1
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Burtscher J, Millet GP, Fresa M, Lanzi S, Mazzolai L, Pellegrin M. The link between impaired oxygen supply and cognitive decline in peripheral artery disease. Prog Cardiovasc Dis 2024; 85:63-73. [PMID: 38061613 DOI: 10.1016/j.pcad.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Although peripheral artery disease (PAD) primarily affects large arteries outside the brain, PAD is also associated with elevated cerebral vulnerabilities, including greater risks for brain injury (such as stroke), cognitive decline and dementia. In the present review, we aim to evaluate recent literature and extract information on potential mechanisms linking PAD and consequences on the brain. Furthermore, we suggest novel therapeutic avenues to mitigate cognitive decline and reduce risk of brain injury in patients with PAD. Various interventions, notably exercise, directly or indirectly improve systemic blood flow and oxygen supply and are effective strategies in patients with PAD or cognitive decline. Moreover, triggering protective cellular and systemic mechanisms by modulating inspired oxygen concentrations are emerging as potential novel treatment strategies. While several genetic and pharmacological approaches to modulate adaptations to hypoxia showed promising results in preclinical models of PAD, no clear benefits have yet been clinically demonstrated. We argue that genetic/pharmacological regulation of the involved adaptive systems remains challenging but that therapeutic variation of inspired oxygen levels (e.g., hypoxia conditioning) are promising future interventions to mitigate associated cognitive decline in patients with PAD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Marco Fresa
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stefano Lanzi
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Lucia Mazzolai
- Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Maxime Pellegrin
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Angiology Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
3
|
Iluț S, Vesa ŞC, Văcăraș V, Brăiță L, Dăscălescu VC, Fantu I, Mureșanu DF. Biological Risk Factors Influencing Vascular Cognitive Impairments: A Review of the Evidence. Brain Sci 2023; 13:1094. [PMID: 37509024 PMCID: PMC10377134 DOI: 10.3390/brainsci13071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Vascular cognitive impairment encompasses several types of deficits, ranging from mild cognitive impairment to dementia. Cognitive reserve refers to the brain's ability to balance damage and improve performance through certain types of brain networks. The purpose of this review was to assess the relationship between reserve in vascular impairment, specifically looking at whether cognitive impairment is influenced by cognitive reserve, identifying significant vascular risk factors and their pathological pathways. To achieve this purpose, a review covering these issues was conducted within the Embase, Cochrane, and PubMed database. A total of 657 scientific articles were found, and 33 papers were considered for the final analysis. We concluded that there is no consensus on the protective effects of brain reserve on cognitive impairment. Stroke and diabetes can be considered significant risk factors for vascular cognitive impairment, while hypertension is not as damaging as blood pressure variability, which structurally alters the brain through a variety of mechanisms.
Collapse
Affiliation(s)
- Silvina Iluț
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
- Clinical Rehabilitation Hospital, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania
| | - Ştefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Vitalie Văcăraș
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
- Clinical Rehabilitation Hospital, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania
| | - Lavinia Brăiță
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
| | - Vlad-Constantin Dăscălescu
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
| | - Ioana Fantu
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
| | - Dafin-Fior Mureșanu
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Victor Babeş Street, 400012 Cluj-Napoca, Romania; (S.I.); (V.V.); (L.B.); (V.-C.D.); (I.F.); (D.-F.M.)
- Clinical Rehabilitation Hospital, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Owens CD, Mukli P, Csipo T, Lipecz A, Silva-Palacios F, Dasari TW, Tarantini S, Gardner AW, Montgomery PS, Waldstein SR, Kellawan JM, Nyul-Toth A, Balasubramanian P, Sotonyi P, Csiszar A, Ungvari Z, Yabluchanskiy A. Microvascular dysfunction and neurovascular uncoupling are exacerbated in peripheral artery disease, increasing the risk of cognitive decline in older adults. Am J Physiol Heart Circ Physiol 2022; 322:H924-H935. [PMID: 35333116 PMCID: PMC9037702 DOI: 10.1152/ajpheart.00616.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is a vascular pathology with high prevalence among the aging population. PAD is associated with decreased cognitive performance, but the underlying mechanisms remain obscure. Normal brain function critically depends on an adequate adjustment of cerebral blood supply to match the needs of active brain regions via neurovascular coupling (NVC). NVC responses depend on healthy microvascular endothelial function. PAD is associated with significant endothelial dysfunction in peripheral arteries, but its effect on NVC responses has not been investigated. This study was designed to test the hypothesis that NVC and peripheral microvascular endothelial function are impaired in PAD. We enrolled 11 symptomatic patients with PAD and 11 age- and sex-matched controls. Participants were evaluated for cognitive performance using the Cambridge Neuropsychological Test Automated Battery and functional near-infrared spectroscopy to assess NVC responses during the cognitive n-back task. Peripheral microvascular endothelial function was evaluated using laser speckle contrast imaging. We found that cognitive performance was compromised in patients with PAD, evidenced by reduced visual memory, short-term memory, and sustained attention. We found that NVC responses and peripheral microvascular endothelial function were significantly impaired in patients with PAD. A positive correlation was observed between microvascular endothelial function, NVC responses, and cognitive performance in the study participants. Our findings support the concept that microvascular endothelial dysfunction and neurovascular uncoupling contribute to the genesis of cognitive impairment in older PAD patients with claudication. Longitudinal studies are warranted to test whether the targeted improvement of NVC responses can prevent or delay the onset of PAD-associated cognitive decline.NEW & NOTEWORTHY Peripheral artery disease (PAD) was associated with significantly decreased cognitive performance, impaired neurovascular coupling (NVC) responses in the prefrontal cortex (PFC), left and right dorsolateral prefrontal cortices (LDLPFC and RDLPFC), and impaired peripheral microvascular endothelial function. A positive correlation between microvascular endothelial function, NVC responses, and cognitive performance may suggest that PAD-related cognitive decrement is mechanistically linked, at least in part, to generalized microvascular endothelial dysfunction and subsequent impairment of NVC responses.
Collapse
Affiliation(s)
- Cameron D Owens
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Federico Silva-Palacios
- Vascular Medicine Program, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew W Gardner
- Department of Physical Medicine and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania
| | - Polly S Montgomery
- Department of Physical Medicine and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, Maryland
- Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Huo R, Liu Y, Xu H, Li J, Xin R, Xing Z, Deng S, Wang T, Yuan H, Zhao X. Associations between carotid atherosclerotic plaque characteristics determined by magnetic resonance imaging and improvement of cognition in patients undergoing carotid endarterectomy. Quant Imaging Med Surg 2022; 12:2891-2903. [PMID: 35502372 PMCID: PMC9014142 DOI: 10.21037/qims-21-981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/05/2022] [Indexed: 08/29/2023]
Abstract
BACKGROUND To determine the predictive value of carotid plaque characteristics for the improvement of cognition in patients with moderate-to-severe carotid stenosis after carotid endarterectomy (CEA), using vessel wall magnetic resonance imaging (MRI). METHODS This was a prospective cohort study. Patients with unilateral, moderate-to-severe carotid stenosis referred to the Peking University Third Hospital for CEA were prospectively recruited and underwent carotid vessel wall MRI within 1 week before CEA. We performed Montreal Cognitive Assessment (MoCA) within 1 week before and 3-4 days after CEA. The morphological and compositional characteristics of carotid plaques on MRI were evaluated. Improvement of cognition was defined as >10% increase of the total MoCA score after CEA compared with baseline. Carotid plaque characteristics were compared between patients with and without cognitive improvement. RESULTS In total, 105 patients (91 males; mean age, 65.5±8.4 years) were included. The volume {48.0 [interquartile range (IQR), 21.0 to 91.6] vs. 16.3 (IQR, 8.1 to 53.1) mm3; P=0.005} and cumulative slice [4.0 (IQR, 3.0 to 7.0) vs. 3.0 (IQR, 2.0 to 5.0); P=0.019] of carotid calcification, and maximum percentage of calcification area [13.1% (IQR, 6.0% to 19.8%) vs. 6.2% (IQR, 3.7% to 10.8%); P=0.004] were significantly smaller in participants with cognitive improvement compared to those without. Univariate logistic regression analysis showed that volume [odds ratio (OR) =0.994; 95% confidence interval (CI): 0.989 to 1.000; P=0.043] and cumulative slice (OR =0.823; 95% CI: 0.698 to 0.970; P=0.020) of carotid calcification, and maximum percentage of calcification area (OR =0.949; 95% CI: 0.909 to 0.991; P=0.018) were significantly correlated with cognitive improvement. After adjusting for confounding factors, these associations remained statistically or marginally significant (volume: OR =0.994; 95% CI: 0.988 to 1.000; P=0.057; maximum percentage of calcification area: OR =0.937; 95% CI: 0.890 to 0.987; P=0.014; and cumulative slice: OR =0.791; 95% CI: 0.646 to 0.967; P=0.022). No significant associations were found between other plaque characteristics and cognitive improvement (all P>0.05). CONCLUSIONS More than half of the participants with unilateral, moderate-to-severe carotid atherosclerotic stenosis had cognitive improvement. The size of calcification might be an effective indicator of cognitive improvement after CEA.
Collapse
Affiliation(s)
- Ran Huo
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ying Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huimin Xu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jin Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ruijing Xin
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhangli Xing
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shasha Deng
- School of Medical Imaging, Changsha Medical University, Changsha, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Sabra D, Intzandt B, Desjardins-Crepeau L, Langeard A, Steele CJ, Frouin F, Hoge RD, Bherer L, Gauthier CJ. Sex moderations in the relationship between aortic stiffness, cognition, and cerebrovascular reactivity in healthy older adults. PLoS One 2021; 16:e0257815. [PMID: 34582484 PMCID: PMC8478243 DOI: 10.1371/journal.pone.0257815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
It is well established that sex differences exist in the manifestation of vascular diseases. Arterial stiffness (AS) has been associated with changes in cerebrovascular reactivity (CVR) and cognitive decline in aging. Specifically, older adults with increased AS show a decline on executive function (EF) tasks. Interestingly, the relationship between AS and CVR is more complex, where some studies show decreased CVR with increased AS, and others demonstrate preserved CVR despite higher AS. Here, we investigated the possible role of sex on these hemodynamic relationships. Acquisitions were completed in 48 older adults. Pseudo-continuous arterial spin labeling (pCASL) data were collected during a hypercapnia challenge. Aortic pulse wave velocity (PWV) data was acquired using cine phase contrast velocity series. Cognitive function was assessed with a comprehensive neuropsychological battery, and a composite score for EF was calculated using four cognitive tests from the neuropsychological battery. A moderation model test revealed that sex moderated the relationship between PWV and CVR and PWV and EF, but not between CVR and EF. Together, our results indicate that the relationships between central stiffness, cerebral hemodynamics and cognition are in part mediated by sex.
Collapse
Affiliation(s)
- Dalia Sabra
- Faculty of Medicine, Department of Biomedical Science, Université de Montreal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Brittany Intzandt
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- INDI Department, Concordia University, Montreal, QC, Canada
| | - Laurence Desjardins-Crepeau
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Antoine Langeard
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Christopher J. Steele
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | | | - Richard D. Hoge
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Louis Bherer
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
| | - Claudine J. Gauthier
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- PERFORM Centre, Concordia University, Montreal, QC, Canada
- Physics Department, Concordia University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
7
|
Kim D, Hughes TM, Lipford ME, Craft S, Baker LD, Lockhart SN, Whitlow CT, Okonmah-Obazee SE, Hugenschmidt CE, Bobinski M, Jung Y. Relationship Between Cerebrovascular Reactivity and Cognition Among People With Risk of Cognitive Decline. Front Physiol 2021; 12:645342. [PMID: 34135768 PMCID: PMC8201407 DOI: 10.3389/fphys.2021.645342] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vascular risk factors (e.g., obesity and hypertension) are associated with cerebral small vessel disease, Alzheimer's disease (AD) pathology, and dementia. Reduced perfusion may reflect the impaired ability of blood vessels to regulate blood flow in reaction to varying circumstances such as hypercapnia (increased end-tidal partial pressures of CO2). It has been shown that cerebrovascular reactivity (CVR) measured with blood-oxygen-level-dependent (BOLD) MRI is correlated with cognitive performance and alterations of CVR may be an indicator of vascular disfunction leading to cognitive decline. However, the underlying mechanism of CVR alterations in BOLD signal may not be straight-forward because BOLD signal is affected by multiple physiological parameters, such as cerebral blood flow (CBF), cerebral blood volume, and oxygen metabolism. Arterial spin labeling (ASL) MRI quantitatively measures blood flow in the brain providing images of local CBF. Therefore, in this study, we measured CBF and its changes using a dynamic ASL technique during a hypercapnia challenge and tested if CBF or CVR was related to cognitive performance using the Mini-mental state examination (MMSE) score. Seventy-eight participants underwent cognitive testing and MRI including ASL during a hypercapnia challenge with a RespirAct computer-controlled gas blender, targeting 10 mmHg higher end-tidal CO2 level than the baseline while end-tidal O2 level was maintained. Pseudo-continuous ASL (PCASL) was collected during a 2-min baseline and a 2-min hypercapnic period. CVR was obtained by calculating a percent change of CBF per the end-tidal CO2 elevation in mmHg between the baseline and the hypercapnic challenge. Multivariate regression analyses demonstrated that baseline resting CBF has no significant relationship with MMSE, while lower CVR in the whole brain gray matter (β = 0.689, p = 0.005) and white matter (β = 0.578, p = 0.016) are related to lower MMSE score. In addition, region of interest (ROI) based analysis showed positive relationships between MMSE score and CVR in 26 out of 122 gray matter ROIs.
Collapse
Affiliation(s)
- Donghoon Kim
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Timothy M. Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Megan E. Lipford
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Laura D. Baker
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Samuel N. Lockhart
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | | | - Matthew Bobinski
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Youngkyoo Jung
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Radiology, University of California, Davis, Davis, CA, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
8
|
Editor's Choice - Asymptomatic Carotid Stenosis and Cognitive Impairment: A Systematic Review. Eur J Vasc Endovasc Surg 2021; 61:888-899. [PMID: 33966986 DOI: 10.1016/j.ejvs.2021.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim was to evaluate the relationship between asymptomatic carotid stenosis (ACS) of any severity and cognitive impairment and to determine whether there is evidence supporting an aetiological role for ACS in the pathophysiology of cognitive impairment. DATA SOURCES PubMed/Medline, Embase, Scopus, and the Cochrane library. REVIEW METHODS This was a systematic review (35 cross sectional or longitudinal studies) RESULTS: Study heterogeneity confounded data interpretation, largely because of no standardisation regarding cognitive testing. In the 30 cross sectional and six longitudinal studies (one included both), 33/35 (94%) reported an association between any degree of ACS and one or more tests of impaired cognitive function (20 reported one to three tests with poorer cognition; 11 reported four to six tests with poorer cognition, while three studies reported seven or more tests with poorer cognition). There was no evidence that ACS caused cognitive impairment via silent cortical infarction, or via involvement in the pathophysiology of lacunar infarction or white matter hyperintensities. However, nine of 10 studies evaluating cerebral vascular reserve (CVR) reported that ACS patients with impaired CVR were significantly more likely to have cognitive impairment and that impaired CVR was associated with worsening cognition over time. Patients with severe ACS but normal CVR had cognitive scores similar to controls. CONCLUSION Notwithstanding significant heterogeneity within the constituent studies, which compromised overall interpretation, 94% of studies reported an association between ACS and one or more tests of cognitive impairment. However, "significant association" does not automatically imply an aetiological relationship. At present, there is no clear evidence that ACS causes cognitive impairment via silent cortical infarction (but very few studies have addressed this question) and no evidence of ACS involvement in the pathophysiology of white matter hyperintensities or lacunar infarction. There is, however, better evidence that patients with severe ACS and impaired CVR are more likely to have cognitive impairment and to suffer further cognitive decline with time.
Collapse
|
9
|
Lutski M, Haratz S, Weinstein G, Goldbourt U, Tanne D. Impaired Cerebral Hemodynamics and Frailty in Patients with Cardiovascular Disease. J Gerontol A Biol Sci Med Sci 2019; 73:1714-1721. [PMID: 29432609 DOI: 10.1093/gerona/glx253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Indexed: 02/02/2023] Open
Abstract
Background Recent studies suggest that impaired cerebrovascular reactivity (CVR), a marker of cerebral microvascular damage, is associated with a higher risk of stroke, cognitive decline, and mortality. We tested whether abnormal cerebrovascular status is associated with late-life frailty among men with pre-existing cardiovascular disease. Methods A subset of 327 men (mean age at baseline 56.7 ± 6.5 years) who previously participated in the Bezafibrate Infarction Prevention (BIP) trial (1990-1997) and then in the BIP Neurocognitive Study underwent a neurovascular evaluation 14.6 ± 1.9 years after baseline (T1) and were evaluated for frailty 19.9 ± 1.0 years after baseline (T2). CVR was measured at T1 using the breath-holding index and carotid large-vessel disease using ultrasound. Frailty status was measured at T2 according to the physical phenotype developed by Fried. Patients were categorized into CVR tertiles with cutoff points at ≤0.57, 0.58-0.94, and ≥0.95 and also as normal or impaired (<0.69) CVR. We assessed the change in the odds of being in the advanced rank of frailty status (normal, prefrail, and frail) using ordered logistic regression. Results After adjustment, the estimated OR (95% confidence intervals) for increasing frailty in the lower tertile was 1.94 (1.09-3.46) and in the middle tertile 1.24 (0.70-2.19), compared with the higher CVR tertile. The estimated OR for increasing frailty for patients with impaired vs. normal CVR was 1.76 (1.11-2.80). Conclusions These findings provide support that cerebral microvascular dysfunction among patients with pre-existing cardiovascular disease is related to prefrailty and frailty and suggest an added value of assessing the cerebral vascular functional status for identifying patients at-risk of developing frailty.
Collapse
Affiliation(s)
- Miri Lutski
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,The Israel Center for Disease Control, Ministry of Health, Ramat Gan, Israel
| | - Salo Haratz
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Galit Weinstein
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Israel
| | - Uri Goldbourt
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - David Tanne
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
10
|
Lutski M, Weinstein G, Goldbourt U, Tanne D. Plasma Lipids, Apolipoproteins, and Subsequent Cognitive Decline in Men with Coronary Heart Disease. J Alzheimers Dis 2019; 67:827-837. [DOI: 10.3233/jad-180849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Miri Lutski
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- The Israel Center for Disease Control, Israel Ministry of Health, Israel
| | - Galit Weinstein
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Uri Goldbourt
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - David Tanne
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
Norling AM, Marshall RS, Pavol MA, Howard G, Howard V, Liebeskind D, Huston J, Lal BK, Brott TG, Lazar RM. Is Hemispheric Hypoperfusion a Treatable Cause of Cognitive Impairment? Curr Cardiol Rep 2019; 21:4. [PMID: 30661122 DOI: 10.1007/s11886-019-1089-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW To review the current literature that supports the notion that cerebral hemodynamic compromise from internal carotid artery stenosis may be a cause of vascular cognitive impairment that is amenable to treatment by revascularization. RECENT FINDINGS Converging evidence suggests that successful carotid endarterectomy and carotid artery stenting are associated with reversal of cognitive decline in many patients with severe but asymptomatic carotid artery stenosis. Most of these findings have been derived from cohort studies and comparisons with either normal or surgical controls. Failure to find treatment benefit in a number of studies appears to have been the result of patient heterogeneity or confounding from concomitant conditions independently associated with cognitive decline, such as heart failure and other cardiovascular risk factors, or failure to establish pre-procedure hemodynamic failure. Patients with severe carotid artery stenosis causing cerebral hemodynamic impairment may have a reversible cause of cognitive decline. None of the prior studies, however, were done in the context of a randomized clinical trial with large numbers of participants. The ongoing CREST-2 trial comparing revascularization with medical therapy versus medical therapy alone, and its associated CREST-H study determining whether cognitive decline is reversible among those with hemodynamic compromise may address this question.
Collapse
Affiliation(s)
- Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, 1720 7th Ave S-SC 650, Birmingham, AL, 35294, USA
| | - Randolph S Marshall
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marykay A Pavol
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - George Howard
- Department of Biostatistics (GH), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia Howard
- Department of Epidemiology (VH), University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Liebeskind
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - John Huston
- Department of Neuroradiology (JH), Mayo Clinic, Rochester, MN, USA
| | - Brajesh K Lal
- Department of Vascular Surgery (BKL), University of Maryland, Baltimore, MD, USA
| | - Thomas G Brott
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, 1720 7th Ave S-SC 650, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
Catchlove SJ, Parrish TB, Chen Y, Macpherson H, Hughes ME, Pipingas A. Regional Cerebrovascular Reactivity and Cognitive Performance in Healthy Aging. J Exp Neurosci 2018; 12:1179069518785151. [PMID: 30013388 PMCID: PMC6043917 DOI: 10.1177/1179069518785151] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/03/2018] [Indexed: 12/21/2022] Open
Abstract
Cerebrovascular reactivity (CVR) reflects the response of brain blood vessels to vasoactive stimuli, such as neural activity. The current research assessed age-related changes in regional CVR to 5% CO2 inhalation in younger (n = 30, range: 21-45 years) and older (n = 29, range: 55-75 years) adults, and the contribution of regional CVR to cognitive performance using blood-oxygen-level dependent contrast imaging (BOLD) functional magnetic resonance imaging (fMRI) at 3T field strength. CVR was measured by inducing hypercapnia using a block-design paradigm under physiological monitoring. Memory and attention were assessed with a comprehensive computerized aging battery. MRI data analysis was conducted using MATLAB® and SPM12. Memory and attention performance was positively associated with CVR in the temporal cortices. Temporal lobe CVR influenced memory performance independently of age, gender, and education level. When analyzing age groups separately, CVR in the hippocampus contributed significantly to memory score in the older group and was also related to subjective memory complaints. No associations between CVR and cognition were observed in younger adults. Vascular responsiveness in the brain has consequences for cognition in cognitively healthy people. These findings may inform other areas of research concerned with vaso-protective approaches for prevention or treatment of neurocognitive decline.
Collapse
Affiliation(s)
- Sarah J Catchlove
- Centre for Human Psychopharmacology,
Swinburne University, Hawthorn, VIC, Australia
| | - Todd B Parrish
- Feinberg School of Medicine,
Northwestern University, Chicago, IL, USA
| | - Yufen Chen
- Feinberg School of Medicine,
Northwestern University, Chicago, IL, USA
| | - Helen Macpherson
- Institute for Physical Activity and
Nutrition, Deakin University, Geelong, VIC, Australia
| | - Matthew E Hughes
- Centre for Mental Health, Swinburne
University, Hawthorn, VIC, Australia
- Australian National Imaging Facility, St
Lucia, QLD, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology,
Swinburne University, Hawthorn, VIC, Australia
| |
Collapse
|
13
|
Saleem M, Herrmann N, Dinoff A, Mielke MM, Oh PI, Shammi P, Cao X, Venkata SLV, Haughey NJ, Lanctôt KL. A Lipidomics Approach to Assess the Association Between Plasma Sphingolipids and Verbal Memory Performance in Coronary Artery Disease Patients Undertaking Cardiac Rehabilitation: A C18:0 Signature for Cognitive Response to Exercise. J Alzheimers Dis 2018; 60:829-841. [PMID: 28598843 DOI: 10.3233/jad-161292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Early subtle deficits in verbal memory, which may indicate early neural risk, are common in patients with coronary artery disease (CAD). While exercise can improve cognition, cognitive response to exercise is heterogeneous. Sphingolipids have been associated with the development and progression of CAD, and impairments in sphingolipid metabolism may play roles in neurodegeneration and in the neural adaptation response to exercise. OBJECTIVE In this study, change in plasma concentrations of sphingolipids was assessed in relation to change in verbal memory performance and in other cognitive domains among CAD subjects undertaking a 6-month cardiac rehabilitation (CR) program. METHODS Patients with CAD (n = 120, mean age = 64±6 y, 84% male, years of education = 16±3) underwent CR with neuropsychological assessments and blood collected at baseline, 3-, and 6-months. Z-scores based on age, gender, and education were combined for verbal memory, visuospatial memory, processing speed, executive function, and global cognition tasks to calculate cognitive domain Z-scores. Plasma sphingolipid concentrations were measured from fasting blood samples using high performance liquid chromatography coupled electrospray ionization tandem mass spectrometry (LC/MS/MS). Mixed models were used to identify sphingolipids significantly associated with performance in verbal memory and other cognitive domains, adjusting for potential confounders. RESULTS A decrease in ceramide C18:0 concentration was significantly associated with improvement in verbal memory performance (b[SE] = -0.51 [0.25], p = 0.04), visuospatial memory (b[SE] = -0.44 [0.22], p = 0.05), processing speed (b[SE] = -0.89 [0.32], p = 0.007), and global cognition (b[SE] = -1.47 [0.59], p = 0.01) over 6 months of CR. CONCLUSIONS Plasma ceramide C18:0 concentrations may be a sensitive marker of cognitive response to exercise in patients with CAD.
Collapse
Affiliation(s)
- Mahwesh Saleem
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Adam Dinoff
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Michelle M Mielke
- Departments of Neurology and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Paul I Oh
- Division of Clinical Pharmacology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Prathiba Shammi
- Neuropsychology, Sunnybrook HealthSciences Centre, Toronto, ON, Canada
| | - Xingshan Cao
- Evaluative Clinical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Toronto Rehabilitation Institute, Toronto, ON, Canada
| |
Collapse
|
14
|
Wang J, Yuan Y, Cai R, Huang R, Tian S, Lin H, Guo D, Wang S. Association between Plasma Levels of PAI-1, tPA/PAI-1 Molar Ratio, and Mild Cognitive Impairment in Chinese Patients with Type 2 Diabetes Mellitus. J Alzheimers Dis 2018; 63:835-845. [PMID: 29689724 DOI: 10.3233/jad-171038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiaqi Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Yang Yuan
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| | - Rongrong Cai
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Rong Huang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Sai Tian
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Hongyan Lin
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Dan Guo
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Shaohua Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| |
Collapse
|
15
|
Catchlove SJ, Pipingas A, Hughes ME, Macpherson H. Magnetic resonance imaging for assessment of cerebrovascular reactivity and its relationship to cognition: a systematic review. BMC Neurosci 2018; 19:21. [PMID: 29649969 PMCID: PMC5898077 DOI: 10.1186/s12868-018-0421-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cerebrovascular reactivity (CVR) refers to the responsiveness of cerebral vasculature to vasoactive stimuli. CVR is an indicator of brain health and can be assessed using vasodilatory techniques and magnetic resonance imaging (MRI). Using such approaches, some researchers have explored the relationship between CVR and cognition; here we systematically review this work. RESULTS We extracted information pertaining to: (1) study location and design, participant characteristics, sample sizes, (2) design of vascular challenge, end-tidal CO 2 (etCO 2 ) concentrations (if applicable), (3) MRI protocol, (4) cognitive assessment, (5) CVR values, and outcomes of statistical analyses with cognitive tests. Five studies assessed participants with cognitive impairment compared to controls, one studied patients with multiple sclerosis with or without cognitive impairment compared to controls, one examined patients with moyamoya disease with or without cognitive impairment, two investigated patients with Type 2 diabetes mellitus (T2DM), and one was a cross-sectional study with younger and older healthy adults. Cognition was typically probed using the MMSE and tests of executive function, while a number of vasodilatory techniques were employed. CONCLUSION CVR was associated with cognition in six of ten studies, but heterogeneity of study samples, designs and vasodilatory methods may have a role in the inconsistent findings. We make recommendations for future research that includes use of a multi-domain cognitive assessment and standardised hypercapnic challenge with MRI.
Collapse
Affiliation(s)
- Sarah J. Catchlove
- Centre for Human Psychopharmacology, Swinburne University, Hawthorn, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University, Hawthorn, Australia
| | - Matthew E. Hughes
- Centre for Mental Health, Swinburne University, Hawthorn, Australia
- Australian National Imaging Facility, St. Lucia, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia
| |
Collapse
|
16
|
Tang J, Zhen Y, Yu L, Lv C, Zheng J, Liang H. Analyzing the neuropsychological characteristics and changes in serum markers of patients with chronic cerebral circulation insufficiency. Rev Assoc Med Bras (1992) 2018; 64:41-46. [PMID: 29561941 DOI: 10.1590/1806-9282.64.01.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/16/2017] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the neuropsychological characteristics and changes in CRP, S100B, MBP, HSP-7, and NSE in serum. METHOD Sixty-six (66) patients treated in our hospital as CCCI group were chosen for our study, and 90 patients with depression were selected as the depression group. The patients in both groups were examined with CT perfusion, depression, anxiety and cognition evaluation. Their serum CRP, S100B, MBP, HSP-70 and NSE levels were detected. Neuropsychological and serum markers characteristics were compared. RESULTS The CBF and CBV in bilateral basal ganglia, frontal lobes, greater oval center, brain stem, and left and right regions of occipital lobes of the patients in CCCI group were significantly lower than in the depression group. The HAMD and HAMA scores of CCCI group patients were significantly lower than in the depression group; CCCI group performed better regarding attention, memory, abstract terms and delayed recall. CCCI also had significantly higher total scores than the depression group. Serum CRP, S100B, MBP, HSP-70 and NSE levels in CCCI group were significantly higher than in the depression group. The differences reach statistical significance (p<0.05). CONCLUSION CCCI patients who are accompanied by minor depressive disorder have different degrees of cognitive impairment and experience a significant rise in serum CRP, S100B, MBP, HSP-70 and NSE.
Collapse
Affiliation(s)
- Jianhua Tang
- Department of Neurology, Yantaishan Hospital, Yantai, China
| | - Yuqing Zhen
- Department of Neurology, Yantaishan Hospital, Yantai, China
| | - Ling Yu
- Department of Neurology, Yantaishan Hospital, Yantai, China
| | - Cui Lv
- Department of Neurology, Yantaishan Hospital, Yantai, China
| | - Juan Zheng
- Department of Neurology, Yantaishan Hospital, Yantai, China
| | - Hui Liang
- Department of Neurology, Yantaishan Hospital, Yantai, China
| |
Collapse
|
17
|
Colella M, Stilo C, Cocchella A, Bianchini D, Pilotto A, Del Sette P, Musolino R. Cerebral vasoreactivity and intima-media thickness in Down syndrome: A case-control study. J Neurol Sci 2018; 385:57-63. [PMID: 29406914 DOI: 10.1016/j.jns.2017.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/23/2017] [Accepted: 11/14/2017] [Indexed: 01/12/2023]
Abstract
Subjects with Down Syndrome (DS) have high prevalence of cerebral vascular amyloidosis, cognitive decline and dementia. In Alzheimer Disease, impaired vasoreactivity has been reported as the results of vascular amyloid deposition. Aim of our study was to verify presence of impaired cerebral vasoreactivity and to study carotid intima media-thickness (IMT) by carotid and transcranial ultrasound. We studied 25 DS and compared them with 25 age- and sex-matched normal controls. Vasomotor reactivity was evaluated by means of breath-holding index (BHI) test. There was no difference in IMT, both considering the two side separately (left: 0.70±0.10 vs 0.69±0.12mm, p=0.6) (right: 0.67±0.13 vs 0.68±0.10mm, p=0.5), and considering the sum of both sides (1.38±0.22 vs 1.38±0.23mm, p=1). There was a significant difference in peak systolic velocities (PSV) (139.75±27.67 vs. 123.89±25.73cm/s, p=0.04) and in pulsatility index (PI) (0.95±0.14 vs. 0.86±0.12, p=0.02). BHI was significantly lower in DS than in controls (1.15±0.38 vs 1.88±0.72, p<0.001). In conclusion, subjects with DS have increased PSV and PI, and show a reduction of BHI, expression of impaired vasomotor reserve, possibly due to micro-vascular impairment. Larger study with longitudinal design is needed to verify our data.
Collapse
Affiliation(s)
- M Colella
- Department of Neurology, University of Messina, Italy; E.O. Ospedali Galliera, Genova, Italy.
| | - C Stilo
- Department of Neurology, University of Messina, Italy; E.O. Ospedali Galliera, Genova, Italy
| | | | | | - A Pilotto
- E.O. Ospedali Galliera, Genova, Italy
| | - P Del Sette
- Department of Psychology, University of Genova, Italy
| | - R Musolino
- Department of Neurology, University of Messina, Italy
| |
Collapse
|
18
|
Nagata K, Yamazaki T, Takano D, Maeda T, Fujimaki Y, Nakase T, Sato Y. Cerebral circulation in aging. Ageing Res Rev 2016; 30:49-60. [PMID: 27484894 DOI: 10.1016/j.arr.2016.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Cerebral circulation is known to be protected by the regulatory function against the hypoperfusion that will affect the cognitive function as a result of brain ischemia and energy failure. The regulatory function includes cerebrovascular autoregulation, chemical control, metabolic control, and neurogenic control, and those compensatory mechanisms can be influenced by hypertension, atherosclerosis, cardiac diseases, cerebrovascular diseases and aging. On the other hand, large and/or small infarction, intracranial hemorrhage, subarachnoid hemorrhage, atherosclerosis, amylod angiopathy are also more directly associated with cognitive decline not only in those with vascular cognitive impairment or vascular dementia but also those with Alzheimer's disease.
Collapse
Affiliation(s)
- Ken Nagata
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan.
| | - Takashi Yamazaki
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan
| | - Daiki Takano
- Department of Neurology, Clinical Research Institute, Yokohama General Hospital, Yokohama, Japan
| | - Tetsuya Maeda
- Department of Neurology and Gerontology, Iwate Medical University, Morioka, Japan
| | - Yumi Fujimaki
- Department of Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan
| | - Taizen Nakase
- Department of Neurology, Research Institute for Brain and Blood Vessels, Akita, Japan
| | - Yuichi Sato
- Department of Neurology, Noshiro Yamamoto Medical Association Hospital, Noshiro, Japan
| |
Collapse
|
19
|
Zimering MB, Knight J, Ge L, Bahn G. Predictors of Cognitive Decline in Older Adult Type 2 Diabetes from the Veterans Affairs Diabetes Trial. Front Endocrinol (Lausanne) 2016; 7:123. [PMID: 27660621 PMCID: PMC5015004 DOI: 10.3389/fendo.2016.00123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
AIMS Cognitive decline disproportionately affects older adult type 2 diabetes. We tested whether randomized intensive (INT) glucose-lowering reduces the rate(s) of cognitive decline in adults with advanced type 2 diabetes (mean: age, 60 years; diabetes duration, 11 years) from the Veterans Affairs Diabetes Trial. METHODS A battery of neuropsychological tests [digit span, digit symbol substitution (DSym), and Trails-making Test-Part B (TMT-B)] was administered at baseline in ~1700 participants and repeated at year 5. Thirty-seven risk factors were evaluated as predictors of cognitive decline in multivariable regression analyses. RESULTS The mean age-adjusted DSym or TMT-B declined significantly in all study participants (P < 0.001). Randomized INT glucose-lowering did not significantly alter the rate of cognitive decline. The final model of risk factors associated with 5-year decline in age-adjusted TMT-B included as significant predictors: longer baseline diabetes duration (beta = -0.028; P = 0.0057), lower baseline diastolic blood pressure (BP; beta = 0.028; P = 0.002), and baseline calcium channel blocker medication use (beta = -0.639; P < 0.001). Higher baseline pulse pressure was significantly associated with decline in age-adjusted TMT-B suggesting a role for both higher systolic and lower diastolic BPs. Baseline thiazide diuretic use (beta = -0.549; P = 0.015) was an additional significant predictor of 5-year decline in age-adjusted digit symbol score. Post-baseline systolic BP-lowering was significantly associated (P < 0.001) with decline in TMT-B performance. There was a significant inverse association between post-baseline plasma triglyceride-lowering (P = 0.045) and decline in digit symbol substitution task performance. CONCLUSION A 5-year period of randomized INT glucose-lowering did not significantly reduce the rate of cognitive decline in older-aged adults with type 2 diabetes. Systolic and diastolic BPs as well as plasma triglycerides appeared as modifiable risk factors of the rate of cognitive decline in older adult type 2 diabetes.
Collapse
Affiliation(s)
- Mark B. Zimering
- Medical Service, Department of Veterans Affairs New Jersey Health Care System, Lyons, NJ, USA
- Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- *Correspondence: Mark B. Zimering,
| | - Jeffrey Knight
- National Center for PTSD, VA Boston Healthcare System, Boston MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Ling Ge
- Hines Veterans Affairs Hospital, Hines, IL, USA
| | - Gideon Bahn
- Hines Veterans Affairs Hospital, Hines, IL, USA
| | | |
Collapse
|