC and sirtuin activities); inhibits post-translational modifications in terms of global sumoylation; and dysregulates expression of neurogenesis- and neurotransmitter-related genes as well as miRNAs involved in pathologies of the nervous system. Our study also showed that BP-3 has good permeability through the BBB. We strongly suggest that BP-3-evoked effects may substantiate a fetal basis of the adult onset of neurological diseases, particularly schizophrenia and Alzheimer’s disease.
Collapse
|
11
|
Casares-Crespo L, Calatayud-Baselga I, García-Corzo L, Mira H. On the Role of Basal Autophagy in Adult Neural Stem Cells and Neurogenesis. Front Cell Neurosci 2018; 12:339. [PMID: 30349462 PMCID: PMC6187079 DOI: 10.3389/fncel.2018.00339] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
Adult neurogenesis persists in the adult mammalian brain due to the existence of neural stem cell (NSC) reservoirs in defined niches, where they give rise to new neurons throughout life. Recent research has begun to address the implication of constitutive (basal) autophagy in the regulation of neurogenesis in the mature brain. This review summarizes the current knowledge on the role of autophagy-related genes in modulating adult NSCs, progenitor cells and their differentiation into neurons. The general function of autophagy in neurogenesis in several areas of the embryonic forebrain is also revisited. During development, basal autophagy regulates Wnt and Notch signaling and is mainly required for adequate neuronal differentiation. The available data in the adult indicate that the autophagy-lysosomal pathway regulates adult NSC maintenance, the activation of quiescent NSCs, the survival of the newly born neurons and the timing of their maturation. Future research is warranted to validate the results of these pioneering studies, refine the molecular mechanisms underlying the regulation of NSCs and newborn neurons by autophagy throughout the life-span of mammals and provide significance to the autophagic process in adult neurogenesis-dependent behavioral tasks, in physiological and pathological conditions. These lines of research may have important consequences for our understanding of stem cell dysfunction and neurogenic decline during healthy aging and neurodegeneration.
Collapse
Affiliation(s)
- Lucía Casares-Crespo
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Isabel Calatayud-Baselga
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Laura García-Corzo
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| | - Helena Mira
- Stem Cells and Aging Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, València, Spain
| |
Collapse
|
12
|
Pircs K, Petri R, Jakobsson J. Crosstalk between MicroRNAs and Autophagy in Adult Neurogenesis: Implications for Neurodegenerative Disorders. Brain Plast 2018; 3:195-203. [PMID: 30151343 PMCID: PMC6091039 DOI: 10.3233/bpl-180066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis in the mammalian brain, including in humans, occurs throughout life in distinct brain regions. Alterations in adult neurogenesis is a common phenomenon in several different neurodegenerative disorders, which is likely to contribute to the pathophysiology of these disorders. This review summarizes novel concepts related to the interplay between autophagy and microRNAs in control of adult neurogenesis, with a specific focus on its relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Pircs
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Rebecca Petri
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|