1
|
Shao XJ, Wang W, Xu AX, Qi XT, Cai MY, Du WX, Cao J, He QJ, Ying MD, Yang B. Palmitoyltransferase ZDHHC3 is essential for the oncogenic activity of PML/RARα in acute promyelocytic leukemia. Acta Pharmacol Sin 2025; 46:462-473. [PMID: 39227737 PMCID: PMC11747460 DOI: 10.1038/s41401-024-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
The oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) is critical for acute promyelocytic leukemia (APL). PML/RARα initiates APL by blocking the differentiation and increasing the self-renewal of leukemic cells. The standard clinical therapies all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which induce PML/RARα proteolysis, have dramatically improved the prognosis of APL patients. However, the emergence of mutations conferring resistance to ATRA and ATO has created challenges in the treatment of APL patients. Exploring pathways that modulate the oncogenic activity of PML/RARα could help develop novel therapeutic strategies for APL, particularly for drug-resistant APL. Herein, we demonstrated for the first time that palmitoylation of PML/RARα was a critical determinant of its oncogenic activity. PML/RARα palmitoylation was found to be catalyzed mainly by the palmitoyltransferase ZDHHC3. Mechanistically, ZDHHC3-mediated palmitoylation regulated the oncogenic transcriptional activity of PML/RARα and APL pathogenesis. The knockdown or overexpression of ZDHHC3 had respective effects on the expression of proliferation- and differentiation-related genes. Consistently, the depletion or inhibition of ZDHHC3 could significantly arrest the malignant progression of APL, particularly drug-resistant APL, whereas ZDHHC3 overexpression appeared to have a promoting effect on the malignant progression of APL. Thus, our study not only reveals palmitoylation as a novel regulatory mechanism that modulates PML/RARα oncogenic activity but also identifies ZDHHC3 as a potential therapeutic target for APL, including drug-resistant APL.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Animals
- Lipoylation
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Mice
- Arsenic Trioxide/pharmacology
- Arsenic Trioxide/therapeutic use
- Tretinoin/pharmacology
- Tretinoin/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Drug Resistance, Neoplasm
- Cell Differentiation/drug effects
- Mice, Nude
Collapse
Affiliation(s)
- Xue-Jing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ai-Xiao Xu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Tian Qi
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min-Yi Cai
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Xin Du
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Division of Hematology-Oncology, the Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310015, China.
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
2
|
Chen X, Li J, Xiang A, Guan H, Su P, Zhang L, Zhang D, Yu Q. BMP and activin receptor membrane bound inhibitor: BAMBI has multiple roles in gene expression and diseases (Review). Exp Ther Med 2024; 27:28. [PMID: 38125356 PMCID: PMC10728939 DOI: 10.3892/etm.2023.12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023] Open
Abstract
BMP and activin membrane-bound inhibitor (BAMBI) is a transmembrane glycoprotein, known as a pseudo-receptor for TGFβ, as, while its extracellular domain is similar to that of type I TGFβ receptors, its intracellular structure is shorter and lacks a serine/threonine phosphokinase signaling motif. BAMBI can regulate numerous biological phenomena, including glucose and lipid metabolism, inflammatory responses, and cell proliferation and differentiation. Furthermore, abnormal expression of BAMBI at the mRNA and protein levels contributes to various human pathologies, including obesity and cancer. In the present review, the structure of BAMBI is briefly introduced and its associated signaling pathways and physiological functions are described. Understanding of BAMBI structure and function may contribute to knowledge regarding the occurrence of diseases, including obesity and diabetes, among others. The present review provides a theoretical foundation for the development of BAMBI as a potential biomarker or therapeutic target.
Collapse
Affiliation(s)
- Xiaochang Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jue Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Aoqi Xiang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Peihong Su
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Lusha Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Dian Zhang
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
3
|
Wang Y, Iha H. The Novel Link between Gene Expression Profiles of Adult T-Cell Leukemia/Lymphoma Patients' Peripheral Blood Lymphocytes and Ferroptosis Susceptibility. Genes (Basel) 2023; 14:2005. [PMID: 38002949 PMCID: PMC10671613 DOI: 10.3390/genes14112005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Ferroptosis, a regulated cell death dependent on iron, has garnered attention as a potential broad-spectrum anticancer approach in leukemia research. However, there has been limited ferroptosis research on ATL, an aggressive T-cell malignancy caused by HTLV-1 infection. Our study employs bioinformatic analysis, utilizing dataset GSE33615, to identify 46 ferroptosis-related DEGs and 26 autophagy-related DEGs in ATL cells. These DEGs are associated with various cellular responses, chemical stress, and iron-related pathways. Autophagy-related DEGs are linked to autophagy, apoptosis, NOD-like receptor signaling, TNF signaling, and the insulin resistance pathway. PPI network analysis revealed 10 hub genes and related biomolecules. Moreover, we predicted crucial miRNAs, transcription factors, and potential pharmacological compounds. We also screened the top 20 medications based on upregulated DEGs. In summary, our study establishes an innovative link between ATL treatment and ferroptosis, offering promising avenues for novel therapeutic strategies in ATL.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan
| |
Collapse
|