1
|
Chen X, Li X, Wu X, Ding Y, Li Y, Zhou G, Wei Y, Chen S, Lu X, Xu J, Liu S, Li J, Cai L. Integrin beta-like 1 mediates fibroblast-cardiomyocyte crosstalk to promote cardiac fibrosis and hypertrophy. Cardiovasc Res 2023; 119:1928-1941. [PMID: 37395147 DOI: 10.1093/cvr/cvad104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 07/04/2023] Open
Abstract
AIMS Crosstalk between fibroblasts and cardiomyocytes (CMs) plays a critical role in cardiac remodelling during heart failure (HF); however, the underlying molecular mechanisms remain obscure. Recently, a secretory protein, Integrin beta-like 1 (ITGBL1) was revealed to have detrimental effects on several diseases, such as tumours, pulmonary fibrosis, and hepatic fibrosis; whereas the effect of ITGBL1 on HF is unclear. The purpose of this study was to evaluate its contribution to volume overload-induced remodelling. METHODS AND RESULTS In this study, we identified ITGBL1 was highly expressed in varied heart diseases and validated in our TAC mice model, especially in fibroblasts. To investigate the role of ITGBL1 in in vitro cell experiments, neonatal rat fibroblasts (NRCFs) and cardiomyocytes (NRCMs) were performed for further study. We found that in comparison to NRCMs, NRCFs expressed high levels of ITGBL1. Meanwhile, ITGBL1 was upregulated in NRCFs, but not in NRCMs following angiotensin-II (AngII) or phenylephrine stimulation. Furthermore, ITGBL1 overexpression promoted NRCFs activation, whereas knockdown of ITGBL1 alleviated NRCFs activation under AngII treatment. Moreover, NRCFs-secreted ITGBL1 could induce NRCMs hypertrophy. Mechanically, ITGBL1-NME/NM23 nucleoside diphosphate kinase 1 (NME1)-TGF-β-Smad2/3 and Wnt signalling pathways were identified to mediate NRCFs activation and NRCMs hypertrophy, respectively. Finally, the knockdown of ITGBL1 in mice subjected to transverse aortic constriction (TAC) surgery recapitulated the in vitro findings, demonstrating blunted cardiac fibrosis, hypertrophy, and improved cardiac function. CONCLUSIONS ITGBL1 is an important functional mediator between fibroblast-cardiomyocyte crosstalk and could be an effective target for cardiac remodelling in HF patients.
Collapse
Affiliation(s)
- XiaoQiang Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XinTao Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoYu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - GenQing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - SongWen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoFeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ShaoWen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LiDong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Li R, Zhou J, Wu X, Li H, Pu Y, Liu N, Han Z, Zhou L, Wang Y, Zhu H, Yang L, Li Q, Ji Q. Jianpi Jiedu Recipe inhibits colorectal cancer liver metastasis via regulating ITGBL1-rich extracellular vesicles mediated activation of cancer-associated fibroblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154082. [PMID: 35381565 DOI: 10.1016/j.phymed.2022.154082] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/05/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) contribute greatly to the formation of pre-metastatic niche and tumor metastasis. Our previous study has revealed that tumor-derived ITGBL1 (integrin beta- like 1)-rich EVs activate fibroblasts through the NF-κB signaling to promote colorectal cancer (CRC) metastasis. Targeting ITGBL1-loaded EVs may be a new and effective therapy for treating CRC metastasis. Simultaneously, our preliminary clinical trial has demonstrated that Jianpi Jiedu Recipe (JPJDR) was an ideal alternative traditional Chinese medicine for the prevention and treatment of CRC metastasis. However, the underlying mechanism of JPJDR in the prevention of CRC metastasis is not clear. In this study, we will investigate the regulatory effect of JPJDR on ITGBL1 levels in CRC-derived EVs, and to detect how JPJDR regulate ITGBL1-rich EVs mediated activation of fibroblasts to inhibit CRC metastasis. METHODS EVs derived from CRC cells with/without JPJDR treatment were obtained by ultracentrifugation, following by characterization with electron microscopy, LM10 nanoparticle characterization system and western blot. The migration and growth of CRC cells were tested by transwell assay, wound healing assay and colony formation assay. The effect of JPJDR on the fibroblasts-activation associated inflammatory factors including IL-6, IL-8 and α-SMA was detected by real-time PCR. The levels of IL-6, IL-8 and α-SMA in the cell culture supernatant were detected by ELISA. The protein expressions of TNFAIP3, ITGBL1, p-NF-κB, IκBα and β-actin were detected by western blot. Liver metastasis model in mice was established by injecting MC38 single cell suspension into the spleen of mice to observe the effect of JPJDR on CRC liver metastasis. Immunohistochemistry were applied to detect the expression of ITGBL1 and TNFAIP3 in the liver metastatic tissues. Tissue immunofluorescence detection was performed to observe the regulatory effect of JPJDR on the ITGBL1-NF-κB signaling pathway. Cancer-associated fibroblasts (CAFs) in the liver metastatic tissues were sorted and characterized by platelet-derived growth factor receptor β (PDGFRβ) with flow cytometry, following by the detection of inflammatory factors including IL-6, IL-8 and α-SMA using real-time PCR. RESULTS JPJDR reduced the ITGBL1 levels in CRC cells-derived EVs. JPJDR inhibited the migration and growth of CRC cells via regulating ITGBL1-rich EVs mediated fibroblasts activity. Mechanically, JPJDR decreased fibroblasts activation by regulating ITGBL1-rich EVs mediated TNFAIP3-NF-κB signaling. Further in vivo experiments demonstrated that JPJDR reduced CRC liver metastasis by regulating ITGBL1-rich EVs secretion from CRC and blocked the fibroblasts activation by regulating ITGBL1-TNFAIP3- NF-κB signaling. CONCLUSION Our research demonstrated that JPJDR preventd CRC liver metastasis via down-regulating CRC-derived ITGBL1-loaded EVs mediated activation of CAFs, providing the experimental evidence for the clinical application of JPJDR in the prevention and treatment of CRC metastasis. More importantly, our study confirmed the great benefits of therapeutic targeting the EVs-mediated metastasis and warranted future clinical validation.
Collapse
Affiliation(s)
- Ruixiao Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinnan Wu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifen Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Department of Oncology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qi Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Du T, Zhang K, Zhang Z, Guo A, Yu G, Xu Y. ITGBL1 transcriptionally inhibited by JDP2 promotes the development of pancreatic cancer through the TGF-beta/Smad pathway. Braz J Med Biol Res 2022; 55:e11989. [PMID: 35584452 PMCID: PMC9113530 DOI: 10.1590/1414-431x2022e11989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is one of the malignant tumors with the worst prognosis worldwide because of a lack of early diagnostic markers and efficient therapies. Integrin, beta-like 1 (ITGBL1) is a β-integrin-related extracellular matrix protein and is reported to promote progression of some types of cancer. Nevertheless, the function of ITGBL1 in PC is still not clear. Herein, we found that ITGBL1 was highly expressed in PC tissues compared to normal tissues (P<0.05) and PC patients with higher TGBL1 expression showed worse prognosis. PANC-1 and AsPC-1 cells were used for gain/loss-of-function experiments. We found that ITGBL1-silenced cells exhibited decreased proliferation, migration, and invasion abilities and delayed cell cycle, whereas ITGBL1 overexpression reversed these malignant behaviors. ITGBL1 was also demonstrated to activate the TGF-β/Smad pathway, a key signaling pathway in PC progression. Additionally, ITGBL1 expression was found to be suppressed by a suppressor of PC progression, c-Jun dimerization protein 2 (JDP2). Results of dual-luciferase assay indicated that transcription factor JDP2 could inhibit TGBL1 promoter activity. ITGBL1 overexpression inversed the effects of JDP2 up-regulation on cell function. Collectively, we concluded that ITGBL1 may be transcriptionally suppressed by JDP2 and promote PC progression through the TGF-β/Smad pathway, indicating that ITGBL1 may have therapeutic potential for the treatment of PC.
Collapse
Affiliation(s)
- Tiancong Du
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Anorectal Surgery, Panjin Central Hospital, Panjin, Liaoning, China
| | - Ke Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aijia Guo
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guilin Yu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanhong Xu
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Liu D, Liu S, Fang Y, Liu L, Hu K. Comprehensive Analysis of the Expression and Prognosis for ITGBs: Identification of ITGB5 as a Biomarker of Poor Prognosis and Correlated with Immune Infiltrates in Gastric Cancer. Front Cell Dev Biol 2022; 9:816230. [PMID: 35223869 PMCID: PMC8863963 DOI: 10.3389/fcell.2021.816230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Integrin β superfamily members (ITGBs) are documented to play important roles in various biological processes, and accumulating evidence suggests that ITGBs are associated with carcinogenic effects in several malignancies. Gastric cancer (GC) is a complicated and highly heterogeneous disease; however, the expression and prognostic values of eight ITGBs and potential mechanism in GC remain largely unclear. Methods: The expression and prognostic significance of ITGBs in GC were systematically analyzed through Gene Expression Profiling Interactive Analysis, Human Protein Atlas, Kaplan–Meier Plotter, and cBioPortal databases. Then, the mRNA transcription data and corresponding clinical data of GC were downloaded from the Gene Expression Omnibus database as a testing cohort, and differentially expressed and prognostic genes were identified. The correlation between ITGB5 expression and overall survival and various clinical parameters were found by using univariate/multivariable Cox regression and Kaplan–Meier survival analysis. Additionally, differential analysis of gene expression profiles in low- and high-ITGB5 expression groups and pathway enrichment analysis was performed. Finally, the correlation of ITGB5 expression with immune infiltrates in GC was clarified. Results: Compared with adjacent normal tissue, the results reveal that the mRNA levels of ITGB1-2 and ITGB4-8 are significantly higher in GC, and immunohistochemistry results show the consistency between RNA and protein expression levels. Cox regression and Kaplan–Meier survival analysis indicate that high ITGB5 expression contributes to a poor prognosis and could be an independent prognostic factor in GC patients. Besides this, gene functional enrichment analysis indicates that ITGB5 expression is significantly associated with extracellular matrix organization, cell-substrate adhesion, and ossification. The KEGG pathway analysis of ITGB5 shows a close association between ITGB5 and focal adhesion, ECM-receptor interaction, phagosome, and PI3K-Akt signaling pathway. Last, the infiltrating level of CD4+ T cells, macrophages, and dendritic cells are positively related to the expression of ITGB5, especially macrophages, and lower levels of macrophages predict a better prognosis in GC in our study. Conclusion: Our findings investigate that ITGB5 may function as a valid biomarker of prognosis, and high expression of ITGB5 predicts poor prognosis for patients with GC. Besides this, it might be a potential target of precision therapy against GC.
Collapse
Affiliation(s)
- Dongliang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaojun Liu
- Department of General Surgery, The First Hospital Affiliated to the University of Science and Technology of China, Hefei, China
| | - Yu Fang
- Department of General Surgery, The First Hospital Affiliated to the University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of General Surgery, The First Hospital Affiliated to the University of Science and Technology of China, Hefei, China
- *Correspondence: Liu Liu, ; Kongwang Hu,
| | - Kongwang Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Liu Liu, ; Kongwang Hu,
| |
Collapse
|
6
|
Lu Z, Gao Y. Screening differentially expressed genes between endometriosis and ovarian cancer to find new biomarkers for endometriosis. Ann Med 2021; 53:1377-1389. [PMID: 34409913 PMCID: PMC8381947 DOI: 10.1080/07853890.2021.1966087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
AIM Endometriosis is one of the most common reproductive system diseases, but the mechanisms of disease progression are still unclear. Due to its high recurrence rate, searching for potential therapeutic biomarkers involved in the pathogenesis of endometriosis is an urgent issue. METHODS Due to the similarities between endometriosis and ovarian cancer, four endometriosis datasets and one ovarian cancer dataset were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction (PPI) analyses. Then, we validated gene expression and performed survival analysis with ovarian serous cystadenocarcinoma (OV) datasets in TCGA/GTEx database, and searched for potential drugs in the Drug-Gene Interaction Database. Finally, we explored the miRNAs of key genes to find biomarkers associated with the recurrence of endometriosis. RESULTS In total, 104 DEGs were identified in the endometriosis datasets, and the main enriched GO functions included cell adhesion, extracellular exosome and actin binding. Fifty DEGs were identified between endometriosis and ovarian cancer datasets including 11 consistently regulated genes, and nine DEGs with significant expression in TCGA/GTEx. Only IGHM had both significant expression and an association with survival, three module DEGs and two significantly expressed DEGs had drug associations, and 10 DEGs had druggability. CONCLUSIONS ITGA7, ITGBL1 and SORBS1 may help us understand the invasive nature of endometriosis, and IGHM might be related to recurrence; moreover, these genes all may be potential therapeutic targets.KEY MESSAGEThis manuscript used a bioinformatics approach to find target genes for the treatment of endometriosis.This manuscript used a new approach to find target genes by drawing on common characteristics between ovarian cancer and endometriosis.We screened relevant therapeutic agents for target genes in the drug database, and performed histological validation of target genes with both expression and survival analysis difference in cancer databases.
Collapse
Affiliation(s)
- Zhenzhen Lu
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Gao
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Cheli Y, Tulic MK, El Hachem N, Nottet N, Jacquel A, Gesson M, Strub T, Bille K, Picard-Gauci A, Montaudié H, Beranger GE, Passeron T, Close P, Bertolotto C, Ballotti R. ITGBL1 is a new immunomodulator that favors development of melanoma tumors by inhibiting natural killer cells cytotoxicity. Mol Cancer 2021; 20:12. [PMID: 33413419 PMCID: PMC7789764 DOI: 10.1186/s12943-020-01306-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Resistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.
Collapse
Affiliation(s)
- Yann Cheli
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France.
| | - Meri K Tulic
- Université Nice Côte d'Azur, INSERM, U1065, Team12 Study of the melanocytic differentiation applied to vitiligo and melanoma, 06000, Nice, France
| | - Najla El Hachem
- Laboratory of Cancer Signaling, University of Liège, Liège, Belgium
| | - Nicolas Nottet
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| | - Arnaud Jacquel
- Université Nice Côte d'Azur, INSERM, U1065, Team2 Cell death, differentiation and cancer, 06000, Nice, France
| | - Maeva Gesson
- Université Nice Côte d'Azur, INSERM, U1065, Imaging platform, 06000, Nice, France
| | - Thomas Strub
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| | - Karine Bille
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| | | | | | - Guillaume E Beranger
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
- Université Nice Côte d'Azur, INSERM, U1065, Team12 Study of the melanocytic differentiation applied to vitiligo and melanoma, 06000, Nice, France
| | - Thierry Passeron
- Université Nice Côte d'Azur, INSERM, U1065, Team12 Study of the melanocytic differentiation applied to vitiligo and melanoma, 06000, Nice, France
- CHU NICE, Département de Dermatologie, 06000, Nice, France
| | - Pierre Close
- Laboratory of Cancer Signaling, University of Liège, Liège, Belgium
| | - Corine Bertolotto
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, INSERM U1065, Team1 Biology and pathologies of melanocytes. Equipe labellisée ARC 2019, 06000, Nice, France
| |
Collapse
|
8
|
Cortez AJ, Kujawa KA, Wilk AM, Sojka DR, Syrkis JP, Olbryt M, Lisowska KM. Evaluation of the Role of ITGBL1 in Ovarian Cancer. Cancers (Basel) 2020; 12:E2676. [PMID: 32961775 PMCID: PMC7563769 DOI: 10.3390/cancers12092676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
In our previous microarray study we identified two subgroups of high-grade serous ovarian cancers with distinct gene expression and survival. Among differentially expressed genes was an Integrin beta-like 1 (ITGBL1), coding for a poorly characterized protein comprised of ten EGF-like repeats. Here, we have analyzed the influence of ITGBL1 on the phenotype of ovarian cancer (OC) cells. We analyzed expression of four putative ITGBL1 mRNA isoforms in five OC cell lines. OAW42 and SKOV3, having the lowest level of any ITGBL1 mRNA, were chosen to produce ITGBL1-overexpressing variants. In these cells, abundant ITGBL1 mRNA expression could be detected by RT-PCR. Immunodetection was successful only in the culture media, suggesting that ITGBL1 is efficiently secreted. We found that ITGBL1 overexpression affected cellular adhesion, migration and invasiveness, while it had no effect on proliferation rate and the cell cycle. ITGBL1-overexpressing cells were significantly more resistant to cisplatin and paclitaxel, major drugs used in OC treatment. Global gene expression analysis revealed that signaling pathways affected by ITGBL1 overexpression were mostly those related to extracellular matrix organization and function, integrin signaling, focal adhesion, cellular communication and motility; these results were consistent with the findings of our functional studies. Overall, our results indicate that higher expression of ITGBL1 in OC is associated with features that may worsen clinical course of the disease.
Collapse
Affiliation(s)
- Alexander Jorge Cortez
- Department of Biostatistics and Bioinformatics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Agata Małgorzata Wilk
- Department of Biostatistics and Bioinformatics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Joanna Patrycja Syrkis
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.A.K.); (D.R.S.); (J.P.S.); (M.O.)
| |
Collapse
|
9
|
Role of the TLR4-androgen receptor axis and genistein in taxol-resistant ovarian cancer cells. Biochem Pharmacol 2020; 177:113965. [DOI: 10.1016/j.bcp.2020.113965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
|
10
|
Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, Cai J, Li B, Chen P, Zhang X. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif 2020; 53:e12836. [PMID: 32537856 PMCID: PMC7377936 DOI: 10.1111/cpr.12836] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Integrin beta‐like 1 (ITGBL1) is involved in the migration and invasion of several cancers; however, its roles in the development and progression of hepatocellular carcinoma (HCC) remain largely unknown. Materials and methods Immunohistochemistry staining was used to investigate the expression pattern of ITGBL1 and its prognostic values in HCC patients. The transwell, wound‐healing assays, xenograft and orthotopic mouse models were employed to determine the effects of ITGBL1 on HCC cell migration and invasion in vitro and in vivo. The biological mechanisms involved in cell migration and invasion caused by ITGBL1 were determined with Western blotting and RT‐PCR methods. Results ITGBL1 expression was significantly increased in HCC tissues compared to adjacent normal tissues. Patients with higher ITGBL1 expression were associated with more reduced overall survival. ITGBL1 overexpression promoted migration and invasion in SMMC‐7721 and HepG2 cells in vitro and in vivo, whereas knockdown or knockout ITGBL1 in CSQT‐2 cells significantly reduced cell migration and invasion abilities. In SMMC‐7721 cells, ITGBL1 overexpression stimulated TGF‐β/Smads signalling pathway, along with the KRT17 and genes involved in the epithelial‐mesenchymal transition (EMT). In contrast, ITGBL1 knockout inhibited the TGF‐β/Smads signalling pathway in CSQT‐2 cells. Conclusions These findings suggested that ITGBL1 promoted migration and invasion in HCC cells by stimulating the TGF‐β/Smads signalling pathway. ITGBL1 could be a promising prognostic biomarker, as well as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Wei Huang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Demin Yu
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mingjie Wang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Han
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junyu Lin
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dong Wei
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jialin Cai
- Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinxin Zhang
- Research Laboratory of Clinical Virology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Clinical Research Center, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Qi L, Song F, Ding Y. Regulatory Mechanism of ITGBL1 in the Metastasis of Colorectal Cancer. Front Oncol 2020; 10:259. [PMID: 32211321 PMCID: PMC7076154 DOI: 10.3389/fonc.2020.00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Integrin, beta-like 1 (ITGBL1) protein is located in the extracellular matrix (ECM) and involved in the development and metastasis of many tumors. However, the regulatory mechanism of ITGBL1 in colorectal cancer (CRC) remains unclear. This study was to analyze the expression profile of CRC and to identify the expression change of ITGBL1 gene at different stages of CRC. Survival analysis showed that ITGBL1 was related to the metastasis of CRC, and CRC patients with a high expression of ITGBL1 had earlier metastasis. Gene Set Enrichment Analysis (GSEA) indicated the relationship between ITGBL1 expression and molecular events of CRC. The results indicated that a high expression of ITGBL1 was linked to Wnt signaling pathway, cell polarity, and tissue development, while a low expression of ITGBL1 was related to cellular respiration, electron transfer chain, and oxidative phosphorylation. With the expression profiles from interstitial and parenchyma CRC tissues, a comparison was made to determine the difference between high/low expression of ITGBL1 and Wnt signaling pathway, respectively, and further confirmed the close relation between ITGBL1 and Wnt signaling pathway. To determine the relation, an interaction network of ITGBL1 and Wnt signaling proteins was constructed. It was found that β-catenin interacted with multiple extracellular Wnt signals and could bind to ITGBL1. As a result, the regulatory mechanism of ITGBL1 in CRC is related to extracellular Wnt signals and may affect extracellular Wnt signals via β-catenin.
Collapse
Affiliation(s)
- Lu Qi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| |
Collapse
|