1
|
Carvalho C, Silva R, Melo TMVDPE, Inga A, Saraiva L. P53 and the Ultraviolet Radiation-Induced Skin Response: Finding the Light in the Darkness of Triggered Carcinogenesis. Cancers (Basel) 2024; 16:3978. [PMID: 39682165 DOI: 10.3390/cancers16233978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review delves into the significant cellular and molecular responses triggered by UVR exposure in human skin, emphasizing the pivotal role of mutant p53 (mutp53) in the carcinogenic process elicited by radiation. By underlining the role of a functional p53 in safeguarding skin cells from UVR-induced damage, this work underscores the potential significance of targeting mutp53, aiming to restore its wild-type-like activity (reactivation), as a protective strategy against skin cancer (SC), particularly NMSC. Most importantly, an interesting crosstalk between p53 and its vitamin D receptor (VDR) transcriptional target is also highlighted in the suppression of skin carcinogenesis, which opens the way to promising chemopreventive strategies involving synergistic combinations between mutp53 reactivators and vitamin D. Collectively, this review not only opens new avenues for future research, but also offers promising prospects for the development of novel beneficial approaches in the field of SC.
Collapse
Affiliation(s)
- Carla Carvalho
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Silva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Law SK, Liu CWC, Tong CWS, Au DCT. Potential of Resveratrol to Combine with Hydrogel for Photodynamic Therapy against Bacteria and Cancer-A Review. Biomedicines 2024; 12:2095. [PMID: 39335608 PMCID: PMC11428695 DOI: 10.3390/biomedicines12092095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and cancers are important issues in public health around the world. Currently, Western medicine is the most suitable approach when dealing with these issues. "Antibiotics" and "Corticosteroids" are the Western medicines used for bacterial infection. "Chemotherapy drugs", "surgery", and "radiotherapy" are common techniques used to treat cancer. These are conventional treatments with many side effects. PDT is a non-invasive and effective therapy for bacterial infection and cancer diseases. METHODS Nine electronic databases, namely WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), were searched to conduct this literature review, without any regard to language constraints. Studies focusing on the photodynamic actions of hydrogel and Resveratrol were included that evaluated the effect of PDT against bacteria and cancer. All eligible studies were analyzed and summarized in this review. RESULTS Resveratrol has antibacterial and anticancer effects. It can also act as PS in PDT or adjuvant but has some limitations. This is much better when combined with a hydrogel to enhance the effectiveness of PDT in the fight against bacteria and cancer. CONCLUSIONS Resveratrol combined with hydrogel is possible for PDT treatment in bacteria and cancer. They are compatible and reinforce each other to increase the effectiveness of PDT. However, much more work is required, such as cytotoxicity safety assessments of the human body and further enhancing the effectiveness of PDT in different environments for future investigations.
Collapse
Affiliation(s)
| | | | | | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong, China; (C.W.C.L.); (C.W.S.T.)
| |
Collapse
|
3
|
Lu H, Peng Z, Zheng Z, Li C, Wang Y, Liang L, Chen Y, Zeng K. Blocking the ATR-SerRS-VEGFA pathway targets angiogenesis for UV-induced cutaneous squamous cell carcinoma. Mol Carcinog 2024; 63:1160-1173. [PMID: 38695641 DOI: 10.1002/mc.23716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer, with an escalating incidence rate and a notable potential (up to 5%) for metastasis. Ultraviolet radiation (UVA and UVB) exposure is the primary risk factor for cSCC carcinogenesis, with literature suggesting ultraviolet radiation (UVR) promotes vascular endothelial growth factor A (VEGFA) expression. This study aims to investigate UVR-induced upregulation of VEGFA and explore combination therapeutic strategies. The skin squamous cell carcinoma cell line A431 was exposed to specific durations of ultraviolet radiation. The effect of emodin on ATR/SerRS/VEGFA pathway was observed. The cell masses were also transplanted subcutaneously into mice (n = 8). ATR inhibitor combined with emodin was used to observe the growth and angiogenesis of the xenografts. The results showed that UV treatment significantly enhanced the phosphorylation of SerRS and the expression level of VEGFA in A431 cells (p < 0.05). Treatment with emodin significantly inhibited this expression (p < 0.05), and the combination of emodin and ATR inhibitor further enhanced the inhibitory effect (p < 0.05). This phenomenon was further confirmed in the xenograft model, which showed that the combination of ATR inhibitor and emodin significantly inhibited the expression of VEGFA to inhibit angiogenesis (p < 0.05), thus showing an inhibitory effect on cSCC. This study innovatively reveals the molecular mechanism of UV-induced angiogenesis in cSCC and confirms SerRS as a novel target to inhibit cSCC angiogenesis and progression in vitro and in vivo studies.
Collapse
Affiliation(s)
- Hongyan Lu
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhangsong Peng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaohui Zheng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youyi Wang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liuping Liang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxiang Chen
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Jiang R, Fritz M, Que SKT. Cutaneous Squamous Cell Carcinoma: An Updated Review. Cancers (Basel) 2024; 16:1800. [PMID: 38791879 PMCID: PMC11119634 DOI: 10.3390/cancers16101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Representing the second most common skin cancer, the incidence and disease burden of cutaneous squamous cell carcinoma (cSCC) continues to increase. Surgical excision of the primary site effectively cures the majority of cSCC cases. However, an aggressive subset of cSCC persists with clinicopathological features that are indicative of higher recurrence, metastasis, and mortality risks. Acceleration of these features is driven by a combination of genetic and environmental factors. The past several years have seen remarkable progress in shaping the treatment landscape for advanced cSCC. Risk stratification and clinical management is a top priority. This review provides an overview of the current perspectives on cSCC with a focus on staging, treatment, and maintenance strategies, along with future research directions.
Collapse
Affiliation(s)
- Rina Jiang
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Mike Fritz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Syril Keena T. Que
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
5
|
El-Zahaby SA, Abdelhady SA, Ali MA, Younis SE, Elnaggar YSR. Limosomes versus hyalurolimosomes loaded with piperine for management of skin cancer. Int J Pharm 2024; 650:123730. [PMID: 38142014 DOI: 10.1016/j.ijpharm.2023.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Skin cancer is considered the fifth most commonly occurring cancer worldwide hampering both health and economy. Piperine had proven efficacy in fighting skin cancer cells. Unfortunately, this natural agent had limited ability to penetrate the skin. The aim of the current study was to formulate piperine-loaded limosomes and hyalurolimosomes incorporating limonene as an edge activator and hyaluronic acid as bioactive gelling agent for managing skin cancer. Titration method followed by homogenization was adopted to prepare the nanoliposomal formulations. Characterization involved size, & zeta potential measurements, examination using transmission electron microscope (TEM) and stability study. Biological evaluation of the antitumor activity of piperine nanoliposomal formulations against Ehrlich's (EAC) solid tumor was also performed. Drug loaded limosomes and hyalurolimosomes had particle size; 346.55 ± 8.55 & 372.70 ± 10.83 nm, respectively. Zeta potential was high enough to ensure their stability. TEM micrographs detected the surrounding layer of Hyaluronic acid formed around the spherical limosomal nano-carrier ensuring the formation of Hyalurolimosomes. All stored formulations showed non-significant differences compared with freshly prepared ones at p < 0.05. In addition, A DAD-HPLC method was developed and validated for Piperine analysis in the skin. Upon application of this method, it was found that hyalurolimosomes deliver double the concentration delivered by limosomes. The piperine hyalurolimosome group showed a significant reduction in tumor size with a smaller AUC compared to piperine gel, which was confirmed by in vivo studies. Consequently, hyalurolimosomes loaded with piperine is considered a promising nanocarrier system and a step forward better management of skin cancer introducing new hope in beating this deadly disease.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | - Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sameh E Younis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of international publishing & nanotechnology consultation center INCC, Faculty of Pharmacy, Pharos university, Alexandria, Egypt.
| |
Collapse
|
6
|
Tsuruyama T. Kullback-Leibler Divergence of an Open-Queuing Network of a Cell-Signal-Transduction Cascade. ENTROPY (BASEL, SWITZERLAND) 2023; 25:326. [PMID: 36832692 PMCID: PMC9955153 DOI: 10.3390/e25020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Queuing networks (QNs) are essential models in operations research, with applications in cloud computing and healthcare systems. However, few studies have analyzed the cell's biological signal transduction using QN theory. This study entailed the modeling of signal transduction as an open Jackson's QN (JQN) to theoretically determine cell signal transduction, under the assumption that the signal mediator queues in the cytoplasm, and the mediator is exchanged from one signaling molecule to another through interactions between the signaling molecules. Each signaling molecule was regarded as a network node in the JQN. The JQN Kullback-Leibler divergence (KLD) was defined using the ratio of the queuing time (λ) to the exchange time (μ), λ/μ. The mitogen-activated protein kinase (MAPK) signal-cascade model was applied, and the KLD rate per signal-transduction-period was shown to be conserved when the KLD was maximized. Our experimental study on MAPK cascade supported this conclusion. This result is similar to the entropy-rate conservation of chemical kinetics and entropy coding reported in our previous studies. Thus, JQN can be used as a novel framework to analyze signal transduction.
Collapse
Affiliation(s)
- Tatsuaki Tsuruyama
- Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8577, Japan;
- Department of Drug and Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| |
Collapse
|
7
|
Kiso-Farnè K, Tsuruyama T. Epidermal growth factor receptor cascade prioritizes the maximization of signal transduction. Sci Rep 2022; 12:16950. [PMID: 36216834 PMCID: PMC9550784 DOI: 10.1038/s41598-022-20663-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
Many studies have been performed to quantify cell signaling. Cell signaling molecules are phosphorylated in response to extracellular stimuli, with the phosphorylation sequence forming a signal cascade. The information gain during a signal event is given by the logarithm of the phosphorylation molecule ratio. The average information gain can be regarded as the signal transduction quantity (ST), which is identical to the Kullback-Leibler divergence (KLD), a relative entropy. We previously reported that if the total ST value in a given signal cascade is maximized, the ST rate (STR) of each signaling molecule per signal duration (min) approaches a constant value. To experimentally verify this theoretical conclusion, we measured the STR of the epidermal growth factor (EGF)-related cascade in A431 skin cancer cells following stimulation with EGF using antibody microarrays against phosphorylated signal molecules. The results were consistent with those from the theoretical analysis. Thus, signaling transduction systems may adopt a strategy that prioritizes the maximization of ST. Furthermore, signal molecules with similar STRs may form a signal cascade. In conclusion, ST and STR are promising properties for quantitative analysis of signal transduction.
Collapse
Affiliation(s)
- Kaori Kiso-Farnè
- grid.258799.80000 0004 0372 2033Center for anatomical, pathological, and forensic medical researches, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Tatsuaki Tsuruyama
- grid.258799.80000 0004 0372 2033Center for anatomical, pathological, and forensic medical researches, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan ,grid.258799.80000 0004 0372 2033Drug and Discovery Medicine, Graduate School of Medicine, Medical Innovation Center, Kyoto University, Kyoto, 606-8507 Japan ,grid.69566.3a0000 0001 2248 6943Department of Physics, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku 6-3, Sendai, 980-8578 Japan ,grid.418889.40000 0001 2198 115XDepartment of Molecular Biosciences, Radiation Effects Research Foundation, Minami-ku, Hiroshima, 732-0815 Japan ,grid.415392.80000 0004 0378 7849Department of Tumor Research, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka, 530-8480 Japan
| |
Collapse
|
8
|
Fang S, Wu Y, Zhang H, Zeng Q, Wang P, Zhang L, Yan G, Zhang G, Wang X. Molecular characterization of gene expression changes in murine cutaneous squamous cell carcinoma after 5-aminolevulinic acid photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 39:102907. [DOI: 10.1016/j.pdpdt.2022.102907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 01/20/2023]
|
9
|
Drețcanu G, Știrbu I, Leoplold N, Cruceriu D, Danciu C, Stănilă A, Fărcaș A, Borda IM, Iuhas C, Diaconeasa Z. Chemical Structure, Sources and Role of Bioactive Flavonoids in Cancer Prevention: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091117. [PMID: 35567117 PMCID: PMC9101215 DOI: 10.3390/plants11091117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 05/12/2023]
Abstract
There has been a major shift in the collective mindset around the world in recent decades, both in terms of food and in terms of the treatment of chronic diseases. Increasing numbers of people are choosing to prevent rather than treat, which is why many consumers are choosing plant-based diets, mainly due to their bioactive compounds. A significant case of bioactive compound is flavonoids-a wide subclass of an even wider class of phytochemicals: polyphenols. Flavonoids are a broad topic of study for researchers due to their potential in the prevention and treatment of a broad range of cancers. The aim of this review is to inform/update the reader on the diversity, accessibility and importance of flavonoids as biomolecules that are essential for optimal health, focusing on the potential of these compounds in the prevention of various types of cancer. Along with conventional sources, this review presents some of the possible methods for obtaining significant amounts of flavonoids based on a slightly different approach, genetic manipulation.
Collapse
Affiliation(s)
- Georgiana Drețcanu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Ioana Știrbu
- Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (I.Ș.); (N.L.)
| | - Nicolae Leoplold
- Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; (I.Ș.); (N.L.)
| | - Daniel Cruceriu
- Department of Molecular Biology and Biotechnology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Anca Fărcaș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| | - Ileana Monica Borda
- Sixth Department of Medical Specialties, Medical Rehabilitation, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cristian Iuhas
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-596893
| | - Zorița Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania; (G.D.); (A.S.); (A.F.); (Z.D.)
| |
Collapse
|
10
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Senapathy GJ, George BP, Abrahamse H. Exploring the Role of Phytochemicals as Potent Natural Photosensitizers in Photodynamic Therapy. Anticancer Agents Med Chem 2021; 20:1831-1844. [PMID: 32619181 DOI: 10.2174/1871520620666200703192127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer is still considered a deadly disease worldwide due to difficulties in diagnosis, painful treatment procedures, costly therapies, side effects, and cancer relapse. Cancer treatments using conventional methods like chemotherapy and radiotherapy were not convincing due to its post-treatment toxicity in the host. In Photodynamic Therapy (PDT), three individual non-toxic components including a photosensitizer, light source and oxygen cause damage to the cells and tissues when they are combined. OBJECTIVE In recent years, phytochemicals are being increasingly recognized as potent complementary drugs for cancer because of its natural availability, less toxicity and therapeutic efficiency in par with commercial drugs. Hence, the idea of using phytochemicals as natural photosensitizers in PDT resulted in a multiple pool of research studies with promising results in preclinical and clinical investigations. METHODS In this review, the potential of phytochemicals to act as natural photosensitizers for PDT, their mode of action, drawbacks, challenges and possible solutions are discussed in detail. RESULTS In PDT, natural photosensitizers, when used alone or in combination with other photosensitizers, induced cell death by apoptosis and necrosis, increased oxidative stress, altered cancer cell death signaling pathways, increased cytotoxicity and DNA damage in cancer cells. The pro-oxidant nature of certain antioxidant polyphenols, hormesis phenomenon, Warburg effect and DNA damaging potential plays a significant role in the photosensitizing mechanism of phytochemicals in PDT. CONCLUSION This review explores the role of phytochemicals that can act as photosensitizers alone or in combination with PDT and its mechanism of action on different cancers.
Collapse
Affiliation(s)
- Giftson J Senapathy
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
12
|
The inhibitory activity of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) on Candida albicans biofilms. Photodiagnosis Photodyn Ther 2021; 34:102271. [PMID: 33785444 DOI: 10.1016/j.pdpdt.2021.102271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Biofilm-associated Candida albicans (C. albicans) infections are hard to cure due to their high levels of resistance to antifungal agents. Photodynamic therapy (PDT) is a promising approach for controlling infections caused by C. albicans. This study was designed to explore the inhibitory activity of PDT using 5-aminolevulinic acid (ALA) as photosensitizer against C. albicans biofilms. METHODS C. albicans cell suspensions were incubated for 48 h to form mature biofilms. ALA solution was diluted to 15 mM and incubated with C. albicans biofilms for 5 h before irradiated by red light semiconductor laser under the light intensity of 300 J/cm2 and fluence rate of 100 mW/cm2 for 50 min. The inhibitory activity was evaluated from subcellular level, molecular level and transcriptional level using transmission electron microscopy (TEM) observation, flow cytometry analysis and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) assays, respectively. RESULTS From subcellular level, the degraded content of the cytoplasm, nuclear condensation and mitochondrial swelling were observed after ALA-PDT. From molecular level, ALA-PDT resulted in 19.4 % cell apoptosis. From transcriptional level, ALA-PDT significantly reduced the mRNA expressions of hyphae-specific genes (HWP1 and ALS3) and long-term biofilm maintenance genes (UME6 and HGC1), whereas ALA or red light alone had no significant effect. CONCLUSIONS The inhibitory activity indicated that ALA-PDT may have the potential to serve as an antifungal strategy in eliminatingC. albicans biofilms.
Collapse
|
13
|
Tartaglione MF, Eléxpuru Zabaleta M, Lazzarini R, Piva F, Busilacchi EM, Poloni A, Ledda C, Rapisarda V, Santarelli L, Bracci M. Apoptotic mechanism activated by blue light and cisplatinum in cutaneous squamous cell carcinoma cells. Int J Mol Med 2021; 47:48. [PMID: 33576463 PMCID: PMC7891828 DOI: 10.3892/ijmm.2021.4881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
New approaches are being studied for the treatment of skin cancer. It has been reported that light combined with cisplatinum may be effective against skin cancer. In the present study, the effects of specific light radiations and cisplatinum on A431 cutaneous squamous cell carcinoma (cSCC) and HaCaT non-tumorigenic cell lines were investigated. Both cell lines were exposed to blue and red light sources for 3 days prior to cisplatinum treatment. Viability, apoptosis, cell cycle progression and apoptotic-related protein expression levels were investigated. The present results highlighted that combined treatment with blue light and cisplatinum was more effective in reducing cell viability compared with single treatments. Specifically, an increase in the apoptotic rate was observed when the cells were treated with blue light and cisplatinum, as compared to treatment with blue light or cisplatinum alone. Combined treatment with blue light and cisplatinum also caused cell cycle arrest at the S phase. Treatment with cisplatinum following light exposure induced the expression of apoptotic proteins in the A431 and HaCaT cell lines, which tended to follow different apoptotic mechanisms. On the whole, these data indicate that blue light combined with cisplatinum may be a promising treatment for cSCC.
Collapse
Affiliation(s)
- Maria Fiorella Tartaglione
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, I-60126 Ancona, Italy
| | - María Eléxpuru Zabaleta
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, I-60126 Ancona, Italy
| | - Raffaella Lazzarini
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, I-60126 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy
| | - Elena Marinelli Busilacchi
- Section of Hematology, Department of Clinical and Molecular Science, Polytechnic University of Marche, I-60126 Ancona, Italy
| | - Antonella Poloni
- Section of Hematology, Department of Clinical and Molecular Science, Polytechnic University of Marche, I-60126 Ancona, Italy
| | - Caterina Ledda
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Venerando Rapisarda
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95124 Catania, Italy
| | - Lory Santarelli
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, I-60126 Ancona, Italy
| | - Massimo Bracci
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, I-60126 Ancona, Italy
| |
Collapse
|
14
|
When polyphenols meet lipids: Challenges in membrane biophysics and opportunities in epithelial lipidomics. Food Chem 2020; 333:127509. [DOI: 10.1016/j.foodchem.2020.127509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
|
15
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
16
|
Wen S, Zhang J, Yang B, Elias PM, Man MQ. Role of Resveratrol in Regulating Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2416837. [PMID: 32382280 PMCID: PMC7180429 DOI: 10.1155/2020/2416837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Protective role of the skin is against external insults and maintenance of electrolyte homeostasis of the body. Cutaneous dysfunction can account for the development of both cutaneous and systemic disorders. Thus, improvements in cutaneous functions can benefit a number of extracutaneous and cutaneous functions. Resveratrol, a natural ingredient, displays multiple benefits for various systems/organs, including the skin. The benefits of resveratrol for cutaneous functions include stimulation of keratinocyte differentiation and antimicrobial peptide expression, inhibition of keratinocyte proliferation and cutaneous inflammation, UV protection, anticancer, antiaging, and inhibition of melanogenesis. The mechanisms of action of resveratrol include activation of sirtuin 1 and nuclear factor erythroid 2-related factor 2, and inhibition of mitogen-activated protein kinase signaling. Evidence suggests that topical resveratrol could be a valuable alternative not only for daily skin care, but also for the prevention and treatment of various cutaneous disorders. This review summarizes the benefits of resveratrol for cutaneous functions.
Collapse
Affiliation(s)
- Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiechen Zhang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
17
|
Keyal U, Bhatta AK, Zhang G, Wang XL. Present and future perspectives of photodynamic therapy for cutaneous squamous cell carcinoma. J Am Acad Dermatol 2018; 80:765-773. [PMID: 30393093 DOI: 10.1016/j.jaad.2018.10.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/17/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is the second most common skin cancer. Surgery remains the main stay of treatment, but some patients are not eligible for surgery and, more importantly, lesions at critical sites need nonsurgical approaches for tissue preservation. In this context, photodynamic therapy (PDT) has been extensively studied as noninvasive or minimally invasive treatment, and studies have shown promising results in terms of safety, efficacy, and cosmetic outcome. Also, studies have proposed different mechanism for its efficacy. However, human studies demonstrating its efficacy are limited in terms of sample size and tumor depth of invasion. Good results are mainly seen in case reports of microinvasive SCC, which is defined as SCC limited to papillary dermis. This inadequacy is due to inadequate penetration of topically applied photosensitizers through keratinized tumor surfaces. To overcome these hurdles, pretreatment with lasers or microneedles and encapsulation of photosensitizers into nanoparticles have been tried. Hence, the present article will discuss studies that have demonstrated the efficacy and safety of PDT for cutaneous SCC, studies that have postulated the mechanism of action of PDT, agents that have been used as PDT enhancers, and finally, the recent use of adjuvant therapy in combination with PDT.
Collapse
Affiliation(s)
- Uma Keyal
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anil Kumar Bhatta
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiu Li Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|