1
|
Zhou R, Chen Z, Cai Y, Zhang H, Mao S, Zhuang Y, Zheng J. The simultaneous miR-155-5p overexpression and miR-223-3p inhibition can activate pEMT in oral squamous cell carcinoma. J Appl Oral Sci 2024; 32:e20240215. [PMID: 39442128 DOI: 10.1590/1678-7757-2024-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE This study aims to explore the effects of miR-223-3p and miR-155-5p on epithelial-mesenchymal transition (EMT) and migration in oral squamous cell carcinoma (OSCC). METHODOLOGY EMT markers (E-cadherin, N-cadherin, P120 catenin (P120ctn), and vimentin) expression was determined by qRT-PCR and western blot analysis in SCC-9 cells which overexpress miR-155-5p and/or not express miR-223-3p. Scratch assays and Transwell migration assays were conducted to evaluate cell migration ability. RESULTS When miR-223-3p was inhibited in OSCC cells, P120ctn and E-cadherin mRNA levels were dramatically downregulated (P<0.05), while N-cadherin levels were significantly upregulated, and the migration ability of OSCC cells increased. The overexpression of miR-155-5p in OSCC cells upregulated miR-223-3p significantly (34-fold) compared to the control group. It also led to significant downregulation of the mRNA of P120ctn and E-cadherin and significant upregulation of the mRNA of N-cadherin and Vimentin (P<0.05). Meanwhile, the migratory ability of OSCC cells significantly increased. When miR-155-5p was overexpressed while miR-223-3p was inhibited, the highest expression of E-cadherin and P120ctn mRNA and the lowest expression of N-cadherin(P<0.05) was observed. Simultaneously, tumor cell migration was significantly facilitated. CONCLUSION miR-223-3p inhibits the migration of OSCC cells, while miR-155-5p can elevate the miR-223-3p mRNA expression. The simultaneous miR-155-5p overexpression and miR-223-3p inhibition can activate pEMT, increasing OSCC migration in vitro. This provides a novel approach and potential target for the effective treatment of OSCC.
Collapse
Affiliation(s)
- Ruiman Zhou
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
- Fujian College Engineering Research Center for Dental Biomaterials, Xiamen 361000, China
| | - Zhong Chen
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
- Fujian College Engineering Research Center for Dental Biomaterials, Xiamen 361000, China
| | - Yihuang Cai
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
- Fujian College Engineering Research Center for Dental Biomaterials, Xiamen 361000, China
| | - Huilian Zhang
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
- Fujian College Engineering Research Center for Dental Biomaterials, Xiamen 361000, China
| | - Shunjie Mao
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
| | - Yunan Zhuang
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
| | - Jiacheng Zheng
- Xiamen Medical College, Department of Stomotology, Xiamen 361000, China
| |
Collapse
|
2
|
Koopaie M, Akhbari P, Fatahzadeh M, Kolahdooz S. Identification of common salivary miRNA in oral lichen planus and oral squamous cell carcinoma: systematic review and meta-analysis. BMC Oral Health 2024; 24:1177. [PMID: 39367474 PMCID: PMC11452954 DOI: 10.1186/s12903-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic inflammatory condition that can impact patients' quality of life. While its exact etiology remains unclear, it is associated with an increased risk of malignant transformation. Currently, the diagnosis of OLP relies on clinical examination and histopathological analysis, which can be invasive. Therefore, there is an urgent need for non-invasive and accurate diagnostic biomarkers. This systematic review and meta-analysis aims to investigate the potential of salivary microRNAs as promising candidates for OLP diagnosis. This meta-analysis seeks to identify specific microRNAs that are differentially expressed and could serve as reliable biomarkers for OLP diagnosis. METHODS Our strategy involved searching for pertinent keywords in multiple academic databases including Cochrane Library, Embase, LIVIVO, MEDLINE, Ovid, ProQuest, Scopus, Web of Science, Espacenet, and Google Scholar search engine. Upon identification, articles were screened and data extracted from the eligible studies. Split component synthesis method was utilized to assess specificity, sensitivity, likelihood and diagnostic odds ratios. The random-effects meta-analysis approach was used to combine study findings and develop pooled diagnostic performance metrics. Hierarchical summary receiver operating characteristic (ROC) plots were generated to determine area under the curve. Subgroup analyses concerning the type of saliva and control groups were also performed. RESULTS Among the fourteen studies included in our systematic review, five were eligible for meta-analysis. Salivary microRNAs showed the pooled sensitivity of 0.80 (95% Confidence Interval (95% CI): 0.68-0.88), specificity of 0.89 (95% CI: 0.82-0.94), diagnostic odds ratio of 28.45 (95% CI: 10.40-77.80), and area under the curve (AUC) of 0.93 for OLP diagnosis. Unstimulated saliva had higher sensitivity and specificity than oral swirl samples as the biomarker medium for OLP diagnosis. Meta-analysis uncovered that miR-27a, miR-137, miR-1290, miR-27b, miR-4484, miR-142, and miR-1246 had the highest diagnostic odds ratio for OLP. CONCLUSIONS Our systematic review and meta-analysis demonstrate that salivary microRNAs can serve as valuable biomarkers for the diagnosis of OLP. The findings highlight the exceptional accuracy of salivary microRNAs in differentiating OLP patients from healthy controls and assessing the risk of malignant transformation.
Collapse
Affiliation(s)
- Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O. BOX: 14395-433, Tehran, 14399-55991, Iran.
| | - Parisa Akhbari
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O. BOX: 14395-433, Tehran, 14399-55991, Iran
| | - Mahnaz Fatahzadeh
- Division of Oral Medicine, Department of Oral Medicine, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, 07103, USA
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Malekjafarian SM, Mohtasham N, Mirhashemi M, Sadeghi M, Arab F, Mohajertehran F. Metastasis and cell proliferation inhibition by microRNAs and its potential therapeutic applications in OSCC: A systematic review. Pathol Res Pract 2024; 262:155532. [PMID: 39142242 DOI: 10.1016/j.prp.2024.155532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND AIMS Oral squamous cell carcinoma (OSCC) is among the most malignant cancers in the world and has a high mortality rate. MicroRNAs (miRNAs) have progressively gained attention due to their roles in the pathogenesis and maintenance of various kinds of cancers, including OSCC. In this research, we carried out a scoping review to analyze the role of miRNA and therapeutic response in OSCC and focus on target axes associated with miRNA that inhibit metastasis and cell proliferation in OSCC. METHODS This review adhered to a six-stage methodology framework and PRISMA guidelines. Three databases were systematically searched to find eligible articles until July 2024. Two reviewers conducted publication screening and data extraction independently. 54 articles meeting the predefined inclusion criteria were successfully identified. Quality assessment was done using the QUIN checklist specified for dental in vitro studies. RESULTS Studies with different designs reported 53 miRNAs that were experimentally validated to act as therapeutic targets in OSCC in vivo and in vitro studies. The study found that 25 miRNAs were up-regulated in OSCC patients and cell lines, while another 25 were down-regulated. Mir-186 was also found to be up- and down-regulated in two different investigations. The study highlights the potential of six microRNAs (miR-32-5p, miR-195-5p, miR-3529-3p, miR-191, miR-146b-5p, and miR-377-3p) as anti-proliferation, migration, and invasion therapeutics for OSCC treatment. Two miRNAs (miR-302b and miR-18a) are identified as anti-metastatic therapeutics, while four miRNAs (miR-617, miR-23a-3p, miR-105, miR-101) are anti-proliferation therapeutics. CONCLUSION The study recommends that restoring the expression of tumor suppressor miRNAs may be a suitable cancer therapy. Utilizing this technology does present certain difficulties, and resolving them will improve the methods for miRNA transfer to target cells. With more research and the resolution of associated issues, miRNA can be employed as an efficient therapeutic method for OSCC.
Collapse
Affiliation(s)
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mirhashemi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Arab
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
4
|
Falco M, Tammaro C, Cossu AM, Takeuchi T, Tufano R, Ceccarelli M, Scafuro G, Zappavigna S, Grimaldi A, Scrima M, Ottaiano A, Savarese G, Fico A, Mesolella M, Fasano M, Motta G, Massimilla EA, Addeo R, Ricciardiello F, Caraglia M, Misso G. Identification and bioinformatic characterization of a serum miRNA signature for early detection of laryngeal squamous cell carcinoma. J Transl Med 2024; 22:647. [PMID: 38987822 PMCID: PMC11238506 DOI: 10.1186/s12967-024-05385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The growing understanding of cancer biology and the establishment of new treatment modalities has not yielded the expected results in terms of survival for Laryngeal Squamous Cell Cancer (LSCC). Early diagnosis, as well as prompt identification of patients with high risk of relapse would ensure greater chance of therapeutic success. However, this goal remains a challenge due to the absence of specific biomarkers for this neoplasm. METHODS Serum samples from 45 LSCC patients and 23 healthy donors were collected for miRNA expression profiling by TaqMan Array analysis. Additional 20 patients and 42 healthy volunteers were included for the validation set, reaching an equal number of clinical samples for each group. The potential diagnostic ability of the such identified three-miRNA signature was confirmed by ROC analysis. Moreover, each miRNA was analyzed for the possible correlation with HNSCC patients' survival and TNM status by online databases Kaplan-Meier (KM) plotter and OncomiR. In silico analysis of common candidate targets and their network relevance to predict shared biological functions was finally performed by PANTHER and GeneMANIA software. RESULTS We characterized serum miRNA profile of LSCC patients identifying a novel molecular signature, including miR-223, miR-93 and miR-532, as circulating marker endowed with high selectivity and specificity. The oncogenic effect and the prognostic significance of each miRNA was investigated by bioinformatic analysis, denoting significant correlation with OS. To analyse the molecular basis underlying the pro-tumorigenic role of the signature, we focused on the simultaneously regulated gene targets-IL6ST, GTDC1, MAP1B, CPEB3, PRKACB, NFIB, PURB, ATP2B1, ZNF148, PSD3, TBC1D15, PURA, KLF12-found by prediction tools and deepened for their functional role by pathway enrichment analysis. The results showed the involvement of 7 different biological processes, among which inflammation, proliferation, migration, apoptosis and angiogenesis. CONCLUSIONS In conclusion, we have identified a possible miRNA signature for early LSCC diagnosis and we assumed that miR-93, miR-223 and miR-532 could orchestrate the regulation of multiple cancer-related processes. These findings encourage the possibility to deepen the molecular mechanisms underlying their oncogenic role, for the desirable development of novel therapeutic opportunities based on the use of short single-stranded oligonucleotides acting as non-coding RNA antagonists in cancer.
Collapse
Affiliation(s)
- Michela Falco
- Laboratory of Molecular and Precision Oncology, BIOGEM Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Alessia Maria Cossu
- Laboratory of Molecular and Precision Oncology, BIOGEM Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Takashi Takeuchi
- Laboratory of Molecular and Precision Oncology, BIOGEM Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd, Hiroshima, 739-1195, Japan
| | - Rossella Tufano
- Laboratory of Bioinformatics and Computational Biology, BIOGEM Institute of Molecular Biology and Genetics, 83031, Ariano Irpino, Italy
| | - Michele Ceccarelli
- Laboratory of Bioinformatics and Computational Biology, BIOGEM Institute of Molecular Biology and Genetics, 83031, Ariano Irpino, Italy
| | - Giuseppe Scafuro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Anna Grimaldi
- U.P. Cytometric and Mutational Diagnostics, AOU Policlinico, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 83031, Naples, Italy
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, BIOGEM Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | | | - Antonio Fico
- AMES, Centro Polidiagnostico Strumentale, 80013, Naples, Italy
| | - Massimo Mesolella
- Unit of Otorhinolaryngology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Gaetano Filangieri, 36, 80131, Naples, Italy
| | - Morena Fasano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Giovanni Motta
- ENT Department, L. Vanvitelli University, 80131, Naples, Italy
| | | | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, ASLNA-2NORD, 80020, Naples, Italy
| | | | - Michele Caraglia
- Laboratory of Molecular and Precision Oncology, BIOGEM Scarl, Institute of Genetic Research, 83031, Ariano Irpino, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
5
|
Doghish AS, Elshaer SS, Fathi D, Rizk NI, Elrebehy MA, Al-Noshokaty TM, Elballal MS, Abdelmaksoud NM, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Tabaa MME, Elballal AS, Saber S, El-Husseiny HM, Abulsoud AI. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer. Pathol Res Pract 2024; 253:155027. [PMID: 38101159 DOI: 10.1016/j.prp.2023.155027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ahmed S Elballal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| |
Collapse
|
6
|
Xiao L, Zhang T, Zheng K, Xiao Q, Zhang W, Zhang D, Wu D, He C, Zhou Y, Liu Y. Knockdown of Secernin 1 inhibit cell invasion and migration by activating the TGF-β/Smad3 pathway in oral squamous cell carcinomas. Sci Rep 2023; 13:14922. [PMID: 37691034 PMCID: PMC10493221 DOI: 10.1038/s41598-023-41504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Secernin-1 (SCRN1) is a regulator of exocytosis in mast cells. Recently, SCRN1 was reported to be correlated with the prognosis of colorectal cancer and gastric cancer, but its functional effects on oral squamous cell carcinoma (OSCC) remain unclear. Our aim was to explore the expression pattern and the migration and invasion effects of the newly identified SCRN1 in OSCC. Western blotting (WB) was performed to measure SCRN1 expression in human OSCC tissue samples and OSCC cell lines. The effects of SCRN1 on OSCC cell proliferation, invasion and migration were analyzed by cell counting kit-8 and Transwell assays. The expression levels of TGF-β, Smad3 and phosphorylated Smad3 (p-Smad3) were measured by WB. The secretion of matrix metalloproteinase (MMP)-2 and MMP-9 was determined by the enzyme-linked immunosorbent assay. The expression of SCRN1 was significantly elevated in OSCC tissues and cell lines. SCRN1 knockdown reduced the expression of TGF-β and p-Smad3 in OSCC cells. TGF-β stimulation promoted proliferation, invasion and migration and enhanced the expression of p-Smad3 and the secretion of MMP9 in SCRN1-knockdown OSCC cell lines. Our study demonstrated that SCRN1 is upregulated in OSCC. Further analyses demonstrated that SCRN1 promotes the proliferation, invasion and migration of OSCC cells via TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Li Xiao
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
- Department of Stomatology, Nan Chong Central Hospital, Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Ting Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Kaiyue Zheng
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Qian Xiao
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Weifang Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Dandan Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Dengxun Wu
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Chanjuan He
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Yifei Zhou
- Department of Stomatology, Lang Zhong People's Hospital, Langzhong, China.
| | - Ying Liu
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
7
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Dey S, Biswas B, Manoj Appadan A, Shah J, Pal JK, Basu S, Sur S. Non-Coding RNAs in Oral Cancer: Emerging Roles and Clinical Applications. Cancers (Basel) 2023; 15:3752. [PMID: 37568568 PMCID: PMC10417002 DOI: 10.3390/cancers15153752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Oral cancer (OC) is among the most prevalent cancers in the world. Certain geographical areas are disproportionately affected by OC cases due to the regional differences in dietary habits, tobacco and alcohol consumption. However, conventional therapeutic methods do not yield satisfying treatment outcomes. Thus, there is an urgent need to understand the disease process and to develop diagnostic and therapeutic strategies for OC. In this review, we discuss the role of various types of ncRNAs in OC, and their promising clinical implications as prognostic or diagnostic markers and therapeutic targets. MicroRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are the major ncRNA types whose involvement in OC are emerging. Dysregulated expression of ncRNAs, particularly miRNAs, lncRNAs, and circRNAs, are linked with the initiation, progression, as well as therapy resistance of OC via modulation in a series of cellular pathways through epigenetic, transcriptional, post-transcriptional, and translational modifications. Differential expressions of miRNAs and lncRNAs in blood, saliva or extracellular vesicles have indicated potential diagnostic and prognostic importance. In this review, we have summarized all the promising aspects of ncRNAs in the management of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| | - Subhayan Sur
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (DPU), Pimpri 411033, India; (S.D.)
| |
Collapse
|
9
|
Qiu B, Sun Y, Nie W, Yang Q, Guo X. FBXW7 promotes autophagy and inhibits proliferation of oral squamous cell carcinoma. Immun Inflamm Dis 2023; 11:e845. [PMID: 37249289 PMCID: PMC10187000 DOI: 10.1002/iid3.845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND F-box and WD repeat domain containing 7 (FBXW7) is a critical tumor suppressor. The expression of FBXW7 is decreased in oral squamous cell carcinoma (OSCC) tissues and shows diagnosis value. We aimed to investigate the influence of FBXW7 overexpression on OSCC cell proliferation and autophagy. METHODS In Balb/c nude mice, CAL27 xenograft tumor model was established. Western blot was employed to evaluate protein level. Messenger RNA level was analyzed by quantitative reverse transcription-polymerase chain reaction. Colony formation assay and MTT assay were employed to evaluate cell proliferation. RESULTS FBXW7 expression was decreased in OSCC cell lines. FBXW7 inhibited cell proliferation of SCC9 and CAL27. FBXW7 increased Autophagy related 7 (Atg7), Beclin1 (BECN1), B-cell lymphoma 2 (BCL2) -associated X (BAX), BCL2 antagonist killer (BAK), and microtubule-associated protein 1 light chain 3 (LC3) levels and decreased MCL1 and BCL2 levels in CAL27 cells. FBXW7 decreased tumor volume and weight in CAL27 xenograft tumor model. FBXW7 increased BECN1, Atg7, and LC3 levels in CAL27 xenograft tumor model. CONCLUSION In conclusion, decreased expression of FBXW7 is confirmed in diverse OSCC cell lines. The enhanced FBXW7 expression inhibits cancer cell proliferation and promotes autophagy in both OSCC cells and xenograft tumor model.
Collapse
Affiliation(s)
- Bo Qiu
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Yang Sun
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Wei Nie
- Dental DepartmentCangzhou People's HospitalCangzhouHebeiChina
| | - Qi Yang
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Xiangjun Guo
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|
10
|
Thomas P, Preethi KA, Selvakumar SC, Ramani P, Sekar D. Relevance of micro-RNAs and their targets as a diagnostic and prognostic marker in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2023; 27:364-373. [PMID: 37854932 PMCID: PMC10581285 DOI: 10.4103/jomfp.jomfp_349_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 10/20/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) ranks sixth among all cancers in the world, affecting various sites of the oral cavity with associated several risk factors. High mortality has been associated with the presence of metastasis during the time of diagnosis and an increase in therapeutic relapses. Micro-RNAs (miRNAs) are a group of small non-coding RNAs with salient roles in the initiation and progression of cancer. The tumorigenesis of OSCC is associated with the dysregulation of several miRNAs. MicroRNAs are an area of recent interest, and numerous studies have been reported and are being undertaken to identify their role in diagnostic and prognostic value for oral cancers. Most of the miRNA processing machinery is considered to be either up-/down-regulated in OSCC, but the underlying mechanism of miRNA dysregulation and their activity as either a tumour suppressor or an oncogene in oral carcinogenesis is not yet clear. The article presents a concise review of the available current literature regarding the various miRNAs' signatures in OSCC and their role as diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Priya Thomas
- Department of Oral Pathology and Microbiology, Annoor Dental College and Hospital, Muvattupuzha, Kerala, India
| | - K. Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Sushmaa C. Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
12
|
Xing L, Feng Z, Nie H, Liu M, Liu Y, Zhang X, Zhou H. Research progress and clinical application prospects of miRNAs in oral cancer. Mol Biol Rep 2022; 49:10653-10665. [PMID: 35725854 DOI: 10.1007/s11033-022-07604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/13/2022] [Indexed: 12/09/2022]
Abstract
Oral cancer is one of the most common malignant tumors worldwide, and it is also one of the most important and difficult clinical problems to be solved. Due to the regional differences in diet culture, some areas have taken the 'hardest hit' of oral cancer cases. However, the existing clinical treatment methods (surgery as the main treatment method, radiotherapy and chemotherapy as the auxiliary ones) do not have satisfactory treatment effects; therefore, new diagnosis and treatment methods need to be developed and utilized. Micro RNAs (miRNAs), as a class of substances that play an important regulatory role in the development of tumors, have an important value in the diagnosis and treatment of various tumors. At the same time, many miRNAs have obvious expression differences in oral cancer tissues compared to normal tissues. Therefore, they may have diagnostic and therapeutic effects on oral cancer. In this review, we evaluate the miRNAs that play a regulatory role in the development of oral cancer and those that are expected to be applied in the diagnosis and treatment of oral cancer. At the same time, we summarize the important challenges that need to be addressed, aiming to provide evidence and suggestions for the application of miRNAs in the diagnosis and treatment of oral cancer.
Collapse
Affiliation(s)
- Long Xing
- Northwest Minzu University, Lanzhou, China
| | | | | | | | - Yali Liu
- Northwest Minzu University, Lanzhou, China
| | | | | |
Collapse
|
13
|
Notch activation suppresses endothelial cell migration and sprouting via miR-223-3p targeting Fbxw7. In Vitro Cell Dev Biol Anim 2022; 58:124-135. [PMID: 35194762 DOI: 10.1007/s11626-022-00649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Angiogenesis involves temporo-spatially coordinated endothelial cell (EC) proliferation, differentiation, migration, and sprouting. Notch signaling is essential in regulating EC behaviors during angiogenesis, but its downstream mechanisms remain incompletely defined. In the current study, we show that miR-223-3p is a downstream molecule of Notch signaling and mediates the role of Notch signaling in regulating EC migration and sprouting. In human umbilical vein endothelial cells (HUVECs), Notch activation by immobilized Dll4, a Notch ligand, upregulated miR-223-3p, and Notch activation-mediated miR-223-3p upregulation could be blocked by a γ-secretase inhibitor (DAPT). miR-223-3p overexpression apparently repressed HUVEC migration, leading to attenuated lumen formation and sprouting capacities. Transcriptome comparison and subsequent qRT-PCR validation further indicated that miR-223-3p downregulated the expression of multiple genes involved in EC migration, axon guidance, extracellular matrix remodeling, and angiogenesis. In addition, miR-223-3p antagonist transfection abolished Notch-mediated repression of EC migration and sprouting. By quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and reporter assay analysis, we confirmed that miR-223-3p directly targeted F-box and WD repeat domain-containing 7 (Fbxw7). Meanwhile, Fbxw7 overexpression could efficiently rescue the impaired migration capacity of ECs under miR-223-3p overexpression. In summary, these results identify that Notch activation-induced miR-223-3p suppresses EC migration and sprouting via Fbxw7.
Collapse
|
14
|
Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep 2021; 40:222329. [PMID: 32159214 PMCID: PMC7103584 DOI: 10.1042/bsr20193396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Astragalus polysaccharide (APS), a natural antioxidant found in Astragalus membranaceus emerging as a novel anticancer agent, exerts antiproliferative and pro-apoptotic activity in various cancer cell types, but its effect on ovarian cancer (OC) remains unknown. In the present study, we tried to elucidate the role and mechanism of APS in OC cells. Our results showed that APS treatment suppressed the proliferation and induced apoptosis in OC cells. Afterward, the microRNA (miRNA) profiles in APS-treated cells were determined by a microarray assay, and whether APS affected OV-90 cells through regulation of miRNA was determined. Among these aberrant miRNAs, miR-27a was selected for further study as its oncogenic roles in various human cancers. Moreover, we found overexpression of miR-27a reversed the antiproliferation and pro-apoptotic effects of APS on OC cells. F-box and WD-40 domain protein 7 (FBXW7), a classical tumor suppressor, was found directly targeted by miR-27a and its translation was suppressed by miR-27a in OC cells. Finally, it was also observed that knockdown of FBXW7 by si-FBXW7 reversed the tumor suppressive activity of APS in OC cells, which is similar to the effects of miR-27a overexpression. Our findings demonstrate that APS can suppress OC cell growth in vitro via miR-27a/FBXW7 axis, and this observation reveals the therapeutic potential of APS for treatment of OC.
Collapse
|
15
|
Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as Modulators of Oral Tumorigenesis-A Focused Review. Int J Mol Sci 2021; 22:ijms22052561. [PMID: 33806361 PMCID: PMC7961687 DOI: 10.3390/ijms22052561] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Oral cancers constitute the majority of head and neck tumors, with a relatively high incidence and poor survival rate in developing countries. While the five-year survival rates of the oral cancer patients have increased to 65%, the overall survival for advanced stages has been at 27% for the past ten years, emphasizing the necessity for further understanding the etiology of the disease, diagnosis, and formulating possible novel treatment regimens. MicroRNAs (miRNAs), a family of small non-coding RNA, have emerged as master modulators of gene expression in various cellular and biological process. Aberrant expression of these dynamic molecules has been associated with many human diseases, including oral cancers. The deregulated miRNAs have been shown to control various oncogenic processes, including sustaining proliferative signaling, evading growth suppressors, resisting cell death activating invasion and metastasis, and inducing angiogenesis. Hence, the aberrant expression of miRNAs associated with oral cancers, makes them potential candidates for the investigation of functional markers, which will aid in the differential diagnosis, prognosis, and development of novel therapeutic regimens. This review presents a holistic insight into our understanding of the role of miRNAs in regulating various hallmarks of oral tumorigenesis.
Collapse
Affiliation(s)
- Kumar Rishabh
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Soham Khadilkar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Ishu Kalra
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: authors: (A.P.K.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam 781039, India; (K.R.); (S.K.); (A.K.); (I.K.)
- Correspondence: authors: (A.P.K.); (A.B.K.)
| |
Collapse
|
16
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
17
|
Zhang X, Tan P, Zhuang Y, Du L. hsa_circRNA_001587 upregulates SLC4A4 expression to inhibit migration, invasion, and angiogenesis of pancreatic cancer cells via binding to microRNA-223. Am J Physiol Gastrointest Liver Physiol 2020; 319:G703-G717. [PMID: 32878470 DOI: 10.1152/ajpgi.00118.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic cancer (PC) is a malignant tumor that is difficult to diagnose and treat. Circular RNAs (circRNAs) are biomarkers that may be used to diagnose certain cancers or act as targets for cancer treatment. We aimed to explore the functions of human circular RNA 001587 (hsa_circRNA_001587) on the progression of PC and the underlying mechanism. The expression pattern of hsa_circRNA_001587 and microRNA-223 (miR-223) in PC tissues and cells was determined by RT-qPCR. Dual-luciferase reporter gene assay, RNA-pulldown, Argonaute 2 (AGO2) immunoprecipitation assay, and Northern blot analysis were applied to verify the binding relationships among hsa_circRNA_001587, miR-223 and solute carrier family 4 member 4 (SLC4A4). Further analysis of their roles was performed in PC cell line PANC-1. Moreover, we either downregulated or upregulated the expression of hsa_circRNA_001587, miR-223, and SLC4A4 by transfection in vitro. A mouse xenograft model of PC cells was established to evaluate tumor growth in vivo. hsa_circRNA_001587 was poorly expressed, but miR-223 was highly expressed in PC tissues and cell lines. Upregulation of hsa_circRNA_001587 downregulated the expression of matrix metalloproteinase-2 and-9, minichromosome maintenance 2, and vascular endothelial growth factor, and decreased the proliferation, migration, invasion, angiogenic and tumorigenic abilities of PC cells. MiR-223, which can bind with hsa_circRNA_001587, reversed the effects of hsa_circRNA_001587 on PC cells. In addition, SLC4A4 was identified as a target of miR-223, and its knockdown could counteract the regulatory effects of overexpressed hsa_circRNA_001587 or inhibited miR-223 expression on PC cells. Therefore, hsa_circRNA_001587 inhibits PC cell migration, invasion, angiogenesis and tumorigenesis by impairing miR-223-mediated SLC4A4 inhibition.NEW & NOTEWORTHY Human circular (hsa_circ)RNA_001587 and solute carrier family 4 member 4 (SLC4A4) are poorly expressed but microRNA (miR)R-223 is overexpressed in pancreatic cancer (PC) cells. hsa_circRNA_001587 binds to miR-223. Overexpression of hsa_circRNA_001587 inhibits PC progression. Overexpression of miR-223 downregulates the expression of SLC4A4 and promotes PC cell growth. hsa_circRNA_001587 may be a potential target for PC treatment.
Collapse
Affiliation(s)
- Xiutian Zhang
- Department of Gastroenterology, Linyi People's Hospital, Linyi, China
| | - Peng Tan
- Internal Medicine Teaching and Research Section, Shandong Medical College, Linyi, China
| | - Yuan Zhuang
- Histology and Embryology Teaching and Research Section, Shandong Medical College, Linyi, China
| | - Lei Du
- Department of Oncology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
18
|
Yete S, Saranath D. MicroRNAs in oral cancer: Biomarkers with clinical potential. Oral Oncol 2020; 110:105002. [PMID: 32949853 DOI: 10.1016/j.oraloncology.2020.105002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Oral cancer is the sixteenth most common cancer globally, with a relatively poor five-year survival rate of 50%. Thus it is imperative to understand the biology of oral cancer and examine alternative prognostic and therapeutic targets for oral cancer. MicroRNAs (miRNAs) are small non-coding RNAs mediating gene expression at the post-transcriptional level through mRNA degradation or translational repression. miRNAs play an essential role in cancer development and oncogenic cell processes. miRNA deregulation is observed in oral cancer and associated with prognosis. However, the role of miRNAs and their clinical implications in oral cancer is not clear. The current review highlights the miRNA profile of oral cancer and discusses the diagnostic, prognostic and potential therapeutic targets with clinical implications. miRNAs mediate activation or suppression of signalling pathways associated with oral cancer. Hence, a panel of select deregulated miRNAs may indicate clinicopathological features, personalised treatment outcome and provide novel lead profiles of oral cancer. The translational applications of miRNAs may lead to better management and survival of oral cancer patients. The compiled data provides a platform for consideration of miRNA signatures as potential biomarkers for early oral cancer diagnosis, prognosis and as novel molecular therapies.
Collapse
Affiliation(s)
- Subuhi Yete
- Cancer Patients Aid Association, Dr. Vithaldas Parmar Research & Medical Centre, Sumer Kendra, Worli, Mumbai 400018, India
| | - Dhananjaya Saranath
- Cancer Patients Aid Association, Dr. Vithaldas Parmar Research & Medical Centre, Sumer Kendra, Worli, Mumbai 400018, India.
| |
Collapse
|
19
|
Wei Z, Wang Y, Jiang L, Ji N, Wang Y, Chen F, Li T, Li J, Xu H, Zeng X, Chen Q. miR-223 regulates oral squamous cell carcinoma metastasis through the Wnt/β-catenin signaling pathway. Oral Oncol 2020; 109:104941. [PMID: 32828021 DOI: 10.1016/j.oraloncology.2020.104941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Metastasis seriously affects the prognosis of patients with oral squamous cell carcinoma (OSCC); however, the precise mechanism remains poorly understood. MATERIALS AND METHODS microRNA (miRNA) array analysis of four cell lines was used to identify candidate miRNAs. The Cancer Genome Atlas (TCGA) database was used to verify the relationship between candidate miRNAs and OSCC metastasis. Transwell chambers and mouse model experiments were used to analyze OSCC cell migration and invasion abilities in vitro and in vivo. Additionally, bioinformatics and a dual luciferase reporter assay were used to identify selected miRNA target genes. A multicenter clinical cohort of 250 patients with OSCC was set up to evaluate the diagnostic and predicted value of the target genes. Finally, the molecular mechanism of a selected miRNA regulating OSCC metastasis was further explored. RESULTS miR-223 expression was found to be negatively correlated with OSCC cell invasion and migration abilities. TCGA database data confirmed the relationship between miR-223 expression and OSCC metastasis. Functional experiments indicated that overexpression of miR-223 could decrease the metastasis ability of OSCC cells, while decreasing its expression level led to the enhancement of OSCC metastasis. Bioinformatics and a dual-luciferase reporter assay identified that miR-223 directly targets transcription factor 7-like 2 (TCF7L2). Additionally, TCF7L2 was shown to be negatively correlated with patient metastasis and survival. CONCLUSIONS miR-223 regulates OSCC invasion and metastasis by directly targeting TCF7L2 and potentiating the Wnt/β-catenin signaling pathway. These findings demonstrate the versatile role of miR-223 in carcinogenesis. miR-223 might serve as an attractive OSCC metastasis intervention target.
Collapse
Affiliation(s)
- Zihao Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yun Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fangman Chen
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Takeuchi T, Kawasaki H, Luce A, Cossu AM, Misso G, Scrima M, Bocchetti M, Ricciardiello F, Caraglia M, Zappavigna S. Insight toward the MicroRNA Profiling of Laryngeal Cancers: Biological Role and Clinical Impact. Int J Mol Sci 2020; 21:E3693. [PMID: 32456271 PMCID: PMC7279294 DOI: 10.3390/ijms21103693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), a heterogeneous disease arising from various anatomical locations including the larynx, is a leading cause of death worldwide. Despite advances in multimodality treatment, the overall survival rate of the disease is still largely dismal. Early and accurate diagnosis of HNSCC is urgently demanded in order to prevent cancer progression and to improve the quality of the patient's life. Recently, microRNAs (miRNAs), a family of small non-coding RNAs, have been widely reported as new robust tools for prediction, diagnosis, prognosis, and therapeutic approaches of human diseases. Abnormally expressed miRNAs are strongly associated with cancer development, resistance to chemo-/radiotherapy, and metastatic potential through targeting a large variety of genes. In this review, we summarize on the recent reports that emphasize the pivotal biological roles of miRNAs in regulating carcinogenesis of HNSCC, particularly laryngeal cancer. In more detail, we report the characterized miRNAs with an evident either oncogenic or tumor suppressive role in the cancers. In addition, we also focus on the correlation between miRNA deregulation and clinical relevance in cancer patients. On the basis of intriguing findings, the study of miRNAs will provide a new great opportunity to access better clinical management of the malignancies.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Hiromichi Kawasaki
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| | - Marianna Scrima
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | | | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| |
Collapse
|
21
|
Ben W, Zhang G, Huang Y, Sun Y. MiR-27a-3p Regulated the Aggressive Phenotypes of Cervical Cancer by Targeting FBXW7. Cancer Manag Res 2020; 12:2925-2935. [PMID: 32431539 PMCID: PMC7198449 DOI: 10.2147/cmar.s234897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Abnormally expressed microRNAs (miRNAs) contribute greatly to the initiation and development of human cancers, including cervical cancer, by regulating the target mRNAs. MiR-27a-3p was up-regulated and acted as an oncogene in multiple cancers. However, the function of miR-27a-3p in cervical cancer has not been fully understood. Methods The expression of miR-27a-3p in cervical cancer tissues and cell lines was detected by RT-pPCR. MTT assay, colony formation assay and flow cytometry analysis were performed to determine the effects of miR-27a-3p on the growth of cervical cancer cells. The targets of miR-27a-3p were predicted using the miRDB database. Luciferase reporter assay was utilized to confirm the binding between miR-27a-3p and the 3ʹ-untranslated region (UTR) of targets. The expression of target proteins was determined by RT-qPCR and Western blot. Results Our results found that miR-27a-3p was overexpressed in cervical cancer tissues and cell lines. Down-regulation of miR-27a-3p significantly inhibited the proliferation, colony formation and promoted apoptosis of cervical cancer cells. Overexpression of miR-27a-3p enhanced the cell proliferation. miR-27a-3p was found to bind the 3ʹ-UTR of F-box and WD repeat domain containing 7 (FBXW7) and resulted in the down-regulation of FBXW7. The up-regulated level of miR-27a-3p was inversely correlated with that of FBXW7 in cervical cancer tissues. Additionally, reintroducing of FBXW7 significantly attenuated the promoting effect of miR-27a-3p on the proliferation of cervical cancer cells. Conclusion These results indicated the growth-promoting function of miR-27a-3p in cervical cancer via targeting FBXW7. Our finding suggested the potential application of miR-27a-3p/FBXW7 axis in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Wei Ben
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Guangmei Zhang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yangang Huang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuhui Sun
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
22
|
Chen L, Fan X, Zhu J, Chen X, Liu Y, Zhou H. LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. RNA Biol 2020; 17:784-793. [PMID: 32174258 DOI: 10.1080/15476286.2020.1726637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The presence or absence of cytogenetic mutations is proposed to be responsible for the pathogenesis of acute myeloid leukaemia (AML). However, the current classification system is inadequate to elucidate the molecular heterogeneity of the disease, and therapy failures frequently occur. Leukaemia stem cells (LSCs) initiate and maintain the clonal hierarchy of AML and exhibit properties of self-renewal remaining recalcitrant to conventional chemotherapy. In this study, we identified a novel long non-coding RNA (lncRNA) MAGI2 antisense RNA 3 (MAGI2-AS3) in AML and investigated its functional role in regulating LSCs self-renewal. LSCs were identified by immunoprofiling of CD34+ CD123+ in AML patients' marrow. MAGI2-AS3 exhibited a poor expression level in LSCs than the normal human haematopoietic stem cells. Lentivirus-mediated upregulation of MAGI2-AS3 or leucine-rich repeats and Ig-like domains 1 (LRIG1) impaired LSCs self-renewal. MAGI2-AS3-overexpressed LSCs acquired the ability of self-renewal following lentivirus-mediated knockdown of LRIG1. Methylation-dependent inhibition of LRIG1 was evident in LSCs. MAGI2-AS3 was found to induce occupancy of TET2 at the LRIG1 promoter. Lentivirus-mediated downregulation of TET2 could impair MAGI2-AS3-mediated elevation of LRIG1 and neutralize the inhibitory effect of MAGI2-AS3 on LSCs self-renewal. In vivo analysis indicated an elevated overall survival of NOD/SCID mice injected with LSCs in the presence of MAGI2-AS3. Altogether, the key findings support the potential of lncRNA MAGI2-AS3 to serve as a novel candidate for the improvement of AML treatment.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianhua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xuexin Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yiling Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
23
|
Wang H, Ma N, Li W, Wang Z. MicroRNA-96-5p promotes proliferation, invasion and EMT of oral carcinoma cells by directly targeting FOXF2. Biol Open 2020; 9:bio049478. [PMID: 32014885 PMCID: PMC7075044 DOI: 10.1242/bio.049478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, microRNA-96-5p (miR-96-5p) has been reported to function as both a tumor suppressor and oncogene in several cancer types, including gastric cancer, hepatocellular cancer and lung cancer. However, the biological function of miR-96-5p and its precise mechanisms in oral squamous cell carcinoma (OSCC) have not been well clarified. The aim of this study was to study the roles of miR-96-5p/FOXF2 axis in OSCC. In this study, the miR-96-5p level was dramatically enhanced in OSCC tissues and cell lines, and the FOXF2 expression was significantly reduced. In addition, the FOXF2 expression was negatively related to the miR-96-5p level in OSCC tissues. Furthermore, downregulation of miR-96-5p obviously restrained OSCC cell proliferation, invasion and EMT. We confirmed that miR-96-5p could directly target FOXF2 by luciferase reporter assay. Moreover, knockdown of FOXF2 also could markedly promote the proliferation, invasion and EMT of OSCC cells. Finally, overexpression of FOXF2 in OSCC cells partially reversed the promoted effects of miR-96-5p mimic. Knockdown of miR-96-5p restrained OSCC cells proliferation, invasion and EMT via regulation of FOXF2.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ning Ma
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Wenyue Li
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
24
|
Zhang Y, Ji T, Ma S, Wu W. RETRACTED: MLL1 promotes migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis by activating the TRIF/NF-κB signaling pathway via H3K4me3 enrichment in the TLR4 promoter region. Int Immunopharmacol 2020; 82:106220. [PMID: 32151962 DOI: 10.1016/j.intimp.2020.106220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. A corrigendum for this article was previously published which corrected issues within Figure 1, as detailed here: https://www.sciencedirect.com/science/article/pii/S1567576920337887?via%3Dihub. The journal was subsequently alerted to additional issues, including an associated PubPeer comment concerning the provenance of the flow cytometry data in Figure 1B, as detailed here: https://pubpeer.com/publications/AD39B667B4ACD09C930F532D0BD985; and here https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. As part of a journal investigation, the editorial team noticed that many of the Western blots contained within the article were pixelated. In addition, the published email address of the corresponding author (zhangyd78@126.com), differed from the version submitted to the journal (weiwu_drww@163.com). The journal asked the authors to provide a detailed explanation to these concerns and the associated raw data. The Authors did not respond to this request. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Tiefeng Ji
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Shu Ma
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
25
|
Huo W, Qi F, Wang K. Long non-coding RNA FER1L4 inhibits prostate cancer progression via sponging miR-92a-3p and upregulation of FBXW7. Cancer Cell Int 2020; 20:64. [PMID: 32140077 PMCID: PMC7049228 DOI: 10.1186/s12935-020-1143-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) is involved in development of prostate cancer. However, the molecular mechanisms of many lncRNAs in prostate cancer have not been studied yet. Methods The lncRNA Fer-1-like protein 4 (FER1L4) expression was explored in prostate tumors and normal prostate tissues by RT-qPCR and bioinformatic analysis. Overexpression of FER1L4 was performed to evaluate its role in prostate cancer cell proliferation and survival. The molecular mechanism of FER1L4 was investigated by dual luciferase reporter assay, RNA pull down assay, western blotting and RT-qPCR. Results It was found that FER1L4 was lower in prostate cancer tissues than normal tissues. Higher expression of FER1L4 was associated with prostate cancer tissues of early stage (AJCC stage I/II). Overexpression of FER1L4 inhibited cell proliferation and promoted cell apoptosis in prostate cancer cells. Bioinformatic analysis, RT-qPCR, RNA pull down assay and dual luciferase assay showed that FER1L4 upregulated F-box/WD repeat-containing protein 7 (FBXW7) tumor suppressor via sponging miR-92a-3p. Silencing of FBXW7 reversed the cell phenotypes caused by FER1L4 overexpression in prostate cancer cells. Conclusion The data demonstrated that FER1L4, a downregulated lncRNA in prostate cancer, was pivotal for cell proliferation and survival of prostate cancer. The study provided new sights into understanding of the signaling network in prostate cancer and implied that FER1L4 might be a biomarker for patients with prostate cancer.
Collapse
Affiliation(s)
- Wei Huo
- 1Department of Urology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130001 People's Republic of China
| | - Fei Qi
- 2Department of Operating Room, China-Japan Union Hospital, Jilin University, Changchun, 130001 People's Republic of China
| | - Kaichen Wang
- 1Department of Urology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130001 People's Republic of China
| |
Collapse
|
26
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
27
|
Liu S, Deng X, Zhang J. Identification of dysregulated serum miR-508-3p and miR-885-5p as potential diagnostic biomarkers of clear cell renal carcinoma. Mol Med Rep 2019; 20:5075-5083. [PMID: 31661117 PMCID: PMC6854552 DOI: 10.3892/mmr.2019.10762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common subtype, accounts for approximately 80% of all RCC cases. ccRCC patients typically present with an advanced stage at the time of diagnosis resulting in a poor patient prognosis. The present study aimed to identify novel potential microRNAs (miRNAs or miRs) in peripheral blood as biomarkers for the detection of ccRCC. Candidate miRNAs were selected through integrated analysis of the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) database, and from clinical samples. The expression levels of miRNAs were quantified using reverse transcription‑quantitative PCR. Receiver operating characteristic (ROC) curve analysis was used to explore the diagnostic values of the miRNAs. Bioinformatic analysis of candidate miRNAs was conducted by using the STRING database. After an integrated analysis of the GEO and TCGA databases, four miRNAs were found to be consistently dysregulated in ccRCC tissues. Then, their expression levels in serum and diagnostic utilities were further explored. We discovered that serum miR‑508‑3p and miR‑885‑5p were significantly dysregulated in ccRCC patients with marked diagnostic values. The area under the ROC curve (AUC) of serum miR‑508‑3p and miR‑885‑5p was 0.80 (95% CI, 0.73‑0.87) and 0.87 (95% CI, 0.79‑0.95), respectively. Functional enrichment analysis revealed that both miR‑508‑3p and miR‑885‑5p were closely associated with cellular metabolic processes. In conclusion, serum miR‑508‑3p and miR‑885‑5p are novel potential biomarkers for the diagnosis of ccRCC.
Collapse
Affiliation(s)
- Siming Liu
- Department of Urology, Zhoupu Hospital Affiliated with Shanghai University of Medicine and Health Sciences, Shanghai 200000, P.R. China
| | - Xiaojun Deng
- Department of Urology, Zhoupu Hospital Affiliated with Shanghai University of Medicine and Health Sciences, Shanghai 200000, P.R. China
| | - Jiong Zhang
- Department of Urology, Shanghai Putuo District Liqun Hospital, Shanghai 200000, P.R. China
| |
Collapse
|