1
|
Mashayekhi V, Schomisch A, Rasheed S, Aparicio-Puerta E, Risch T, Yildiz D, Koch M, Both S, Ludwig N, Legroux TM, Keller A, Müller R, Fuhrmann G, Hoppstädter J, Kiemer AK. The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages. Cell Commun Signal 2024; 22:344. [PMID: 38937789 PMCID: PMC11212187 DOI: 10.1186/s12964-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Annika Schomisch
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Ernesto Aparicio-Puerta
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Timo Risch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Thierry M Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Department of Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
2
|
Susa F, Limongi T, Borgione F, Peiretti S, Vallino M, Cauda V, Pisano R. Comparative Studies of Different Preservation Methods and Relative Freeze-Drying Formulations for Extracellular Vesicle Pharmaceutical Applications. ACS Biomater Sci Eng 2023; 9:5871-5885. [PMID: 37671648 PMCID: PMC10565719 DOI: 10.1021/acsbiomaterials.3c00678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Extracellular vesicles (EVs) have been studied for years for their role as effectors and mediators of cell-to-cell communication and their potential application to develop new and increasingly performing nanotechnological systems for the diagnosis and/or treatment of many diseases. Given all the EVs applications as just isolated, functionalized, or even engineered cellular-derived pharmaceuticals, the standardization of reliable and reproducible methods for their preservation is urgently needed. In this study, we isolated EVs from a healthy blood cell line, B lymphocytes, and compared the effectiveness of different storage methods and relative freeze-drying formulations to preserve some of the most important EVs' key features, i.e., concentration, mean size, protein content, and surface antigen's expression. To develop a preservation method that minimally affects the EVs' integrity and functionality, we applied the freeze-drying process in combination with different excipients. Since EVs are isolated not only from body fluids but also from culture media conditioned by the cells growing there, we decided to test both the effects of the traditional pharmaceutical excipient and of biological media to develop EVs solidified products with desirable appearance and performance properties. Results showed that some of the tested excipients, i.e., sugars in combination with dextran and glycine, successfully maintained the stability and integrity of EVs upon lyophilization. In addition, to evaluate the preservation of the EVs' biological activity, we assessed the cytotoxicity and internalization ability of the reconstituted EVs in healthy (B lymphocytes) and tumoral (Burkitt's lymphoma) cells. Reconstituted EVs demonstrated toxicity only toward the cancerous cells, opening new therapeutic opportunities for the oncological field. Furthermore, our study showed how some biological or cellular-conditioned fluids, commonly used in the field of cell cultures, can act not only as cryoprotectants but also as active pharmaceutical ingredients, significantly tuning the therapeutic effect of EVs, even increasing their cellular internalization.
Collapse
Affiliation(s)
- Francesca Susa
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Borgione
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Silvia Peiretti
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Vallino
- Consiglio
Nazionale delle Ricerche di Torino, Strada delle Cacce 73, 10129 Turin, Italy
| | - Valentina Cauda
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Roberto Pisano
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
3
|
Sastrawidjaya C, Nguyen PHD. A commentary on: TDO2-augmented fibroblasts secrete EVs enriched in immunomodulatory Y-derived small RNA. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e99. [PMID: 38939510 PMCID: PMC11080861 DOI: 10.1002/jex2.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/21/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2024]
Affiliation(s)
- Clarissa Sastrawidjaya
- Department of Pharmacology, Institute for Digital MedicineNational University of SingaporeSingaporeSingapore
| | - Phuong H. D. Nguyen
- Department of Pharmacology, Institute for Digital MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
4
|
Williams K, Khan A, Lee YS, Hare JM. Cell-based therapy to boost right ventricular function and cardiovascular performance in hypoplastic left heart syndrome: Current approaches and future directions. Semin Perinatol 2023; 47:151725. [PMID: 37031035 PMCID: PMC10193409 DOI: 10.1016/j.semperi.2023.151725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Congenital heart disease remains one of the most frequently diagnosed congenital diseases of the newborn, with hypoplastic left heart syndrome (HLHS) being considered one of the most severe. This univentricular defect was uniformly fatal until the introduction, 40 years ago, of a complex surgical palliation consisting of multiple staged procedures spanning the first 4 years of the child's life. While survival has improved substantially, particularly in experienced centers, ventricular failure requiring heart transplant and a number of associated morbidities remain ongoing clinical challenges for these patients. Cell-based therapies aimed at boosting ventricular performance are under clinical evaluation as a novel intervention to decrease morbidity associated with surgical palliation. In this review, we will examine the current burden of HLHS and current modalities for treatment, discuss various cells therapies as an intervention while delineating challenges and future directions for this therapy for HLHS and other congenital heart diseases.
Collapse
Affiliation(s)
- Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine. Miami FL, USA; Batchelor Children's Research Institute University of Miami Miller School of Medicine. Miami FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA; Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine. Miami FL, USA.
| |
Collapse
|
5
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
6
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Extracellular Vesicles as Therapeutic Resources in the Clinical Environment. Int J Mol Sci 2023; 24:2344. [PMID: 36768664 PMCID: PMC9917082 DOI: 10.3390/ijms24032344] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The native role of extracellular vesicles (EVs) in mediating the transfer of biomolecules between cells has raised the possibility to use them as therapeutic vehicles. The development of therapies based on EVs is now expanding rapidly; here we will describe the current knowledge on different key points regarding the use of EVs in a clinical setting. These points are related to cell sources of EVs, isolation, storage, and delivery methods, as well as modifications to the releasing cells for improved production of EVs. Finally, we will depict the application of EVs therapies in clinical trials, considering the impact of the COVID-19 pandemic on the development of these therapies, pointing out that although it is a promising therapy for human diseases, we are still in the initial phase of its application to patients.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
7
|
Sun X, Mao Y, Liu B, Gu K, Liu H, Du W, Li R, Zhang J. Mesenchymal Stem Cell-Derived Exosomes Enhance 3D-Printed Scaffold Functions and Promote Alveolar Bone Defect Repair by Enhancing Angiogenesis. J Pers Med 2023; 13:jpm13020180. [PMID: 36836414 PMCID: PMC9963484 DOI: 10.3390/jpm13020180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The reconstruction of severe alveolar bone defects remains a complex and challenging field for clinicians. Three-dimensional-printed scaffolds can adapt precisely to the complicated shape of the bone defects, which is an alternative solution to bone tissue engineering. Our previous study constructed an innovative low-temperature 3D-printed silk fibroin/collagen I/nano-hydroxyapatite (SF/COL-I/nHA) composite scaffold with a stable structure and remarkable biocompatibility. However, the clinical translation of most scaffolds is limited by insufficient angiogenesis and osteogenesis. In this study, we investigated the effects of human umbilical cord mesenchymal-stem-cell-derived exosomes (hUCMSC-Exos) on bone regeneration, especially from the perspective of inducing angiogenesis. HUCMSC-Exos were isolated and characterized. In vitro, the effect of hUCMSC-Exos on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) was examined. Moreover, the loading and release of hUCMSC-Exos on 3D-printed SF/COL-I/nHA scaffolds were evaluated. In vivo, hUCMSC-Exos and 3D-printed SF/COL-I/nHA scaffolds were implanted into alveolar bone defects, and bone regeneration and angiogenesis were investigated by micro-CT, HE staining, Masson staining, and immunohistochemical analysis. The results showed that hUCMSC-Exos stimulated HUVEC proliferation, migration, and tube formation in vitro, and the effect increased with increasing exosome concentrations. In vivo, the combination of hUCMSC-Exos and 3D-printed SF/COL-I/nHA scaffolds promoted alveolar bone defect repair by enhancing angiogenesis and osteogenesis. We constructed an elaborate cell-free bone-tissue-engineering system by combining hUCMSC-Exos with 3D-printed SF/COL-I/nHA scaffolds, potentially providing new ideas for treating alveolar bone defects.
Collapse
Affiliation(s)
- Xiaodi Sun
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Yupu Mao
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Beibei Liu
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- The Affiliated Stomatological Hospital of Nankai University, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ke Gu
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Han Liu
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Du
- Tianjin Key Laboratory of Blood Cell Therapy Technology, Tianjin 300384, China
- Union Stem Cell & Gene Engineering Co., Ltd., Tianjin 300384, China
| | - Ruixin Li
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Correspondence: (R.L.); (J.Z.)
| | - Jian Zhang
- The Affiliated Stomatological Hospital of Nankai University, School of Medicine, Nankai University, Tianjin 300071, China
- Correspondence: (R.L.); (J.Z.)
| |
Collapse
|
8
|
Mestry C, Ashavaid TF, Shah SA. Key methodological challenges in detecting circulating miRNAs in different biofluids. Ann Clin Biochem 2023; 60:14-26. [PMID: 36113172 DOI: 10.1177/00045632221129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The technological advancement in diagnostic techniques has immensely improved the capability of predicting disease progression. Yet, there is a great interest in developing newer biomarkers that can enhance disease risk prediction thereby minimising the associated morbidity and mortality. Circulating miRNAs, a non-coding RNA molecule, are critical regulators in the pathophysiology of various complex multifactorial diseases. In recent years, circulating miRNAs have been enormously studied and are considered as an emerging biomarker due to their easy accessibility, stability, and detection by sequence-specific amplification methods. However, there is a distinct lack of consensus regarding the preanalytical factors such as preferred sample selection, methodological aspects, etc that may independently or together influence the detection of circulating miRNAs resulting in erroneous expression profiles. Therefore, the present review makes an attempt to highlight the various pre-analytical and analytical factors that can potentially influence the circulating miRNA levels. Literature on circulating miRNA's stability, processing and quantitation in different biofluids along with the effect of various controllable and uncontrollable factors influencing circulating miRNA expression have been summarised in the current review.
Collapse
Affiliation(s)
- Chitra Mestry
- Research Laboratories, 29537P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| | - Tester F Ashavaid
- Department of Laboratory Medicine, P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| | - Swarup Av Shah
- Department of Laboratory Medicine, P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| |
Collapse
|
9
|
Lyu N, Knight R, Robertson SYT, Dos Santos A, Zhang C, Ma C, Xu J, Zheng J, Deng SX. Stability and Function of Extracellular Vesicles Derived from Immortalized Human Corneal Stromal Stem Cells: A Proof of Concept Study. AAPS J 2022; 25:8. [PMID: 36471035 DOI: 10.1208/s12248-022-00767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
With significant advancement and development of extracellular vesicle (EV)-based therapies, there is a growing need to understand how their storage affects their physical and functional characteristics. EVs were isolated from the conditioned medium of a corneal stromal stem cell line (imCSSC) using Total Exosome isolation kit (TEI) and ultracentrifugation (UC) combined protocol. Purified EVs were stored at 4°C, - 80°C, room temperature (RT) after lyophilization with or without trehalose for 4 weeks. EVs stored at - 80°C and RT (lyophilization with trehalose) demonstrated a comparable morphology, while the freeze-dried samples without trehalose showed aggregation and degradation under a transmission electron microscope (TEM). Lyophilized samples without trehalose demonstrated a decreased particle concentration, recovery rate and protein concentration, which was remediated by the addition of trehalose. EVs stored at - 80℃ showed no change in the protein expression of CD9, CD63, and CD81. Regardless of the storage condition, all EV samples investigated reduced inflammation, as well as inhibited expression of fibrotic markers in vitro. Lyophilization of EVs with trehalose was a feasible storage method that retained the physical property and in vitro biological activities of EVs after 4 weeks of storage, while - 80°C offered the best retention of imCSSC-derived EV physical properties. For the first time, this data demonstrated a practical and translatable method for the storage of CSSC-derived EVs for clinical use.
Collapse
Affiliation(s)
- Ning Lyu
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA.,Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Robert Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Sarah Y T Robertson
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Aurelie Dos Santos
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Chi Zhang
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Chao Ma
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Jie Zheng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
10
|
Stability of exosomes in the postmortem serum and preliminary study on exosomal miRNA expression profiling in serum from myocardial infarction cadavers. Int J Legal Med 2022; 137:825-834. [PMID: 36416963 DOI: 10.1007/s00414-022-02913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Exosome-encapsulated miRNAs could potentially be sensitive biomarkers of human diseases. Since a lipid bilayer membrane surrounds exosomes, the exosomal miRNA may stably exist in body fluids with diseases as well as biological fluids. Therefore, exosomal miRNA may be helpful for autopsy diagnosis. Assuming cadaver blood would be most useful, we initially examined serum exosome stability with regard to storage temperatures and periods. Characteristic analyses of the exosome revealed that exosomes and the content, miRNA, were stably preserved until at least three days when stored at below 20 °C. Subsequently, exosomal miRNA expression profiling was performed on the serum of acute myocardial infarction (AMI, 4 cases) autopsy bodies and on hemorrhagic shock bodies used as the control (CT, 3 cases). Results showed that significant twofold up- and downregulations of expression of 18 and 16 miRNAs were detectable in AMI as compared to the CT, respectively. miR-126-3p, which has been reported to be increased in serum of AMI patients and a mouse model, was one of the significantly upregulated miRNAs. Furthermore, dysregulation of exosomal miRNAs, such as miR-145-5p, miR-143-3p, and miR-222-3p, which are involved in cardioprotection, may be associated with AMI pathogenesis. These findings provide a novel perspective on the potential role of exosomal miRNA in determining the cause of death.
Collapse
|
11
|
Microvesicles and Microvesicle-Associated microRNAs Reflect Glioblastoma Regression: Microvesicle-Associated miR-625-5p Has Biomarker Potential. Int J Mol Sci 2022; 23:ijms23158398. [PMID: 35955533 PMCID: PMC9369245 DOI: 10.3390/ijms23158398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and recurrent form of brain cancer in adults. We hypothesized that the identification of biomarkers such as certain microRNAs (miRNAs) and the circulating microvesicles (MVs) that transport them could be key to establishing GB progression, recurrence and therapeutic response. For this purpose, circulating MVs were isolated from the plasma of GB patients (before and after surgery) and of healthy subjects and characterized by flow cytometry. OpenArray profiling and the individual quantification of selected miRNAs in plasma and MVs was performed, followed by target genes’ prediction and in silico survival analysis. It was found that MVs’ parameters (number, EGFRvIII and EpCAM) decreased after the surgical resection of GB tumors, but the inter-patient variability was high. The expression of miR-106b-5p, miR-486-3p, miR-766-3p and miR-30d-5p in GB patients’ MVs was restored to control-like levels after surgery: miR-106b-5p, miR-486-3p and miR-766-3p were upregulated, while miR-30d-5p levels were downregulated after surgical resection. MiR-625-5p was only identified in MVs isolated from GB patients before surgery and was not detected in plasma. Target prediction and pathway analysis showed that the selected miRNAs regulate genes involved in cancer pathways, including glioma. In conclusion, miR-625-5p shows potential as a biomarker for GB regression or recurrence, but further in-depth studies are needed.
Collapse
|
12
|
Wright A, Snyder OL, Christenson LK, He H, Weiss ML. Effect of Pre-Processing Storage Condition of Cell Culture-Conditioned Medium on Extracellular Vesicles Derived from Human Umbilical Cord-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms23147716. [PMID: 35887064 PMCID: PMC9320900 DOI: 10.3390/ijms23147716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
EVs can be isolated from a conditioned medium derived from mesenchymal stromal cells (MSCs), yet the effect of the pre-processing storage condition of the cell culture-conditioned medium prior to EV isolation is not well-understood. Since MSCs are already in clinical trials, the GMP-grade of the medium which is derived from their manufacturing might have the utility for preclinical testing, and perhaps, for clinical translation, so the impact of pre-processing storage condition on EV isolation is a barrier for utilization of this MSC manufacturing by-product. To address this problem, the effects of the pre-processing storage conditions on EV isolation, characterization, and function were assessed using a conditioned medium (CM) derived from human umbilical cord-derived MSCs (HUC-MSCs). Hypothesis: The comparison of three different pre-processing storage conditions of CM immediately processed for EV isolation would reveal differences in EVs, and thus, suggest an optimal pre-processing storage condition. The results showed that EVs derived from a CM stored at room temperature, 4 °C, −20 °C, and −80 °C for at least one week were not grossly different from EVs isolated from the CM immediately after collection. EVs derived from an in pre-processing −80 °C storage condition had a significantly reduced polydispersity index, and significantly enhanced dot blot staining, but their zeta potential, hydrodynamic size, morphology and size in transmission electron microscopy were not significantly different from EVs derived from the CM immediately processed for isolation. There was no impact of pre-processing storage condition on the proliferation of sarcoma cell lines exposed to EVs. These data suggest that the CM produced during GMP-manufacturing of MSCs for clinical applications might be stored at −80 °C prior to EV isolation, and this may enable production scale-up, and thus, and enable preclinical and clinical testing, and EV lot qualification.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA; (A.W.); (O.L.S.); (H.H.)
| | - Orman L. Snyder
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA; (A.W.); (O.L.S.); (H.H.)
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Hong He
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA; (A.W.); (O.L.S.); (H.H.)
| | - Mark L. Weiss
- Department of Anatomy and Physiology, Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: ; Tel.: +1-785-532-4520
| |
Collapse
|
13
|
Zeng Y, Qiu Y, Jiang W, Shen J, Yao X, He X, Li L, Fu B, Liu X. Biological Features of Extracellular Vesicles and Challenges. Front Cell Dev Biol 2022; 10:816698. [PMID: 35813192 PMCID: PMC9263222 DOI: 10.3389/fcell.2022.816698] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| |
Collapse
|
14
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:cells11131989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence:
| |
Collapse
|
15
|
Sivanantham A, Jin Y. Impact of Storage Conditions on EV Integrity/Surface Markers and Cargos. Life (Basel) 2022; 12:life12050697. [PMID: 35629364 PMCID: PMC9146501 DOI: 10.3390/life12050697] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are small biological particles released into biofluids by every cell. Based on their size, they are classified into small EVs (<100 nm or <200 nm) and medium or large EVs (>200 nm). In recent years, EVs have garnered interest for their potential medical applications, including disease diagnosis, cell-based biotherapies, targeted drug delivery systems, and others. Currently, the long-term and short-term storage temperatures for biofluids and EVs are −80 °C and 4 °C, respectively. The storage capacity of EVs can depend on their number, size, function, temperature, duration, and freeze−thaw cycles. While these parameters are increasingly studied, the effects of preservation and storage conditions of EVs on their integrity remain to be understood. Knowledge gaps in these areas may ultimately impede the widespread applicability of EVs. Therefore, this review summarizes the current knowledge on the effect of storage conditions on EVs and their stability and critically explores prospective ways for improving long-term storage conditions to ensure EV stability.
Collapse
Affiliation(s)
| | - Yang Jin
- Correspondence: ; Tel.: +1-617-358-1356
| |
Collapse
|
16
|
Li Y, Wu H, Jiang X, Dong Y, Zheng J, Gao J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: combining with intranasal delivery. Acta Pharm Sin B 2022; 12:3215-3232. [PMID: 35967290 PMCID: PMC9366301 DOI: 10.1016/j.apsb.2022.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical translation of stem cells and their extracellular vesicles (EVs)-based therapy for central nervous system (CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with the invasiveness of current administration routes prevent stem cells or EVs from fully exerting their clinical therapeutic potential. Intranasal (IN) delivery is a possible strategy to solve problems as IN route could circumvent the brain‒blood barrier non-invasively and fit repeated dosage regimens. Herein, we gave an overview of studies and clinical trials involved with IN route and discussed the possibility of employing IN delivery to solve problems in stem cells or EVs-based therapy. We reviewed relevant researches that combining stem cells or EVs-based therapy with IN administration and analyzed benefits brought by IN route. Finally, we proposed possible suggestions to facilitate the development of IN delivery of stem cells or EVs.
Collapse
Affiliation(s)
- Yaosheng Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghui Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunfei Dong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juanjuan Zheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 88208436.
| |
Collapse
|
17
|
Trenkenschuh E, Richter M, Heinrich E, Koch M, Fuhrmann G, Friess W. Enhancing the Stabilization Potential of Lyophilization for Extracellular Vesicles. Adv Healthc Mater 2022; 11:e2100538. [PMID: 34310074 PMCID: PMC11468620 DOI: 10.1002/adhm.202100538] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EV) are an emerging technology as immune therapeutics and drug delivery vehicles. However, EVs are usually stored at -80 °C which limits potential clinical applicability. Freeze-drying of EVs striving for long-term stable formulations is therefore studied. The most appropriate formulation parameters are identified in freeze-thawing studies with two different EV types. After a freeze-drying feasibility study, four lyophilized EV formulations are tested for storage stability for up to 6 months. Freeze-thawing studies revealed improved colloidal EV stability in presence of sucrose or potassium phosphate buffer instead of sodium phosphate buffer or phosphate-buffered saline. Less aggregation and/or vesicle fusion occurred at neutral pH compared to slightly acidic or alkaline pH. EVs colloidal stability can be most effectively preserved by addition of low amounts of poloxamer 188. Polyvinyl pyrrolidone failed to preserve EVs upon freeze-drying. Particle size and concentration of EVs are retained over 6 months at 40 °C in lyophilizates containing 10 mm K- or Na-phosphate buffer, 0.02% poloxamer 188, and 5% sucrose. The biological activity of associated beta-glucuronidase is maintained for 1 month, but decreased after 6 months. Here optimized parameters for lyophilization of EVs that contribute to generate long-term stable EV formulations are presented.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universitaet MuenchenMunich81377Germany
| | - Maximilian Richter
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Eilien Heinrich
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbruecken66123Germany
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Wolfgang Friess
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universitaet MuenchenMunich81377Germany
| |
Collapse
|
18
|
Prasai A, Jay JW, Jupiter D, Wolf SE, El Ayadi A. Role of Exosomes in Dermal Wound Healing: A Systematic Review. J Invest Dermatol 2022; 142:662-678.e8. [PMID: 34461128 PMCID: PMC9400548 DOI: 10.1016/j.jid.2021.07.167] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
Cell-based therapy imparts its therapeutic effects through soluble GFs and vesicular bodies such as exosomes. A systematic review with a meta-analysis of preclinical studies was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and the modified Stroke Therapy Academic Industry Roundtable guidelines to identify exosomes as an archetype biological therapy for dermal wound healing and to provide guidelines for the concentrations to be used in preclinical studies. A total of 51 rodent studies were included in the systematic review and 9 were included in the meta-analysis section. Three independent reviewers cross-screened eligibility and selected studies for quality assessment from 3,064 published studies on exosomes and wound healing. The mean quality scores for all studies were 5.08 ± 0.752 and 5.11 ± 1.13 for systematic review and meta-analysis, respectively. Exosome effects were reported to have the highest efficacy at 7 days (OR = 1.82, 95% confidence interval = 0.69‒2.95) than at 14 days (OR = 2.29, 95% confidence interval = 0.01‒4.56) after administration. Exosomes were reported to regulate all phases of skin wound healing, mostly by the actions of circulating microRNA. The outcome of this review may be used to guide preclinical and clinical studies on the role of exosomes in wound healing.
Collapse
Affiliation(s)
- Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | | | | | |
Collapse
|
19
|
Zhang XB, Chen XY, Qi J, Zhou HY, Zhao XB, Hu YC, Zhang RH, Yu DC, Gao XD, Wang KP, Ma L. New hope for intervertebral disc degeneration: bone marrow mesenchymal stem cells and exosomes derived from bone marrow mesenchymal stem cell transplantation. Curr Gene Ther 2021; 22:291-302. [PMID: 34636308 DOI: 10.2174/1566523221666211012092855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs), multidirectional cells with self-renewal capacity, can differentiate into many cell types and play essential roles in tissue healing and regenerative medicine. Cell experiments and in vivo research in animal models have shown that BMSCs can repair degenerative discs by promoting cell proliferation and expressing extracellular matrix (ECM) components, such as type II collagen and protein-polysaccharides. Delaying or reversing the intervertebral disc (IVD) degeneration (IDD) process at an etiological level may be an effective strategy. However, despite increasingly in-depth research, some deficiencies in cell transplantation timing and strategy remain, preventing the clinical application of cell transplantation. Exosomes exhibit the characteristics of the mother cells from which they were secreted and can inhibit nucleus pulposus (NP) cell (NPC) apoptosis and delay IDD through intercellular communication. Furthermore, the use of exosomes effectively avoids problems associated with cell transplantation, such as immune rejection. This manuscript introduces almost all of the BMSCs and exosomes derived from BMSCs (BMSCs-Exos) described in the IDD literature. Many challenges regarding the use of cell transplantation and therapeutic exosome intervention for IDD remain to be overcome.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Shanxi 710000. China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Jin Qi
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xiao-Bing Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| | - Lin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Gansu 730000. China
| |
Collapse
|
20
|
Qin B, Hu XM, Su ZH, Zeng XB, Ma HY, Xiong K. Tissue-derived extracellular vesicles: Research progress from isolation to application. Pathol Res Pract 2021; 226:153604. [PMID: 34500372 DOI: 10.1016/j.prp.2021.153604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are the structures that all cells release into the environment. They are separated by a lipid bilayer and contain the cellular components that release them. To date, most studies have been performed on EVs derived from cell supernatants or different body fluids, while the number of studies on EV isolation directly from tissues is still limited. Studies of EV isolation directly from tissues may provide us with better information. This review summarizes the role of EV in the extracellular matrix, the protocol for isolation of EV in the tissue interstitium, and the application of the protocol in different tissues.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhen-Hong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Xiao-Bo Zeng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Hong-Ying Ma
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, China.
| |
Collapse
|
21
|
The Essential Need for a Validated Potency Assay for Cell-Based Therapies in Cardiac Regenerative and Reparative Medicine. A Practical Approach to Test Development. Stem Cell Rev Rep 2021; 17:2235-2244. [PMID: 34463902 PMCID: PMC8599250 DOI: 10.1007/s12015-021-10244-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 01/04/2023]
Abstract
Biological treatments are one of the medical breakthroughs in the twenty-first century. The initial enthusiasm pushed the field towards indiscriminatory use of cell therapy regardless of the pathophysiological particularities of underlying conditions. In the reparative and regenerative cardiovascular field, the results of the over two decades of research in cell-based therapies, although promising still could not be translated into clinical scenario. Now, when we identified possible deficiencies and try to rebuild its foundations rigorously on scientific evidence, development of potency assays for the potential therapeutic product is one of the steps which will bring our goal of clinical translation closer. Although, highly challenging, the potency tests for cell products are considered as a priority by the regulatory agencies. In this paper we describe the main characteristics and challenges for a cell therapy potency test focusing on the cardiovascular field. Moreover, we discuss different steps and types of assays that should be taken into consideration for an eventual potency test development by tying together two fundamental concepts: target disease and expected mechanism of action.
Collapse
|
22
|
Prieto-Vila M, Yoshioka Y, Ochiya T. Biological Functions Driven by mRNAs Carried by Extracellular Vesicles in Cancer. Front Cell Dev Biol 2021; 9:620498. [PMID: 34527665 PMCID: PMC8435577 DOI: 10.3389/fcell.2021.620498] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are extracellular nanovesicles released by most cells. EVs play essential roles in intercellular communication via the transport of a large variety of lipids, proteins, and nucleic acids to recipient cells. Nucleic acids are the most commonly found molecules inside EVs, and due to their small size, microRNAs and other small RNAs are the most abundant nucleic acids. However, longer molecules, such as messenger RNAs (mRNAs), have also been found. mRNAs encapsulated within EVs have been shown to be transferred to recipient cells and translated into proteins, altering the behavior of the cells. Secretion of EVs is maintained not only through multiple normal physiological conditions but also during aberrant pathological conditions, including cancer. Recently, the mRNAs carried by EVs in cancer have attracted great interest due to their broad roles in tumor progression and microenvironmental remodeling. This review focuses on the biological functions driven by mRNAs carried in EVs in cancer, which include supporting tumor progression by activating cancer cell growth, migration, and invasion; inducing microenvironmental remodeling via hypoxia, angiogenesis, and immunosuppression; and promoting modulation of the microenvironment at distant sites for the generation of a premetastatic niche, collectively inducing metastasis. Furthermore, we describe the potential use of mRNAs carried by EVs as a noninvasive diagnostic tool and novel therapeutic approach.
Collapse
Affiliation(s)
| | | | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Krut Z, Pelled G, Gazit D, Gazit Z. Stem Cells and Exosomes: New Therapies for Intervertebral Disc Degeneration. Cells 2021; 10:cells10092241. [PMID: 34571890 PMCID: PMC8471333 DOI: 10.3390/cells10092241] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) occurs as a result of an imbalance of the anabolic and catabolic processes in the intervertebral disc, leading to an alteration in the composition of the extracellular matrix (ECM), loss of nucleus pulposus (NP) cells, excessive oxidative stress and inflammation. Degeneration of the IVD occurs naturally with age, but mechanical trauma, lifestyle factors and certain genetic abnormalities can increase the likelihood of symptomatic disease progression. IVDD, often referred to as degenerative disc disease (DDD), poses an increasingly substantial financial burden due to the aging population and increasing incidence of obesity in the United States. Current treatments for IVDD include pharmacological and surgical interventions, but these lack the ability to stop the progression of disease and restore the functionality of the IVD. Biological therapies have been evaluated but show varying degrees of efficacy in reversing disc degeneration long-term. Stem cell-based therapies have shown promising results in the regeneration of the IVD, but face both biological and ethical limitations. Exosomes play an important role in intercellular communication, and stem cell-derived exosomes have been shown to maintain the therapeutic benefit of their origin cells without the associated risks. This review highlights the current state of research on the use of stem-cell derived exosomes in the treatment of IVDD.
Collapse
Affiliation(s)
- Zoe Krut
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Z.K.); (G.P.); (D.G.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
24
|
Tayebi M, Yang D, Collins DJ, Ai Y. Deterministic Sorting of Submicrometer Particles and Extracellular Vesicles Using a Combined Electric and Acoustic Field. NANO LETTERS 2021; 21:6835-6842. [PMID: 34355908 DOI: 10.1021/acs.nanolett.1c01827] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sorting of extracellular vesicles has important applications in early stage diagnostics. Current exosome isolation techniques, however, suffer from being costly, having long processing times, and producing low purities. Recent work has shown that active sorting via acoustic and electric fields are useful techniques for microscale separation activities, where combining these has the potential to take advantage of multiple force mechanisms simultaneously. In this work, we demonstrate an approach using both electrical and acoustic forces to manipulate bioparticles and submicrometer particles for deterministic sorting, where we find that the concurrent application of dielectrophoretic (DEP) and acoustophoretic forces decreases the critical diameter at which particles can be separated. We subsequently utilize this approach to sort subpopulations of extracellular vesicles, specifically exosomes (<200 nm) and microvesicles (>300 nm). Using our combined acoustic/electric approach, we demonstrate exosome purification with more than 95% purity and 81% recovery, well above comparable approaches.
Collapse
Affiliation(s)
- Mahnoush Tayebi
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Dahou Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vitctoria 3010, Australia
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
25
|
Merivaara A, Zini J, Koivunotko E, Valkonen S, Korhonen O, Fernandes FM, Yliperttula M. Preservation of biomaterials and cells by freeze-drying: Change of paradigm. J Control Release 2021; 336:480-498. [PMID: 34214597 DOI: 10.1016/j.jconrel.2021.06.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/14/2022]
Abstract
Freeze-drying is the most widespread method to preserve protein drugs and vaccines in a dry form facilitating their storage and transportation without the laborious and expensive cold chain. Extending this method for the preservation of natural biomaterials and cells in a dry form would provide similar benefits, but most results in the domain are still below expectations. In this review, rather than consider freeze-drying as a traditional black box we "break it" through a detailed process thinking approach. We discuss freeze-drying from process thinking aspects, introduce the chemical, physical, and mechanical environments important in this process, and present advanced biophotonic process analytical technology. In the end, we review the state of the art in the freeze-drying of the biomaterials, extracellular vesicles, and cells. We suggest that the rational design of the experiment and implementation of advanced biophotonic tools are required to successfully preserve the natural biomaterials and cells by freeze-drying. We discuss this change of paradigm with existing literature and elaborate on our perspective based on our new unpublished results.
Collapse
Affiliation(s)
- Arto Merivaara
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | - Jacopo Zini
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Elle Koivunotko
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Sami Valkonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Faculté de Sciences, Sorbonne Université, UMR7574, 75005 Paris, France
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
26
|
Simionescu N, Zonda R, Petrovici AR, Georgescu A. The Multifaceted Role of Extracellular Vesicles in Glioblastoma: microRNA Nanocarriers for Disease Progression and Gene Therapy. Pharmaceutics 2021; 13:988. [PMID: 34210109 PMCID: PMC8309075 DOI: 10.3390/pharmaceutics13070988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive form of brain cancer in adults, characterized by poor survival rates and lack of effective therapies. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression post-transcriptionally through specific pairing with target messenger RNAs (mRNAs). Extracellular vesicles (EVs), a heterogeneous group of cell-derived vesicles, transport miRNAs, mRNAs and intracellular proteins, and have been shown to promote horizontal malignancy into adjacent tissue, as well as resistance to conventional therapies. Furthermore, GB-derived EVs have distinct miRNA contents and are able to penetrate the blood-brain barrier. Numerous studies have attempted to identify EV-associated miRNA biomarkers in serum/plasma and cerebrospinal fluid, but their collective findings fail to identify reliable biomarkers that can be applied in clinical settings. However, EVs carrying specific miRNAs or miRNA inhibitors have great potential as therapeutic nanotools in GB, and several studies have investigated this possibility on in vitro and in vivo models. In this review, we discuss the role of EVs and their miRNA content in GB progression and resistance to therapy, with emphasis on their potential as diagnostic, prognostic and disease monitoring biomarkers and as nanocarriers for gene therapy.
Collapse
Affiliation(s)
- Natalia Simionescu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
- “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Radu Zonda
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Anca Roxana Petrovici
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Hasdeu Street, 050568 Bucharest, Romania
| |
Collapse
|
27
|
Butreddy A, Kommineni N, Dudhipala N. Exosomes as Naturally Occurring Vehicles for Delivery of Biopharmaceuticals: Insights from Drug Delivery to Clinical Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1481. [PMID: 34204903 PMCID: PMC8229362 DOI: 10.3390/nano11061481] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Exosomes as nanosized vesicles are emerging as drug delivery systems for therapeutics owing to their natural origin, their ability to mediate intercellular communication, and their potential to encapsulate various biological molecules such as proteins and nucleic acids within the lipid bilayer membrane or in the lumen. Exosomes contain endogenous components (proteins, lipids, RNA) that could be used to deliver cargoes to target cells, offering an opportunity to diagnose and treat various diseases. Owing to their ability to travel safely in extracellular fluid and to transport cargoes to target cells with high efficacy, exosomes offer enhanced delivery of cargoes in vivo. However, several challenges related to the stabilization of the exosomes, the production of sufficient amounts of exosomes with safety and efficacy, the efficient loading of drugs into exosomes, the clearance of exosomes from circulation, and the transition from the bench scale to clinical production may limit their development and clinical use. For the clinical use of exosomes, it is important to understand the molecular mechanisms behind the transport and function of exosome vesicles. This review exploits techniques related to the isolation and characterization of exosomes and their drug delivery potential to enhance the therapeutic outcome and stabilization methods. Further, routes of administration, clinical trials, and regulatory aspects of exosomes will be discussed in this review.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad 500078, Telangana State, India;
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Narendar Dudhipala
- Depratment of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal 506005, Telangana State, India
| |
Collapse
|
28
|
MAGEA4 Coated Extracellular Vesicles Are Stable and Can Be Assembled In Vitro. Int J Mol Sci 2021; 22:ijms22105208. [PMID: 34069064 PMCID: PMC8155938 DOI: 10.3390/ijms22105208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are valued candidates for the development of new tools for medical applications. Vesicles carrying melanoma-associated antigen A (MAGEA) proteins, a subfamily of cancer-testis antigens, are particularly promising tools in the fight against cancer. Here, we have studied the biophysical and chemical properties of MAGEA4-EVs and show that they are stable under common storage conditions such as keeping at +4 °C and -80 °C for at least 3 weeks after purification. The MAGEA4-EVs can be freeze-thawed two times without losing MAGEA4 in detectable quantities. The attachment of MAGEA4 to the surface of EVs cannot be disrupted by high salt concentrations or chelators, but the vesicles are sensitive to high pH. The MAGEA4 protein can bind to the surface of EVs in vitro, using robust passive incubation. In addition, EVs can be loaded with recombinant proteins fused to the MAGEA4 open reading frame within the cells and also in vitro. The high stability of MAGEA4-EVs ensures their potential for the development of EV-based anti-cancer applications.
Collapse
|
29
|
Tessier SN, Bookstaver LD, Angpraseuth C, Stannard CJ, Marques B, Ho UK, Muzikansky A, Aldikacti B, Reátegui E, Rabe DC, Toner M, Stott SL. Isolation of intact extracellular vesicles from cryopreserved samples. PLoS One 2021; 16:e0251290. [PMID: 33983964 PMCID: PMC8118530 DOI: 10.1371/journal.pone.0251290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2021] [Indexed: 01/23/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as promising candidates in biomarker discovery and diagnostics. Protected by the lipid bilayer, the molecular content of EVs in diverse biofluids are protected from RNases and proteases in the surrounding environment that may rapidly degrade targets of interests. Nonetheless, cryopreservation of EV-containing samples to -80°C may expose the lipid bilayer to physical and biological stressors which may result in cryoinjury and contribute to changes in EV yield, function, or molecular cargo. In the present work, we systematically evaluate the effect of cryopreservation at -80°C for a relatively short duration of storage (up to 12 days) on plasma- and media-derived EV particle count and/or RNA yield/quality, as compared to paired fresh controls. On average, we found that the plasma-derived EV concentration of stored samples decreased to 23% of fresh samples. Further, this significant decrease in EV particle count was matched with a corresponding significant decrease in RNA yield whereby plasma-derived stored samples contained only 47-52% of the total RNA from fresh samples, depending on the extraction method used. Similarly, media-derived EVs showed a statistically significant decrease in RNA yield whereby stored samples were 58% of the total RNA from fresh samples. In contrast, we did not obtain clear evidence of decreased RNA quality through analysis of RNA traces. These results suggest that samples stored for up to 12 days can indeed produce high-quality RNA; however, we note that when directly comparing fresh versus cryopreserved samples without cryoprotective agents there are significant losses in total RNA. Finally, we demonstrate that the addition of the commonly used cryoprotectant agent, DMSO, alongside greater control of the rate of cooling/warming, can rescue EVs from damaging ice formation and improve RNA yield.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Lauren D. Bookstaver
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Cindy Angpraseuth
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Cleo J. Stannard
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Beatriz Marques
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Uyen K. Ho
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States of America
| | - Berent Aldikacti
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Eduardo Reátegui
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Daniel C. Rabe
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Mehmet Toner
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Shannon L. Stott
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zhang XB, Zhang RH, Su X, Qi J, Hu YC, Shi JT, Zhang K, Wang KP, Zhou HY. Exosomes in osteosarcoma research and preclinical practice. Am J Transl Res 2021; 13:882-897. [PMID: 33841628 PMCID: PMC8014357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Osteosarcoma (OS) is a rare soft-tissue malignant tumor with high lung metastasis and mortality rates. Preoperative chemotherapy, surgical resection of the lesion and postoperative chemotherapy are still the main treatments for osteosarcoma. The prognosis, however, is poor for patients with nonresectable, primary metastatic or relapsed disease. Recent studies have shown that targeted therapy for OS based on the characteristics of exosomes is very attractive. Exosomes are nanosized extracellular vesicles (EVs) that participate in cell-to-cell communication by transporting biologically active cargo molecules, causing changes in OS cell function and playing important roles in OS disease progression. With the characteristics of secretory cells, exosomes transport cargo (e.g., microRNAs) that can be used to detect the progress of a disease and can serve as markers and/or therapeutic targets for clinical diagnosis of OS. In this review, the roles of exosomes in OS pathogenesis, invasion, metastasis, drug resistance, diagnosis and treatment are summarized. In addition, this article elaborates a series of challenges to overcome before exosomes are applied in clinical practice and provides suggestions based on current evidence for the direction of future research.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Xin Su
- Department of Cardiology, Gansu Province People’s HospitalLanzhou 730000, China
| | - Jin Qi
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Key Laboratory of Bone and Joint Disease Research of Gansu ProvinceLanzhou 730000, China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Lanzhou Xigu District People’s HospitalLanzhou 730000, Gansu, China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
- Lanzhou Xigu District People’s HospitalLanzhou 730000, Gansu, China
| |
Collapse
|
31
|
Comparison of extracellular vesicle isolation and storage methods using high-sensitivity flow cytometry. PLoS One 2021; 16:e0245835. [PMID: 33539354 PMCID: PMC7861365 DOI: 10.1371/journal.pone.0245835] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/10/2021] [Indexed: 11/19/2022] Open
Abstract
Extracellular vesicles (EVs) are of interest for a wide variety of biomedical applications. A major limitation for the clinical use of EVs is the lack of standardized methods for the fast and reproducible separation and subsequent detection of EV subpopulations from biofluids, as well as their storage. To advance this application area, fluorescence-based characterization technologies with single-EV resolution, such as high-sensitivity flow cytometry (HS-FCM), are powerful to allow assessment of EV fractionation methods and storage conditions. Furthermore, the use of HS-FCM and fluorescent labeling of EV subsets is expanding due to the potential of high-throughput, multiplex analysis, but requires further method development to enhance the reproducibility of measurements. In this study, we have applied HS-FCM measurements next to standard EV characterization techniques, including nanoparticle tracking analysis, to compare the yield and purity of EV fractions obtained from lipopolysaccharide-stimulated monocytic THP-1 cells by two EV isolation methods, differential centrifugation followed by ultracentrifugation and the exoEasy membrane affinity spin column purification. We observed differences in EV yield and purity. In addition, we have investigated the influence of EV storage at 4°C or -80°C for up to one month on the EV concentration and the stability of EV-associated fluorescent labels. The concentration of the in vitro cell derived EV fractions was shown to remain stable under the tested storage conditions, however, the fluorescence intensity of labeled EV stored at 4°C started to decline within one day.
Collapse
|
32
|
Abstract
The discovery that all cells secrete extracellular vesicles (EVs) to shuttle proteins and nucleic acids to recipient cells suggested they play an important role in intercellular communication. EVs are widely distributed in many body fluids, including blood, cerebrospinal fluid, urine and saliva. Exosomes are nano-sized EVs of endosomal origin that regulate many pathophysiological processes including immune responses, inflammation, tumour growth, and infection. Healthy individuals release exosomes with a cargo of different RNA, DNA, and protein contents into the circulation, which can be measured non-invasively as biomarkers of healthy and diseased states. Cancer-derived exosomes carry a unique set of DNA, RNA, protein and lipid reflecting the stage of tumour progression, and may serve as diagnostic and prognostic biomarkers for various cancers. However, many gaps in knowledge and technical challenges in EVs and extracellular RNA (exRNA) biology, such as mechanisms of EV biogenesis and uptake, exRNA cargo selection, and exRNA detection remain. The NIH Common Fund-supported exRNA Communication Consortium was launched in 2013 to address major scientific challenges in this field. This review focuses on scientific highlights in biomarker discovery of exosome-based exRNA in cancer and its possible clinical application as cancer biomarkers.
Collapse
Affiliation(s)
- Christine Happel
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aniruddha Ganguly
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at the National Institutes of Health, Bethesda, MD 20892, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Human mesenchymal stromal cell source and culture conditions influence extracellular vesicle angiogenic and metabolic effects on human endothelial cells in vitro. J Trauma Acute Care Surg 2021; 89:S100-S108. [PMID: 32176171 DOI: 10.1097/ta.0000000000002661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mesenchymal stem/stromal cell (MSC)-derived extracellular vesicles (EVs) are a possible cell-free alternative to MSCs because they retain the regenerative potential of MSCs, while still mitigating some of their limitations (such as the possible elicitation of host immune responses). The promotion and restoration of angiogenesis, however, is an important component in treating trauma-related injuries, and has not been fully explored with EVs. Herein, we describe the effects of monolayer adipose-derived EVs, spheroid adipose-derived EVs (SAd-EVs), monolayer bone marrow-derived EVs (MBM-EVs), and spheroid bone marrow-derived EVs (SBM-EVs) on human umbilical vein endothelial cell (HUVEC) tube formation and mitochondrial respiration. METHODS The successful isolation of EVs derived from adipose MSCs or bone marrow MSCs in monolayer or spheroid cultures was confirmed by NanoSight (particle size distribution) and Western blot (surface marker expression). The EV angiogenic potential was measured using a 24-hour HUVEC tube formation assay. The EV effects on HUVEC mitochondrial function were evaluated using the Seahorse respirometer machine. RESULTS The number of junctions, branches, and the average length of branches formed at 24 hours of tube formation were significantly affected by cell and culture type; overall adipose-derived EVs outperformed bone marrow-derived EVs, and spheroid-derived EVs outperformed monolayer-derived EVs. Additionally, adipose-derived EVs resulted in significantly increased HUVEC mitochondrial maximal respiration and adenosine triphosphate (ATP) production, while only MBM-EVs negatively impacted HUVEC proton leak. CONCLUSION Adipose-derived EVs promoted HUVEC tube formation significantly more than bone marrow-derived EVs, while also maximizing HUVEC mitochondria function. Results demonstrate that, as with MSC therapies, it is possible to tailor EV culture and production to optimize therapeutic potential. LEVEL OF EVIDENCE Basic or Foundational Research.
Collapse
|
34
|
Esmaeili A, Hosseini S, Baghaban Eslaminejad M. Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment. Cell Mol Life Sci 2021; 78:79-91. [PMID: 32601714 PMCID: PMC11072722 DOI: 10.1007/s00018-020-03585-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Worldwide, osteoarthritis (OA) is one of the most common chronic diseases. In OA, profiling gene expression changes occur and cartilage tissue homeostasis is lost. Suggestions for OA treatment include regulation of gene expressions via the use of microRNAs (miRNAs). However, problems exist with the use of miRNAs, the most important of which is the delivery of sufficient amounts of effective miRNAs to save cartilage tissue. The engineering of extracellular vesicles (EVs) with the use of advanced techniques would be an efficient OA treatment. Therefore, we discuss the importance of miRNAs in terms of cartilage tissue regeneration and review recent advances in production of enriched EVs and miRNA delivery by EVs for future clinical applications.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
35
|
Evtushenko EG, Bagrov DV, Lazarev VN, Livshits MA, Khomyakova E. Adsorption of extracellular vesicles onto the tube walls during storage in solution. PLoS One 2020; 15:e0243738. [PMID: 33370319 PMCID: PMC7769454 DOI: 10.1371/journal.pone.0243738] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Short term storage of extracellular vesicle (EV) solutions at +4°C is a common practice, but the stability of EVs during this procedure has not been fully understood yet. Using nanoparticle tracking analysis, we have shown that EVs isolated from the conditioned medium of HT-29 cells exhibit a pronounced concentration decrease when stored in PBS in ordinary polypropylene tubes within the range of (0.5–2.1) × 1010 particles/ml. EV losses reach 51±3% for 0.5 ml of EVs in Eppendorf 2 ml tube at 48 hours of storage at +4°C. Around 2/3 of the observed losses have been attributed to the adsorption of vesicles onto tube walls. This result shows that the lower part (up to at least 2 × 1010 particles/ml) of the practically relevant concentration range for purified EVs is prone to adsorption losses at +4°C. Total particle losses could be reduced to 18–21% at 48 hours by using either Eppendorf Protein LoBind tubes or ordinary tubes with the surface blocked with bovine serum albumin or EVs. Reduction of losses to 15% has been shown for isolated EVs dissolved in the supernatant after 100 000 g centrifugation as a model of conditioned medium. Also, a previously unknown feature of diffusion-controlled adsorption was revealed for EVs. In addition to the decrease in particle count, this process causes the predominant losses of smaller particles.
Collapse
Affiliation(s)
- Evgeniy G. Evtushenko
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
- * E-mail:
| | - Dmitry V. Bagrov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vassili N. Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russian Federation
| | - Mikhail A. Livshits
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russian Federation
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena Khomyakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
| |
Collapse
|
36
|
Ueno Y, Hira K, Miyamoto N, Kijima C, Inaba T, Hattori N. Pleiotropic Effects of Exosomes as a Therapy for Stroke Recovery. Int J Mol Sci 2020; 21:ijms21186894. [PMID: 32962207 PMCID: PMC7555640 DOI: 10.3390/ijms21186894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke is the leading cause of disability, and stroke survivors suffer from long-term sequelae even after receiving recombinant tissue plasminogen activator therapy and endovascular intracranial thrombectomy. Increasing evidence suggests that exosomes, nano-sized extracellular membrane vesicles, enhance neurogenesis, angiogenesis, and axonal outgrowth, all the while suppressing inflammatory reactions, thereby enhancing functional recovery after stroke. A systematic literature review to study the association of stroke recovery with exosome therapy was carried out, analyzing species, stroke model, source of exosomes, behavioral analyses, and outcome data, as well as molecular mechanisms. Thirteen studies were included in the present systematic review. In the majority of studies, exosomes derived from mesenchymal stromal cells or stem cells were administered intravenously within 24 h after transient middle cerebral artery occlusion, showing a significant improvement of neurological severity and motor functions. Specific microRNAs and molecules were identified by mechanistic investigations, and their amplification was shown to further enhance therapeutic effects, including neurogenesis, angiogenesis, axonal outgrowth, and synaptogenesis. Overall, this review addresses the current advances in exosome therapy for stroke recovery in preclinical studies, which can hopefully be preparatory steps for the future development of clinical trials involving stroke survivors to improve functional outcomes.
Collapse
Affiliation(s)
- Yuji Ueno
- Correspondence: ; Tel.: +81-3-3813-3111; Fax: +81-3-5800-0547
| | | | | | | | | | | |
Collapse
|
37
|
Swanson WB, Gong T, Zhang Z, Eberle M, Niemann D, Dong R, Rambhia KJ, Ma PX. Controlled release of odontogenic exosomes from a biodegradable vehicle mediates dentinogenesis as a novel biomimetic pulp capping therapy. J Control Release 2020; 324:679-694. [PMID: 32534011 PMCID: PMC7429296 DOI: 10.1016/j.jconrel.2020.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Mineralized enamel and dentin provide protection to the dental pulp, which is vital tissue rich with cells, vasculature, and nerves in the inner tooth. Dental caries left untreated threaten exposure of the dental pulp, providing facile access for bacteria to cause severe infection both in the pulp and systemically. Dental materials which stimulate the formation of a protective dentin bridge after insult are necessary to seal the pulp chamber in an effort to maintain natural dentition and prevent pulpal infection. Dental materials to date including calcium hydroxide paste, mineral trioxide aggregate, and glass ionomer resin, are used with mixed results. Herein we exploited the cell-cell communicative properties of exosomes, extracellular vesicles derived from both mineralizing primary human dental pulp stem cells (hDPSCs) and an immortalized murine odontoblast cell line (MDPC-23), to catalyze the formation of a reactionary dentin bridge by recruiting endogenous stem cells of the dental pulp, through an easy-to-handle delivery vehicle which allows for their therapeutic controlled delivery at the pulp interface. Exosomes derived from both hDPSCs and MDPCs upregulated odontogenic gene expression and increased mineralization in vitro. We designed an amphiphilic synthetic polymeric vehicle from a triblock copolymer which encapsulates exosomes by polymeric self-assembly and maintains their biologic integrity throughout release up to 8-12 weeks. The controlled release of odontogenic exosomes resulted in a reparative dentin bridge formation, superior to glass-ionomer cement alone in vivo, in a rat molar pulpotomy model after six weeks. We have developed a platform for the encapsulation and controlled, tunable release of cell-derived exosomes, which maintains their advantageous physiologic properties reflective of the donor cells. This platform is used to modulate downstream recipient cells towards a designed dentinogenic trajectory in vitro and in vivo. Additionally, we have demonstrated the utility of an immortalized cell line to produce a high yield of exosomes with cross-species efficacy.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America
| | - Ting Gong
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America
| | - Zhen Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America
| | - Miranda Eberle
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan, United States of America
| | - David Niemann
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan, United States of America
| | - Ruonan Dong
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America
| | - Kunal J Rambhia
- Department of Biomedical Engineering, School of Medicine and College of Engineering, University of Michigan, United States of America
| | - Peter X Ma
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America; Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, United States of America; Department of Biomedical Engineering, School of Medicine and College of Engineering, University of Michigan, United States of America; Department of Materials Science and Engineering, College of Engineering, University of Michigan, United States of America.
| |
Collapse
|
38
|
The Emerging Role of Extracellular Vesicles in the Glioma Microenvironment: Biogenesis and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12071964. [PMID: 32707733 PMCID: PMC7409063 DOI: 10.3390/cancers12071964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are a diverse group of brain tumors comprised of malignant cells ('tumor' cells) and non-malignant 'normal' cells, including neural (neurons, glia), inflammatory (microglia, macrophage) and vascular cells. Tumor heterogeneity arises in part because, within the glioma mass, both 'tumor' and 'normal' cells secrete factors that form a unique microenvironment to influence tumor progression. Extracellular vesicles (EVs) are critical mediators of intercellular communication between immediate cellular neighbors and distantly located cells in healthy tissues/organs and in tumors, including gliomas. EVs mediate cell-cell signaling as carriers of nucleic acid, lipid and protein cargo, and their content is unique to cell types and physiological states. EVs secreted by non-malignant neural cells have important physiological roles in the healthy brain, which can be altered or co-opted to promote tumor progression and metastasis, acting in combination with glioma-secreted EVs. The cell-type specificity of EV content means that 'vesiculome' data can potentially be used to trace the cell of origin. EVs may also serve as biomarkers to be exploited for disease diagnosis and to assess therapeutic progress. In this review, we discuss how EVs mediate intercellular communication in glioma, and their potential role as biomarkers and readouts of a therapeutic response.
Collapse
|
39
|
NeuroEVs: Characterizing Extracellular Vesicles Generated in the Neural Domain. J Neurosci 2020; 39:9262-9268. [PMID: 31748281 DOI: 10.1523/jneurosci.0146-18.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 07/27/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Intercellular communication has recently been shown to occur via transfer of cargo loaded within extracellular vesicles (EVs). Present within all biofluids of the body, EVs can contain various signaling factors, including coding and noncoding RNAs (e.g., mRNA, miRNA, lncRNA, snRNA, tRNA, yRNA), DNA, proteins, and enzymes. Multiple types of cells appear to be capable of releasing EVs, including cancer, stem, epithelial, immune, glial, and neuronal cells. However, the functional impact of these circulating signals among neural networks within the brain has been difficult to establish given the complexity of cellular populations involved in release and uptake, as well as inherent limitations of examining a biofluid. In this brief commentary, we provide an analysis of the conceptual and technical considerations that limit our current understanding of signaling mediated by circulating EVs relative to their impact on neural function.
Collapse
|
40
|
Rogers RG, Ciullo A, Marbán E, Ibrahim AG. Extracellular Vesicles as Therapeutic Agents for Cardiac Fibrosis. Front Physiol 2020; 11:479. [PMID: 32528309 PMCID: PMC7255103 DOI: 10.3389/fphys.2020.00479] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Heart disease remains an increasing major public health challenge in the United States and worldwide. A common end-organ feature in diseased hearts is myocardial fibrosis, which stiffens the heart and interferes with normal pump function, leading to pump failure. The development of cells for regenerative therapy has been met with many pitfalls on its path to clinical translation. Recognizing that regenerative cells secrete therapeutically bioactive vesicles has paved the way to circumvent many failures of cell therapy. In this review, we provide an overview of extracellular vesicles (EVs), with a focus on their utility as therapeutic agents for cardiac regeneration. We also highlight the engineering potential of EVs to enhance their therapeutic application.
Collapse
Affiliation(s)
| | | | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
41
|
Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, Mehta M, Peterson JE, Munshi A, Ramesh R. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett 2020; 486:18-28. [PMID: 32439419 DOI: 10.1016/j.canlet.2020.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Exosomes are small membranous vesicles implicated in intercellular signalling. Through their uncanny ability to carry and deliver donor cellular cargo (biomolecules) to target cells, they exert a profound effect on the regular functioning of healthy cells and play a significant role in pathogenesis and progression of several diseases, including cancer. The composition and number of endogenously circulating exosomes frequently vary, which is often reflective of the pathophysiological status of the cell. Applicability of exosomes derived from normal cells as a drug carrier with or without modifying their intraluminal and surface components are generally tested. Conversely, exosomes also are reported to contribute to resistance towards several anti-cancer therapies. Therefore, it is necessary to carefully evaluate the role of exosomes in cancer progression, resistance and the potential use of exosomes as a delivery vehicle of cancer therapeutics. In this review, we summarize the recent advancements in the exploitation of exosomes as a drug delivery vehicle. We also discuss the role of exosomes in conferring resistance to anti-cancer therapeutics. While this review is focused on cancer, the exosome-based drug delivery and resistance is also applicable to other human diseases.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Akhil Srivastava
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Narsireddy Amreddy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohammad Razaq
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vipul Pareek
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rebaz Ahmed
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
42
|
Budgude P, Kale V, Vaidya A. Mesenchymal stromal cell‐derived extracellular vesicles as cell‐free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biol Int 2020; 44:1078-1102. [DOI: 10.1002/cbin.11313] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pallavi Budgude
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
- Symbiosis School of Biological SciencesSymbiosis International (Deemed University) Pune 412115 India
| |
Collapse
|
43
|
Qin B, Zhang Q, Hu XM, Mi TY, Yu HY, Liu SS, Zhang B, Tang M, Huang JF, Xiong K. How does temperature play a role in the storage of extracellular vesicles? J Cell Physiol 2020; 235:7663-7680. [PMID: 32324279 DOI: 10.1002/jcp.29700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) contain specific proteins, lipids, and nucleic acids that can be passed to other cells as signal molecules to alter their function. However, there are many problems and challenges in the conversion and clinical application of EVs. Storage and protection of EVs is one of the issues that need further research. To adapt to potential clinical applications, this type of problem must be solved. This review summarizes the storage practices of EVs in recent years, and explains the impact of temperature on the quality and stability of EVs during storage based on current research, and explains the potential mechanisms involved in this effect as much as possible.
Collapse
Affiliation(s)
- Bo Qin
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tuo-Yang Mi
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hai-Yang Yu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shen-Shen Liu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Mu Tang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
44
|
Cheng Y, Zeng Q, Han Q, Xia W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell 2020; 10:295-299. [PMID: 29616487 PMCID: PMC6418301 DOI: 10.1007/s13238-018-0529-4] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yirui Cheng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qingyu Zeng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qing Han
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
45
|
Shao M, Xu Q, Wu Z, Chen Y, Shu Y, Cao X, Chen M, Zhang B, Zhou Y, Yao R, Shi Y, Bu H. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther 2020; 11:37. [PMID: 31973730 PMCID: PMC6979401 DOI: 10.1186/s13287-020-1550-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
Background Using a toxin-induced nonhuman primate model of acute liver failure (ALF), we previously reported that peripheral infusion of human umbilical cord mesenchymal stem cells (hUC-MSCs) strongly suppresses the activation of circulating monocytes and interleukin-6 (IL-6) production, thereby disrupting the development of a cytokine storm and improving the prognosis of monkeys. MSCs are considered to play a therapeutic role under different stresses by adaptively producing specific factors, prompting us to investigate the factors that hUC-MSCs produce in response to high serum levels of IL-6, which plays a critical role in initiating and accelerating ALF. Methods We stimulated hUC-MSCs with IL-6, and the hUC-MSC-derived exosomes were deeply sequenced. The miRNAs in the exosomes that have potential to suppress IL-6-associated signaling pathway were screened, and the role of one of the most possible miRNAs was tested in the mouse model of inflammatory liver injury. Result We determined that miR-455-3p, which is secreted through exosomes and potentially targets PI3K signaling, was highly produced by hUC-MSCs with IL-6 stimulation. The miR-455-3p-enriched exosomes could inhibit the activation and cytokine production of macrophages challenged with lipopolysaccharide (LPS) both in vivo and in vitro. In a chemical liver injury mouse model, enforced expression of miR-455-3p could attenuate macrophage infiltration and local liver damage and reduce the serum levels of inflammatory factors, thereby improving liver histology and systemic disorder. Conclusions miR-455-3p-enriched exosomes derived from hUC-MSCs are a promising therapy for acute inflammatory liver injury.
Collapse
Affiliation(s)
- Mingyang Shao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Yuwei Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Yuke Shu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Xiaoyue Cao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Menglin Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Bo Zhang
- Sichuan Stem Cell Bank & Sichuan Neo-Life Stem Cell Biotech Inc., Chengdu, 610037, China
| | - Yongjie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China
| | - Rong Yao
- The Emergency Department, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China. .,Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, 610041, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
46
|
Whitehead CA, Kaye AH, Drummond KJ, Widodo SS, Mantamadiotis T, Vella LJ, Stylli SS. Extracellular vesicles and their role in glioblastoma. Crit Rev Clin Lab Sci 2019:1-26. [PMID: 31865806 DOI: 10.1080/10408363.2019.1700208] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Research on the role of extracellular vesicles (EVs) in disease pathogenesis has been rapidly growing over the last two decades. As EVs can mediate intercellular communication, they can ultimately facilitate both normal and pathological processes through the delivery of their bioactive cargo, which may include nucleic acids, proteins and lipids. EVs have emerged as important regulators of brain tumors, capable of transferring oncogenic proteins, receptors, and small RNAs that may support brain tumor progression, including in the most common type of brain cancer, glioma. Investigating the role of EVs in glioma is crucial, as the most malignant glioma, glioblastoma (GBM), is incurable with a dismal median survival of 12-15 months. EV research in GBM has primarily focused on circulating brain tumor-derived vesicles in biofluids, such as blood and cerebrospinal fluid (CSF), investigating their potential as diagnostic and prognostic biomarkers. Gaining a greater understanding of the role of EVs and their cargo in brain tumor progression may contribute to the discovery of novel diagnostics and therapeutics. In this review, we summarize the known and emerging functions of EVs in glioma biology and pathogenesis, as well as their emerging biomarker potential.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Andrew H Kaye
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Katharine J Drummond
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Australia
| | - Samuel S Widodo
- Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia
| | - Theo Mantamadiotis
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville, Australia
| | - Laura J Vella
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Stanley S Stylli
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| |
Collapse
|
47
|
Le Saux S, Aarrass H, Lai-Kee-Him J, Bron P, Armengaud J, Miotello G, Bertrand-Michel J, Dubois E, George S, Faklaris O, Devoisselle JM, Legrand P, Chopineau J, Morille M. Post-production modifications of murine mesenchymal stem cell (mMSC) derived extracellular vesicles (EVs) and impact on their cellular interaction. Biomaterials 2019; 231:119675. [PMID: 31838346 DOI: 10.1016/j.biomaterials.2019.119675] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
In regards to their key role in intercellular communication, extracellular vesicles (EVs) have a strong potential as bio-inspired drug delivery systems (DDS). With the aim of circumventing some of their well-known issues (production yield, drug loading yield, pharmacokinetics), we specifically focused on switching the biological vision of these entities to a more physico-chemical one, and to consider and fine-tune EVs as synthetic vectors. To allow a rational use, we first performed a full physico-chemical (size, concentration, surface charge, cryoTEM), biochemical (western blot, proteomics, lipidomics, transcriptomics) and biological (cell internalisation) characterisation of murine mesenchymal stem cell (mMSC)-derived EVs. A stability study based on evaluating the colloidal behaviour of obtained vesicles was performed in order to identify optimal storage conditions. We evidenced the interest of using EVs instead of liposomes, in regards to target cell internalisation efficiency. EVs were shown to be internalised through a caveolae and cholesterol-dependent pathway, following a different endocytic route than liposomes. Then, we characterised the effect of physical methods scarcely investigated with EVs (extrusion through 50 nm membranes, freeze-drying, sonication) on EV size, concentration, structure and cell internalisation properties. Our extensive characterisation of the effect of these physical processes highlights their promise as loading methods to make EVs efficient delivery vehicles.
Collapse
Affiliation(s)
- Sarah Le Saux
- ICGM, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Hanna Aarrass
- ICGM, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | | | - Patrick Bron
- CBS, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Jean Armengaud
- Laboratory «Innovative technologies for Detection and Diagnostics», CEA-Marcoule, DRF/JOLIOT/DMTS/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Laboratory «Innovative technologies for Detection and Diagnostics», CEA-Marcoule, DRF/JOLIOT/DMTS/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Justine Bertrand-Michel
- MetaToul-LIPIDOMIQUE, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC) Inserm/Université Paul Sabatier UMR1048, Toulouse, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Simon George
- MGX-Montpellier GenomiX, IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Orestis Faklaris
- Montpellier Ressources Imagerie, Biocampus, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | | | | - Joël Chopineau
- ICGM, Univ Montpellier, ENSCM, CNRS, Montpellier, France; Université de Nîmes, Nîmes, France
| | - Marie Morille
- ICGM, Univ Montpellier, ENSCM, CNRS, Montpellier, France.
| |
Collapse
|
48
|
An Update on Isolation Methods for Proteomic Studies of Extracellular Vesicles in Biofluids. Molecules 2019; 24:molecules24193516. [PMID: 31569778 PMCID: PMC6803898 DOI: 10.3390/molecules24193516] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer enclosed particles which present in almost all types of biofluids and contain specific proteins, lipids, and RNA. Increasing evidence has demonstrated the tremendous clinical potential of EVs as diagnostic and therapeutic tools, especially in biofluids, since they can be detected without invasive surgery. With the advanced mass spectrometry (MS), it is possible to decipher the protein content of EVs under different physiological and pathological conditions. Therefore, MS-based EV proteomic studies have grown rapidly in the past decade for biomarker discovery. This review focuses on the studies that isolate EVs from different biofluids and contain MS-based proteomic analysis. Literature published in the past decade (2009.1-2019.7) were selected and summarized with emphasis on isolation methods of EVs and MS analysis strategies, with the aim to give an overview of MS-based EV proteomic studies and provide a reference for future research.
Collapse
|
49
|
Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories. Nat Biomed Eng 2019; 3:695-705. [PMID: 31451800 PMCID: PMC6736698 DOI: 10.1038/s41551-019-0448-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/16/2019] [Indexed: 01/02/2023]
Abstract
Cardiosphere-derived cells (CDCs) are therapeutic candidates with disease-modifying bioactivity, but their variable potency has complicated their clinical translation. Transcriptomic analyses of CDCs from human donors have revealed that the therapeutic potency of these cells correlates with Wnt/β-catenin signalling and with β-catenin protein levels. Here, we show that skin fibroblasts engineered to overexpress β-catenin and the transcription factor Gata4 become immortal and therapeutically potent. Transplantation of the engineered fibroblasts into a mouse model of acute myocardial infarction led to improved cardiac function and mouse survival. And in the mdx mouse model of Duchenne muscular dystrophy, exosomes secreted by the engineered fibroblasts improved exercise capacity and reduced skeletal-muscle fibrosis. We also demonstrate that exosomes from high-potency CDCs exhibit enhanced levels of miR-92a (a known potentiator of the Wnt/β-catenin pathway), and that they activate cardioprotective bone-morphogenetic-protein signalling in cardiomyocytes. Our findings show that the modulation of canonical Wnt signalling can turn therapeutically inert mammalian cells into immortal exosome factories for cell-free therapies. Overexpression of β-catenin and the transcription factor Gata4 in skin fibroblasts converts them into therapeutically active cells that secrete reparative exosomes as shown in mice models of myocardial infarction and Duchenne muscular dystrophy.
Collapse
|
50
|
Marbán E. The Secret Life of Exosomes: What Bees Can Teach Us About Next-Generation Therapeutics. J Am Coll Cardiol 2019; 71:193-200. [PMID: 29325643 DOI: 10.1016/j.jacc.2017.11.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Mechanistic exploration has pinpointed nanosized extracellular vesicles, known as exosomes, as key mediators of the benefits of cell therapy. Exosomes appear to recapitulate the benefits of cells and more. As durable azoic entities, exosomes have numerous practical and conceptual advantages over cells. Will cells end up just being used to manufacture exosomes, or will they find lasting value as primary therapeutic agents? Here, a venerable natural process-the generation of honey-serves as an instructive parable. Flowers make nectar, which bees collect and process into honey. Cells make conditioned medium, which laboratory workers collect and process into exosomes. Unlike flowers, honey is durable, compact, and nutritious, but these facts do not negate the value of flowers themselves. The parallels suggest new ways of thinking about next-generation therapeutics.
Collapse
|