1
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
2
|
Bai X, Zheng L, Xu Y, Liang Y, Li D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int 2022; 22:381. [PMID: 36457043 PMCID: PMC9713203 DOI: 10.1186/s12935-022-02797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of noncoding single-stranded RNAs that can regulate gene expression by binding to the untranslated sequences at the 3 ' end of messenger RNAs. The microRNA-34 family is dysregulated in various human diseases. It is considered as a tumor-suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. As a member of the miRNA-34 family, miR-34b-5p serves as a powerful regulator of a suite of cellular activities, including cell growth, multiplication, development, differentiation, and apoptosis. It promotes or represses disease occurrence and progression by participating in some important signaling pathways. This review aimed to provide an overview and update on the differential expression and function of miR-34b-5p in pathophysiologic processes, especially cancer and injury. Additionally, miR-34b-5p-mediated clinical trials have indicated promising consequences for the therapies of carcinomatosis and injury. With the application of the first tumor-targeted microRNA drug based on miR-34a mimics, it can be inferred that miR-34b-5p may become a crucial factor in the therapy of various diseases. However, further studies on miR-34b-5p should shed light on its involvement in disease pathogenesis and treatment options.
Collapse
Affiliation(s)
- Xuechun Bai
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Ying Xu
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yan Liang
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Dandan Li
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
3
|
The genomic and transcriptional landscape of primary central nervous system lymphoma. Nat Commun 2022; 13:2558. [PMID: 35538064 PMCID: PMC9091224 DOI: 10.1038/s41467-022-30050-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations.
Collapse
|
4
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Jamali E. The emerging role non-coding RNAs in B cell-related disorders. Cancer Cell Int 2022; 22:91. [PMID: 35193592 PMCID: PMC8862212 DOI: 10.1186/s12935-022-02521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs and microRNAs have recently attained much attention regarding their role in the development of B cell lineage as well as participation in the lymphomagenesis. These transcripts have a highly cell type specific signature which endows them the potential to be used as biomarkers for clinical situations. Aberrant expression of several non-coding RNAs has been linked with B cell malignancies and immune related disorders such as rheumatoid arthritis, systemic lupus erythematous, asthma and graft-versus-host disease. Moreover, these transcripts can alter response of immune system to infectious conditions. miR-7, miR-16-1, miR-15a, miR-150, miR-146a, miR-155, miR-212 and miR-132 are among microRNAs whose role in the development of B cell-associated disorders has been investigated. Similarly, SNHG14, MALAT1, CRNDE, AL133346.1, NEAT1, SMAD5-AS1, OR3A4 and some other long non-coding RNAs participate in this process. In the current review, we describe the role of non-coding RNAs in B cell malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Competitive Endogenous RNA Network Involving miRNA and lncRNA in Non-Hodgkin Lymphoma: Current Advances and Clinical Perspectives. Biomedicines 2021; 9:1934. [PMID: 34944752 PMCID: PMC8698845 DOI: 10.3390/biomedicines9121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous malignancy with variable patient outcomes. There is still a lack of understanding about the different players involved in lymphomagenesis, and the identification of new diagnostic and prognostic biomarkers is urgent. MicroRNAs and long non-coding RNAs emerged as master regulators of B-cell development, and their deregulation has been associated with the initiation and progression of lymphomagenesis. They can function by acting alone or, as recently proposed, by creating competing endogenous RNA (ceRNA) networks. Most studies have focused on individual miRNAs/lncRNAs function in lymphoma, and there is still limited data regarding their interactions in lymphoma progression. The study of miRNAs' and lncRNAs' deregulation in NHL, either alone or as ceRNAs networks, offers new insights into the molecular mechanisms underlying lymphoma pathogenesis and opens a window of opportunity to identify potential diagnostic and prognostic biomarkers. In this review, we summarized the current knowledge regarding the role of miRNAs and lncRNAs in B-cell lymphoma, including their interactions and regulatory networks. Finally, we summarized the studies investigating the potential of miRNAs and lncRNAs as clinical biomarkers, with a special focus on the circulating profiles, to be applied as a non-invasive, easy-to-obtain, and reproducible liquid biopsy for dynamic management of NHL patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
| |
Collapse
|
6
|
MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers (Basel) 2021; 13:cancers13153909. [PMID: 34359809 PMCID: PMC8345394 DOI: 10.3390/cancers13153909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration, and immune evasion. The EBV latency program is required for the immortalization of infected B cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to the development of EBV-associated cancers. In this review, we discuss the function and potential clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.
Collapse
|
7
|
Distinct Molecular Subtypes of Diffuse Large B Cell Lymphoma Patients Treated with Rituximab-CHOP Are Associated with Different Clinical Outcomes and Molecular Mechanisms. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5514726. [PMID: 34250086 PMCID: PMC8238567 DOI: 10.1155/2021/5514726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Objective Our purpose was to characterize distinct molecular subtypes of diffuse large B cell lymphoma (DLBCL) patients treated with rituximab-CHOP (R-CHOP). Methods Two gene expression datasets of R-CHOP-treated DLBCL patients were downloaded from GSE10846 (n = 233, training set) and GSE31312 (n = 470, validation set) datasets. Cluster analysis was presented via the ConsensusClusterPlus package in R. Using the limma package, differential expression analysis was utilized to identify feature genes. Kaplan-Meier survival analysis was presented to compare the differences in the prognosis between distinct molecular subtypes. Correlation between molecular subtypes and clinical features was analyzed. Based on the sets of highly expressed genes, biological functions were explored by gene set enrichment analysis (GSEA). Several feature genes were validated in the molecular subtypes via qRT-PCR and western blot. Results DLBCL samples were clustered into two molecular subtypes. Samples in subtype I displayed poorer overall survival time in the training set (p < 0.0001). Consistently, patients in subtype I had shorter overall survival (p = 0.0041) and progression-free survival time (p < 0.0001) than those in subtype II. Older age, higher stage, and higher international prognostic index (IPI) were found in subtype I. In subtype I, T cell activation, lymphocyte activation, and immune response were distinctly enriched, while cell adhesion, migration, and motility were significantly enriched in subtype II. T cell exhaustion-related genes including TIM3 (p < 0.001), PD-L1 (p < 0.0001), LAG3 (p < 0.0001), CD160 (p < 0.001), and CD244 (p < 0.001) were significantly highly expressed in subtype I than subtype II. Conclusion Two molecular subtypes were constructed in DLBCL, which were characterized by different clinical outcomes and molecular mechanisms. Our findings may offer a novel insight into risk stratification and prognosis prediction for DLBCL patients.
Collapse
|
8
|
Naveed A, Cooper JA, Li R, Hubbard A, Chen J, Liu T, Wilton SD, Fletcher S, Fox AH. NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma. Cell Mol Life Sci 2021; 78:2213-2230. [PMID: 32914209 PMCID: PMC11073103 DOI: 10.1007/s00018-020-03632-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/28/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Many long non-coding RNAs (lncRNA) are highly dysregulated in cancer and are emerging as therapeutic targets. One example is NEAT1, which consists of two overlapping lncRNA isoforms, NEAT1_1 (3.7 kb) and NEAT1_2 (23 kb), that are functionally distinct. The longer NEAT1_2 is responsible for scaffolding gene-regulatory nuclear bodies termed paraspeckles, whereas NEAT1_1 is involved in paraspeckle-independent function. The NEAT1 isoform ratio is dependent on the efficient cleavage and polyadenylation of NEAT1_1 at the expense of NEAT1_2. Here, we developed a targeted antisense oligonucleotide (ASO) approach to sterically block NEAT1_1 polyadenylation processing, achieving upregulation of NEAT1_2 and abundant paraspeckles. We have applied these ASOs to cells of the heterogeneous infant cancer, neuroblastoma, as we found higher NEAT1_1:NEAT1_2 ratio and lack of paraspeckles in high-risk neuroblastoma cells. These ASOs decrease NEAT1_1 levels, increase NEAT1_2/paraspeckles and concomitantly reduce cell viability in high-risk neuroblastoma specifically. In contrast, overexpression of NEAT1_1 has the opposite effect, increasing cell proliferation. Transcriptomic analyses of high-risk neuroblastoma cells with altered NEAT1 ratios and increased paraspeckle abundance after ASO treatment showed an upregulation of differentiation pathways, as opposed to the usual aggressive neuroblastic phenotype. Thus, we have developed potential anti-cancer ASO drugs that can transiently increase growth-inhibiting NEAT1_2 RNA at the expense of growth-promoting NEAT1_1 RNA. These ASOs, unlike others that degrade lncRNAs, provide insights into the importance of altering lncRNA polyadenylation events to suppress tumorigenesis as a strategy to combat cancer.
Collapse
Affiliation(s)
- Alina Naveed
- School of Human Sciences and School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jack A Cooper
- School of Human Sciences and School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ruohan Li
- School of Human Sciences and School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alysia Hubbard
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jingwei Chen
- Children's Cancer Institute Australia, Randwick, NSW, 2031, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Tao Liu
- Children's Cancer Institute Australia, Randwick, NSW, 2031, Australia
- Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Archa H Fox
- School of Human Sciences and School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
9
|
Decruyenaere P, Offner F, Vandesompele J. Circulating RNA biomarkers in diffuse large B-cell lymphoma: a systematic review. Exp Hematol Oncol 2021; 10:13. [PMID: 33593440 PMCID: PMC7885416 DOI: 10.1186/s40164-021-00208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype of non-Hodgkin's lymphomas (NHL). DLBCL is an aggressive malignancy that displays a great heterogeneity in terms of morphology, genetics and biological behavior. While a sustained complete remission is obtained in the majority of patients with standard immunochemotherapy, patients with refractory of relapsed disease after first-line treatment have a poor prognosis. This patient group represents an important unmet need in lymphoma treatment. In recent years, improved understanding of the underlying molecular pathogenesis had led to new classification and prognostication tools, including the development of cell-free biomarkers in liquid biopsies. Although the majority of studies have focused on the use of cell-free fragments of DNA (cfDNA), there has been an increased interest in circulating-free coding and non-coding RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), as well as RNA encapsulated in extracellular vesicles or tumor-educated platelets (TEPs). We performed a systematic search in PubMed to identify articles that evaluated circulating RNA as diagnostic, subtype, treatment response or prognostic biomarkers in a human DLBCL population. A total of 35 articles met the inclusion criteria. The aim of this systematic review is to present the current understanding of circulating RNA molecules as biomarker in DLBCL and to discuss their future potential.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Fu DW, Liu AC. LncRNA SBF2-AS1 Promotes Diffuse Large B-Cell Lymphoma Growth by Regulating FGFR2 via Sponging miR-494-3p. Cancer Manag Res 2021; 13:571-578. [PMID: 33519236 PMCID: PMC7837595 DOI: 10.2147/cmar.s284258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Currently, there is no efficient and feasible method for diffuse large B-cell lymphoma (DLBCL) in clinical practice, and the main reason is the unclear pathogenesis of DLBCL, which leads to a high fatality rate of DLBCL. Methods Therefore, it is meaningful to explore the molecular mechanism of DLBCL and find a targeted therapeutic approach from the molecular level. Results Long non-coding RNA (lncRNA) SBF2-AS1 was highly expressed in DLBCL tissues and cell lines. Silencing of SBF2-AS1 inhibited the viability and growth of OCI-LY-3 cells. Furthermore, SBF2-AS1 acted as a sponge of miR-494-3p and inhibited its expression. And miR-494-3p directly targeted FGFR2. Functionally, forced expression of miR-494-3p or knockdown of FGFR2 removed the promoted effects of lncRNA SBF2-AS1 on DLBCL development. In vivo tumorigenesis experiments indicated SBF2-AS1 accelerated tumor growth via miR-494-3p/FGFR2 axis. Conclusion Our study revealed that SBF2-AS1 promoted the growth of DLBCL, which were mediated by miR-494-3p/FGFR2 axis.
Collapse
Affiliation(s)
- Dong-Wei Fu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, People's Republic of China
| | - Ai-Chun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, People's Republic of China
| |
Collapse
|
11
|
Shi Y, Ding D, Qu R, Tang Y, Hao S. Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Onco Targets Ther 2020; 13:12097-12112. [PMID: 33262609 PMCID: PMC7699984 DOI: 10.2147/ott.s281810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide. The molecular mechanisms underlying DLBCL have not been fully elucidated, and approximately 40% of patients who undergo standard chemoimmunotherapy still present with primary refractory disease or relapse. Non-coding RNAs (ncRNAs), a group of biomolecules functioning at the RNA level, are increasingly recognized as vital components of molecular biology. With the development of RNA-sequencing (RNA-Seq) technology, accumulating evidence shows that ncRNAs are important mediators of diverse biological processes such as cell proliferation, differentiation, and apoptosis. They are also considered promising biomarkers and better candidates than proteins and genes for the early recognition of disease onset, as they are associated with relative stability, specificity, and reproducibility. In this review, we provide the first comprehensive description of the current knowledge regarding three groups of ncRNAs-microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-focusing on their characteristics, molecular functions, as well as diagnostic and therapeutic potential in DLBCL. This review provides an exhaustive account for researchers to explore novel biomarkers for the diagnosis and prognosis of DLBCL and therapeutic targets.
Collapse
Affiliation(s)
- Yan Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Daihong Ding
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
12
|
Gao Q, Li Z, Meng L, Ma J, Xi Y, Wang T. Transcriptome profiling reveals an integrated mRNA-lncRNA signature with predictive value for long-term survival in diffuse large B-cell lymphoma. Aging (Albany NY) 2020; 12:23275-23295. [PMID: 33221755 PMCID: PMC7746345 DOI: 10.18632/aging.104100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
For patients with diffuse large B-cell lymphoma (DLBCL), survival at 24 months is a milestone for long-term survival. The purpose of this study was to develop a multigene risk score (MGRS) to refine the International Prognostic Index (IPI) model to identify patients with DLBCL at high risk of death within 24 months. Using a robust statistical strategy, we built a MGRS incorporating nine mRNAs and two lncRNAs. Stratification and multivariable Cox regression analysis confirmed the MGRS as an independent risk factor. A nomogram based on IPI+MGRS model was constructed and its calibration plot showed close agreement between predicted 2-year survival rate and observed rate. The 2-year AUC was bigger with the IPI+MGRS model (ΔAUC=0.162; 95%CI 0.1295–0.1903) than with the IPI model, and the IPI+MGRS model more accurately predicted the prognostic risk of DLBCL. The 2-year survival decision curve revealed the IPI+MGRS model was more useful clinically than the IPI model. Functional enrichment analysis showed that the MGRS correlated with cell cycle, DNA replication and repair. The results were validated using an independent external dataset. In conclusion, we successfully developed an integrated mRNA–lncRNA signature to refine the IPI model for predicting long-term survival of patients with DLBCL.
Collapse
Affiliation(s)
- Qian Gao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhiyao Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Lingxian Meng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jinsha Ma
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan 030013, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
13
|
Transcriptional Profiling Reveals Ribosome Biogenesis, Microtubule Dynamics and Expression of Specific lncRNAs to be Part of a Common Response to Cell-Penetrating Peptides. Biomolecules 2020; 10:biom10111567. [PMID: 33213097 PMCID: PMC7698553 DOI: 10.3390/biom10111567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides that are able to efficiently penetrate cellular lipid bilayers. Although CPPs have been used as carriers in conjugation with certain cargos to target specific genes and pathways, how rationally designed CPPs per se affect global gene expression has not been investigated. Therefore, following time course treatments with 4 CPPs-penetratin, PepFect14, mtCPP1 and TP10, HeLa cells were transcriptionally profiled by RNA sequencing. Results from these analyses showed a time-dependent response to different CPPs, with specific sets of genes related to ribosome biogenesis, microtubule dynamics and long-noncoding RNAs being differentially expressed compared to untreated controls. By using an image-based high content phenotypic profiling platform we confirmed that differential gene expression in CPP-treated HeLa cells strongly correlates with changes in cellular phenotypes such as increased nucleolar size and dispersed microtubules, compatible with altered ribosome biogenesis and cell growth. Altogether these results suggest that cells respond to different cell penetrating peptides by alteration of specific sets of genes, which are possibly part of the common response to such stimulus.
Collapse
|
14
|
Yu H, Peng S, Chen X, Han S, Luo J. Long non-coding RNA NEAT1 serves as a novel biomarker for treatment response and survival profiles via microRNA-125a in multiple myeloma. J Clin Lab Anal 2020; 34:e23399. [PMID: 32608537 PMCID: PMC7521229 DOI: 10.1002/jcla.23399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The present study aimed to explore the association of long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) with multiple myeloma (MM) risk and further investigate its correlation with clinical features, treatment response, survival profiles, and its interaction with microRNA-125a (miR-125a) in MM patients. METHODS Totally, 114 de novo symptomatic MM patients and 30 healthy donors (as controls) were recruited. Their bone marrow samples were collected before treatment (MM patients) and at enrollment (healthy donors), respectively. Subsequently, plasma cells were isolated from bone marrow for detection of lncRNA NEAT1 and miR-125a expression via reverse transcription quantitative polymerase chain reaction. RESULTS lncRNA NEAT1 was upregulated in MM patients compared with healthy donors and presented with excellent value in distinguishing MM patients from healthy donors. In MM patients, lncRNA NEAT1 positively associated with International Staging System (ISS) stage, beta-2 microglobulin (β2-MG), and lactate dehydrogenase (LDH), but not correlated with core cytogenetics and other clinical features. Furthermore, lncRNA NEAT1 negatively associated with complete remission (CR), overall remission rate (ORR), progression-free survival (PFS), and overall survival (OS). Moreover, lncRNA NEAT1 negatively associated with miR-125a in MM patients. MiR-125a was downregulated in MM patients compared with healthy donors, and it negatively associated with ISS stage, β2-MG, and LDH, but positively correlated with CR, ORR, PFS, and OS in MM patients. CONCLUSION lncRNA NEAT1 might interact with miR-125a, and serves as a novel biomarker for treatment response and survival profiles in MM, indicating its clinical value for MM management.
Collapse
Affiliation(s)
- Haifeng Yu
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| | - Shuailing Peng
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| | - Xi Chen
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| | - Shuiyun Han
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| | - Jialin Luo
- Department of Lymphatic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China.,Department of Lymphatic Medical Oncology, Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
15
|
Vecchio E, Fiume G, Correnti S, Romano S, Iaccino E, Mimmi S, Maisano D, Nisticò N, Quinto I. Insights about MYC and Apoptosis in B-Lymphomagenesis: An Update from Murine Models. Int J Mol Sci 2020; 21:E4265. [PMID: 32549409 PMCID: PMC7352788 DOI: 10.3390/ijms21124265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023] Open
Abstract
The balance between cell survival and cell death represents an essential part of human tissue homeostasis, while altered apoptosis contributes to several pathologies and can affect the treatment efficacy. Impaired apoptosis is one of the main cancer hallmarks and some types of lymphomas harbor mutations that directly affect key regulators of cell death (such as BCL-2 family members). The development of novel techniques in the field of immunology and new animal models has greatly accelerated our understanding of oncogenic mechanisms in MYC-associated lymphomas. Mouse models are a powerful tool to reveal multiple genes implicated in the genesis of lymphoma and are extensively used to clarify the molecular mechanism of lymphoma, validating the gene function. Key features of MYC-induced apoptosis will be discussed here along with more recent studies on MYC direct and indirect interactors, including their cooperative action in lymphomagenesis. We review our current knowledge about the role of MYC-induced apoptosis in B-cell malignancies, discussing the transcriptional regulation network of MYC and regulatory feedback action of miRs during MYC-driven lymphomagenesis. More importantly, the finding of new modulators of apoptosis now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (S.C.); (S.R.); (E.I.); (S.M.); (D.M.); (N.N.)
| | | | | | | | | | | | | | | | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (S.C.); (S.R.); (E.I.); (S.M.); (D.M.); (N.N.)
| |
Collapse
|
16
|
Huang X, Qian W, Ye X. Long Noncoding RNAs in Diffuse Large B-Cell Lymphoma: Current Advances and Perspectives. Onco Targets Ther 2020; 13:4295-4303. [PMID: 32547063 PMCID: PMC7244244 DOI: 10.2147/ott.s253330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a complex and aggressive malignancy originating from B lymphocytes and characterized by extensive clinical, phenotypic and molecular heterogeneity. Although research conducted over the past decades has substantially improved our understanding of DLBCL, its pathogenesis has not yet been fully elucidated. The development of RNA sequencing technology has allowed the identification of numerous long noncoding RNAs (lncRNAs) that exhibit aberrant expression in DLBCL. These lncRNAs play crucial roles in DLBCL development and pathogenesis and are thus good candidates for use as diagnostic biomarkers or therapeutic targets. In this review, we describe the lncRNAs associated with DLBCL, summarize their characteristics and molecular functions, and discuss their relationships with clinical practice.
Collapse
Affiliation(s)
- Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
17
|
MYC-regulated lncRNA NEAT1 promotes B cell proliferation and lymphomagenesis via the miR-34b-5p-GLI1 pathway in diffuse large B-cell lymphoma. Cancer Cell Int 2020; 20:87. [PMID: 32206038 PMCID: PMC7081629 DOI: 10.1186/s12935-020-1158-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/29/2020] [Indexed: 12/28/2022] Open
Abstract
Background LncRNA NEAT1 has been identified as a tumour driver in many human cancers. However, the underlying mechanism of lncRNA NEAT1 in diffuse large B-cell lymphoma (DLBCL) progression is unclear. Methods The expression levels of NEAT1, GLI1 and miR-34b-5p were detected by RT-qPCR and Western blotting in DLBCL tissues and cell lines. MTT and colony formation assays were performed to examine cell proliferation, while annexin-V staining and TUNEL assays were performed to measure cell apoptosis. The effect of NEAT1, GLI1 and miR-34b-5p on cell cycle-associated proteins was evaluated by Western blotting. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were employed to investigate the interaction between NEAT1 and miR-34b-5p or GLI1 and miR-34b-5p. Moreover, chromatin immunoprecipitation (ChIP) was performed to demonstrate the interaction between MYC and NEAT1. Results NEAT1 and GLI1 were upregulated while miR-34b-5p was downregulated in DLBCL tissues and cell lines compared to normal controls. Knockdown of NEAT1 or overexpression of miR-34b-5p inhibited cell proliferation but promoted cell apoptosis. Overexpression of NEAT1 reversed GLI1-knockdown induced attenuation of cell proliferation. In other words, NEAT1 acted as a competing endogenous RNA (ceRNA), regulating the miR-34b-5p-GLI1 axis, further affecting the proliferation of DLBCL. Moreover, MYC modulated NEAT1 transcription by directly binding to the NEAT1 promoter. Conclusion We revealed that MYC-regulated NEAT1 promoted DLBCL proliferation via the miR-34b-5p-GLI1 pathway, which could provide a novel therapeutic target for DLBCL.
Collapse
|
18
|
Cheng H, Yan Z, Wang X, Cao J, Chen W, Qi K, Zhou D, Xia J, Qi N, Li Z, Xu K. Downregulation of long non-coding RNA TUG1 suppresses tumor growth by promoting ubiquitination of MET in diffuse large B-cell lymphoma. Mol Cell Biochem 2019; 461:47-56. [PMID: 31338678 DOI: 10.1007/s11010-019-03588-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/13/2019] [Indexed: 01/12/2023]
Abstract
Long non-coding RNAs (lncRNAs) can modulate gene expression through different mechanisms, but the fundamental molecular mechanism between lncRNAs and MET protein in diffuse large B-cell lymphoma (DLBCL) was poorly understood. The expression of lncRNA TUG1 and MET in DLBCL tissues and cell lines was determined by quantitative real-time PCR and western blotting. Cell proliferation, invasion and apoptosis were determined by cell counting kit-8 assay, transwell assay and flow cytometer. The animal xenograft model was established by the injection of DLBCL cells carrying si-TUG1. The expression of TUG1 and MET was upregulated in DLBCL tissues and cells. We demonstrated that MET was altered in the TUG1 knockdown DLBCL cells, and confirmed the interaction between TUG1 and MET by RNA pull-down and RNA immunoprecipitation. Furthermore, knockdown of TUG1 reduced MET protein level by promoting ubiquitination, and suppressed tumor growth in vitro and in vivo. Our findings demonstrated that TUG1 exerted its oncogenic function in DLBCL by inhibiting the ubiquitination and the subsequent degradation of MET. Knockdown of TUG1 through MET downregulation suppressed DLBCL cell proliferation and tumor growth.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Down-Regulation/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Ubiquitination/genetics
- Up-Regulation/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Zhiling Yan
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Xue Wang
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Wei Chen
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Dian Zhou
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Jieyun Xia
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Na Qi
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Department of Hematology, Key Laboratory of Bone Marrow Stem Cell, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|