1
|
Türker F, Bharadwaj RA, Kleinman JE, Weinberger DR, Hyde TM, White CJ, Williams DW, Margolis SS. Orthogonal approaches required to measure proteasome composition and activity in mammalian brain tissue. J Biol Chem 2023:104811. [PMID: 37172721 DOI: 10.1016/j.jbc.2023.104811] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Proteasomes are large macromolecular complexes with multiple distinct catalytic activities that are each vital to human brain health and disease. Despite their importance, standardized approaches to investigate proteasomes have not been universally adapted. Here, we describe pitfalls and define straightforward orthogonal biochemical approaches essential to measure and understand changes in proteasome composition and activity in the mammalian central nervous system. Through our experimentation in the mammalian brain, we determined an abundance of catalytically active proteasomes exist with and without a 19S cap(s), the regulatory particle essential for ubiquitin-dependent degradation. Moreover, we learned that in-cell measurements using activity-based probes (ABPs) are more sensitive in determining the available activity of the 20S proteasome without the 19S cap and in measuring individual catalytic subunit activities of each β subunit within all neuronal proteasomes. Subsequently, applying these tools to human brain samples, we were surprised to find that post-mortem tissue retained little to no 19S-capped proteasome, regardless of age, sex, or disease state. Comparing brain tissues (parahippocampal gyrus) from human Alzheimer's disease (AD) patients and unaffected subjects, available 20S proteasome activity was significantly elevated in severe cases of AD, an observation not previously noted. Taken together, our study establishes standardized approaches for comprehensive investigation of proteasomes in mammalian brain tissue, and we reveal new insight into brain proteasome biology.
Collapse
Affiliation(s)
- Fulya Türker
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rahul A Bharadwaj
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cory J White
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Sadashivaiah V, Tippani M, Page SC, Kwon SH, Bach SV, Bharadwaj RA, Hyde TM, Kleinman JE, Jaffe AE, Maynard KR. SUFI: an automated approach to spectral unmixing of fluorescent multiplex images captured in mouse and post-mortem human brain tissues. BMC Neurosci 2023; 24:6. [PMID: 36698068 PMCID: PMC9878864 DOI: 10.1186/s12868-022-00765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Multispectral fluorescence imaging coupled with linear unmixing is a form of image data collection and analysis that allows for measuring multiple molecular signals in a single biological sample. Multiple fluorescent dyes, each measuring a unique molecule, are simultaneously measured and subsequently "unmixed" to provide a read-out for each molecular signal. This strategy allows for measuring highly multiplexed signals in a single data capture session, such as multiple proteins or RNAs in tissue slices or cultured cells, but can often result in mixed signals and bleed-through problems across dyes. Existing spectral unmixing algorithms are not optimized for challenging biological specimens such as post-mortem human brain tissue, and often require manual intervention to extract spectral signatures. We therefore developed an intuitive, automated, and flexible package called SUFI: spectral unmixing of fluorescent images. RESULTS This package unmixes multispectral fluorescence images by automating the extraction of spectral signatures using vertex component analysis, and then performs one of three unmixing algorithms derived from remote sensing. We evaluate these remote sensing algorithms' performances on four unique biological datasets and compare the results to unmixing results obtained using ZEN Black software (Zeiss). We lastly integrate our unmixing pipeline into the computational tool dotdotdot, which is used to quantify individual RNA transcripts at single cell resolution in intact tissues and perform differential expression analysis, and thereby provide an end-to-end solution for multispectral fluorescence image analysis and quantification. CONCLUSIONS In summary, we provide a robust, automated pipeline to assist biologists with improved spectral unmixing of multispectral fluorescence images.
Collapse
Affiliation(s)
- Vijay Sadashivaiah
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Svitlana V Bach
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Rahul A Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Popovac A, Mladenović I, Krunić J, Trifković B, Todorović A, Milašin J, Despotović N, Stančić I. Apolipoprotein ɛ4 Allele and Dental Occlusion Deficiency as Risk Factors for Alzheimer's Disease. J Alzheimers Dis 2021; 74:797-802. [PMID: 32116259 DOI: 10.3233/jad-191283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Compromised dentition has been suggested to pose a significant risk factor for dementia. It was mainly investigated through insufficient tooth number, disregarding contact between opposing teeth (dental occlusion). The ɛ4 allele of apolipoprotein (APOE4) is the primary genetic marker for the late onset of Alzheimer's disease (AD). However, APOE4 and dental occlusion have not yet been investigated as possible associated risk factors for AD. The study was aimed to examine the impact of dental status and different APOE gene variants on AD occurrence. Secondly, sociodemographic variables were investigated as factors potentially associated with AD. The case-control study included two groups: 116 patients with AD (according to the NINDS-ADRDA criteria) and 63 controls (Mini-Mental State Examination scores ≥24). The analysis of APOE gene polymorphism was conducted through PCR reaction. Dental examination included recording of number of teeth, presence of fixed or removable dentures, and number of functional tooth units (FTU). Regression analysis was used to investigate the joint effect of the clinical and genetic variables on AD. Results showed that patients with AD were more often carriers of ɛ3/ɛ4 genotype and ɛ4 allele, had lower number of teeth and FTU, and were less likely to be married, live in home, and had less chronic diseases, compared to the controls. Regression analysis showed that presence of APOE4 allele and the number of total FTU remained associated with AD, even when adjusted for age, sex, and level of education. In conclusion, deficient dental occlusion and presence of APOE4 may independently increase risk for AD.
Collapse
Affiliation(s)
- Aleksandra Popovac
- Department for Prosthetic Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Irena Mladenović
- Department of Oral Rehabilitation, Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Jelena Krunić
- Department of Dental Pathology, Faculty of Medicine, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Branka Trifković
- Department for Prosthetic Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Todorović
- Department for Prosthetic Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milašin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nebojša Despotović
- Department of Geriatric Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivica Stančić
- Department for Prosthetic Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Kou J, Wang M, Shi J, Zhang H, Pu X, Song S, Yang C, Yan Y, Döring Y, Xie X, Pang X. Curcumin Reduces Cognitive Deficits by Inhibiting Neuroinflammation through the Endoplasmic Reticulum Stress Pathway in Apolipoprotein E4 Transgenic Mice. ACS OMEGA 2021; 6:6654-6662. [PMID: 33748578 PMCID: PMC7970496 DOI: 10.1021/acsomega.0c04810] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Apolipoprotein E4 (ApoE4) is the main genetic risk factor for Alzheimer's disease (AD), but the exact way in which it causes AD remains unclear. Curcumin is considered to have good therapeutic potential for AD, but its mechanism has not been clarified. This study aims to observe the effect of curcumin on ApoE4 transgenic mice and explore its possible molecular mechanism. Eight-month-old ApoE4 transgenic mice were intraperitoneally injected with curcumin for 3 weeks, and the Morris water maze test was used to evaluate the cognitive ability of the mice. Immunofluorescence staining, immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to examine the brain tissues of the mice. Curcumin reduced the high expression of ApoE4 and the excessive release of inflammatory factors in ApoE4 mice. In particular, the expression of marker proteins of endoplasmic reticulum (ER) stress was significantly increased in ApoE4 mice, while curcumin significantly reduced the increase in the expression of these proteins. Collectively, curcumin alleviates neuroinflammation in the brains of ApoE4 mice by inhibiting ER stress, thus improving the learning and cognitive ability of transgenic mice.
Collapse
Affiliation(s)
- Jiejian Kou
- School
of Pharmacy, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| | - Minghui Wang
- School
of Pharmacy, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| | - Junzhuo Shi
- School
of Pharmacy, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| | - Haiyu Zhang
- School
of Pharmacy, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| | - Xiaohui Pu
- School
of Pharmacy, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| | - Shiyong Song
- School
of Pharmacy, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| | - Cuiling Yang
- State
Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| | - Yi Yan
- Institute
for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University
Munich, Munich 80331, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Munich Heart
Alliance, Munich 80336, Germany
| | - Yvonne Döring
- Institute
for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University
Munich, Munich 80331, Germany
- DZHK
(German Centre for Cardiovascular Research), Partner Site Munich Heart
Alliance, Munich 80336, Germany
- Department
of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Xinmei Xie
- School
of Pharmacy, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| | - Xiaobin Pang
- School
of Pharmacy, Henan University, North Section of Jinming Avenue, Kaifeng 475004, Henan, China
| |
Collapse
|
5
|
Novel Influences of Sex and APOE Genotype on Spinal Plasticity and Recovery of Function after Spinal Cord Injury. eNeuro 2021; 8:ENEURO.0464-20.2021. [PMID: 33536234 PMCID: PMC7986541 DOI: 10.1523/eneuro.0464-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injuries can abolish both motor and sensory function throughout the body. Spontaneous recovery after injury is limited and can vary substantially between individuals. Despite an abundance of therapeutic approaches that have shown promise in preclinical models, there is currently a lack of effective treatment strategies that have been translated to restore function after spinal cord injury (SCI) in the human population. We hypothesized that sex and genetic background of injured individuals could impact how they respond to treatment strategies, presenting a barrier to translating therapies that are not tailored to the individual. One gene of particular interest is APOE, which has been extensively studied in the brain because of its allele-specific influences on synaptic plasticity, metabolism, inflammation, and neurodegeneration. Despite its prominence as a therapeutic target in brain injury and disease, little is known about how it influences neural plasticity and repair processes in the spinal cord. Using humanized mice, we examined how the ε3 and ε4 alleles of APOE influence the efficacy of therapeutic intermittent hypoxia (IH) in inducing spinally-mediated plasticity after cervical SCI (cSCI). IH is sufficient to enhance plasticity and restore motor function after experimental SCI in genetically similar rodent populations, but its effect in human subjects is more variable (Golder and Mitchell, 2005; Hayes et al., 2014). Our results demonstrate that both sex and APOE genotype determine the extent of respiratory motor plasticity that is elicited by IH, highlighting the importance of considering these clinically relevant variables when translating therapeutic approaches for the SCI community.
Collapse
|
6
|
Semick SA, Bharadwaj RA, Collado-Torres L, Tao R, Shin JH, Deep-Soboslay A, Weiss JR, Weinberger DR, Hyde TM, Kleinman JE, Jaffe AE, Mattay VS. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer's disease. Acta Neuropathol 2019; 137:557-569. [PMID: 30712078 DOI: 10.1007/s00401-019-01966-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Late-onset Alzheimer's disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD, we surveyed 420,852 DNA methylation (DNAm) sites from neurotypical controls (N = 49) and late-onset AD patients (N = 24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum). We identified 858 sites with robust differential methylation collectively annotated to 772 possible genes (FDR < 5%, within 10 kb). These sites were overrepresented in AD genetic risk loci (p = 0.00655) and were enriched for changes during normal aging (p < 2.2 × 10-16), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR < 5%). To functionally validate these associations, we generated and analyzed corresponding transcriptome data to prioritize 130 genes within 10 kb of the differentially methylated sites. These 130 genes were differentially expressed between AD cases and controls and their expression was associated with nearby DNAm (p < 0.05). This integrated analysis implicates novel genes in Alzheimer's disease, such as ANKRD30B. These results highlight DNAm differences in Alzheimer's disease that have gene expression correlates, further implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.
Collapse
|
7
|
Jones SV, Kounatidis I. Nuclear Factor-Kappa B and Alzheimer Disease, Unifying Genetic and Environmental Risk Factors from Cell to Humans. Front Immunol 2017; 8:1805. [PMID: 29312321 PMCID: PMC5732234 DOI: 10.3389/fimmu.2017.01805] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, an eversible, progressive disease that causes problems with memory, thinking, language, planning, and behavior. There are a number of risk factors associated with developing AD but the exact cause remains unknown. The predominant theory is that excessive build-up of amyloid protein leads to cell death, brain atrophy, and cognitive and functional decline. However, the amyloid hypothesis has not led to a single successful treatment. The recent failure of Solanezumab, a monoclonal antibody to amyloid, in a large phase III trial was emblematic of the repeated failure of anti-amyloid therapeutics. New disease targets are urgently needed. The innate immune system is increasingly being implicated in the pathology of number of chronic diseases. This focused review will summarize the role of transcription factor nuclear factor-kappa B (NF-κB), a key regulator of innate immunity, in the major genetic and environmental risk factors in cellular, invertebrate and vertebrate models of AD. The paper will also explore the relationship between NF-κB and emerging environmental risk factors in an attempt to assess the potential for this transcription factor to be targeted for disease prevention.
Collapse
Affiliation(s)
- Simon Vann Jones
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Ilias Kounatidis
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Chen F, Ghosh A, Wu F, Tang S, Hu M, Sun H, Kong L, Hong H. Preventive effect of genetic knockdown and pharmacological blockade of CysLT 1R on lipopolysaccharide (LPS)-induced memory deficit and neurotoxicity in vivo. Brain Behav Immun 2017; 60:255-269. [PMID: 27810377 DOI: 10.1016/j.bbi.2016.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/17/2016] [Accepted: 10/30/2016] [Indexed: 12/19/2022] Open
Abstract
Previously we reported that cysteinyl leukotrienes (Cys-LTs) and the type 1 receptor for Cys-LTs (CysLT1R) are related to amyloid β (Aβ)-induced neurotoxicity. The aim of the current study was to find out the role of CysLT1R on lipopolysaccharide (LPS)-induced cognitive deficit and neurotoxicity. shRNA-mediated knockdown or pharmacological blockade (by pranlukast) of CysLT1R were performed in ICR mice for 21days prior to systemic infusion of LPS. From day 22, LPS was administered for 7days and then a set of behavioral, histopathological and biochemical tests were employed to test memory, neuroinflammation and apoptotic responses in the mouse hippocampus. LPS (only)-treated mice showed poor performance in both Morris water maze (MWM) and Y-maze tests. However, shRNA-mediated knockdown or pranlukast-treated blockade of CysLT1R improved performance of the mice in these tests. To find out the possible underlying mechanisms, we assessed several parameters such as microglial activation (by immunohistochemistry), level of CysLT1R (by WB and qRT-PCR) and the inflammatory/apoptotic pathways (by ELISA or TUNEL or WB) in the mouse hippocampus. LPS-induced memory impairment was accompanied by activation of microglia, higher level of CysLT1R, IL-1β, TNF-α and nuclear NF-κB p65. LPS also caused apoptosis in the hippocampus as detected by TUNEL staining, further supplemented by detection of increased Caspase-3 and a reduced Bcl-2/Bax ratio. All of these adverse changes in the mouse hippocampus were inhibited by pretreatment with CysLT1R-shRNA and pranlukast. Through this study we suggest that CysLT1R shares a strong correlation with LPS-associated memory deficit, neuroinflammation and apoptosis and CysLT1R could be a novel target for preventive measures to intervene the progression of Alzheimer's disease (AD)-like phenotypes.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Arijit Ghosh
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Feng Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Susu Tang
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mei Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Hongbin Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Lingyi Kong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Hao Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|