1
|
Rosales Hernández MC, Olvera-Valdez M, Velazquez Toledano J, Mendieta Wejebe JE, Fragoso Morales LG, Cruz A. Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer's Disease. Molecules 2024; 29:4780. [PMID: 39407708 PMCID: PMC11477595 DOI: 10.3390/molecules29194780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Despite the great effort that has gone into developing new molecules as multitarget compounds to treat Alzheimer's disease (AD), none of these have been approved to treat this disease. Therefore, it will be interesting to determine whether benzazoles such as benzimidazole, benzoxazole, and benzothiazole, employed as pharmacophores, could act as multitarget drugs. AD is a multifactorial disease in which several pharmacological targets have been identified-some are involved with amyloid beta (Aβ) production, such as beta secretase (BACE1) and beta amyloid aggregation, while others are involved with the cholinergic system as acetylcholinesterase (AChE) and butirylcholinesterase (BChE) and nicotinic and muscarinic receptors, as well as the hyperphosphorylation of microtubule-associated protein (tau). In this review, we describe the in silico and in vitro evaluation of benzazoles on three important targets in AD: AChE, BACE1, and Aβ. Benzothiazoles and benzimidazoles could be the best benzazoles to act as multitarget drugs for AD because they have been widely evaluated as AChE inhibitors, forming π-π interactions with W286, W86, Y72, and F338, as well as in the AChE gorge and catalytic site. In addition, the sulfur atom from benzothiazol interacts with S286 and the aromatic ring from W84, with these compounds having an IC50 value in the μM range. Also, benzimidazoles and benzothiazoles can inhibit Aβ aggregation. However, even though benzazoles have not been widely evaluated on BACE1, benzimidazoles evaluated in vitro showed an IC50 value in the nM range. Therefore, important chemical modifications could be considered to improve multitarget benzazoles' activity, such as substitutions in the aromatic ring with electron withdrawal at position five, or a linker 3 or 4 carbons in length, which would allow for better interaction with targets.
Collapse
Affiliation(s)
- Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Marycruz Olvera-Valdez
- Laboratorio de Nanomateriales Sustentables, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, Lindavista, Gustavo A. Madero, Ciudad de México 07700, Mexico;
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Gustavo A. Madero, Ciudad de México 07340, Mexico
| | - Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Leticia Guadalupe Fragoso Morales
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Alejandro Cruz
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Gustavo A. Madero, Ciudad de México 07340, Mexico
| |
Collapse
|
2
|
Gao Z, Ma H, Zhang X, Wang Y, Wu Z. Similarity measures-based graph co-contrastive learning for drug-disease association prediction. Bioinformatics 2023; 39:btad357. [PMID: 37261859 PMCID: PMC10275904 DOI: 10.1093/bioinformatics/btad357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023] Open
Abstract
MOTIVATION An imperative step in drug discovery is the prediction of drug-disease associations (DDAs), which tries to uncover potential therapeutic possibilities for already validated drugs. It is costly and time-consuming to predict DDAs using wet experiments. Graph Neural Networks as an emerging technique have shown superior capacity of dealing with DDA prediction. However, existing Graph Neural Networks-based DDA prediction methods suffer from sparse supervised signals. As graph contrastive learning has shined in mitigating sparse supervised signals, we seek to leverage graph contrastive learning to enhance the prediction of DDAs. Unfortunately, most conventional graph contrastive learning-based models corrupt the raw data graph to augment data, which are unsuitable for DDA prediction. Meanwhile, these methods could not model the interactions between nodes effectively, thereby reducing the accuracy of association predictions. RESULTS A model is proposed to tap potential drug candidates for diseases, which is called Similarity Measures-based Graph Co-contrastive Learning (SMGCL). For learning embeddings from complicated network topologies, SMGCL includes three essential processes: (i) constructs three views based on similarities between drugs and diseases and DDA information; (ii) two graph encoders are performed over the three views, so as to model both local and global topologies simultaneously; and (iii) a graph co-contrastive learning method is introduced, which co-trains the representations of nodes to maximize the agreement between them, thus generating high-quality prediction results. Contrastive learning serves as an auxiliary task for improving DDA predictions. Evaluated by cross-validations, SMGCL achieves pleasing comprehensive performances. Further proof of the SMGCL's practicality is provided by case study of Alzheimer's disease. AVAILABILITY AND IMPLEMENTATION https://github.com/Jcmorz/SMGCL.
Collapse
Affiliation(s)
- Zihao Gao
- College of Computer Science and Engineering, Northwest Normal University, No.967 Anning East Road, Lanzhou, 730070, China
| | - Huifang Ma
- College of Computer Science and Engineering, Northwest Normal University, No.967 Anning East Road, Lanzhou, 730070, China
- Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, No.1 Jinji Road, Guilin, 541004, China
| | - Xiaohui Zhang
- College of Computer Science and Engineering, Northwest Normal University, No.967 Anning East Road, Lanzhou, 730070, China
| | - Yike Wang
- College of Computer Science and Engineering, Northwest Normal University, No.967 Anning East Road, Lanzhou, 730070, China
| | - Zheyu Wu
- College of Computer Science and Engineering, Northwest Normal University, No.967 Anning East Road, Lanzhou, 730070, China
| |
Collapse
|
3
|
Antioxidants: an approach for restricting oxidative stress induced neurodegeneration in Alzheimer's disease. Inflammopharmacology 2023; 31:717-730. [PMID: 36933175 DOI: 10.1007/s10787-023-01173-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting millions of people worldwide. Oxidative stress contributes towards induction of neurodegeneration. It is one of the reasons behind initiation and progression of Alzheimer's disease. Understanding of oxidative balance and restoration of oxidative stress has demonstrated its effectiveness in the management of AD. Various natural and synthetic molecules have been found to be effective in different models of AD. Some clinical studies also support the use of antioxidants for prevention of neurodegeneration in AD. In this review we are summarizing the development of antioxidants to restrict oxidative stress induced neurodegeneration in AD.
Collapse
|
4
|
Zhang Y, Fu Q, Ruan J, Shi C, Lu W, Wu J, Zhou Z. Dexpramipexole ameliorates cognitive deficits in sepsis-associated encephalopathy through suppressing mitochondria-mediated pyroptosis and apoptosis. Neuroreport 2023; 34:220-231. [PMID: 36719835 PMCID: PMC10516177 DOI: 10.1097/wnr.0000000000001882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES This study was aimed at evaluating the effects of dexpramipexole (DPX) - a mitochondrial protectant that sustains mitochondrial function and energy production - on cognitive function in a mouse model of sepsis-associated encephalopathy (SAE) induced by peripheral administration of lipopolysaccharide (LPS) and examining the potential mechanisms. METHODS C57BL/6 male mice were randomized into one of four treatment protocols: Con+Sal, Con+DPX, LPS+Sal or LPS+DPX. The mice were intraperitoneally (i.p.) injected with LPS or equivalent volumes of normal saline once daily for 3 consecutive days. To evaluate the protective effects of DPX, we administered DPX or normal saline i.p. to the mice once daily for 6 consecutive days. Six mice in each group were decapitated on day 7, and each brain was rapidly removed and separated into two halves for biochemical and histochemical analysis. The remaining surviving mice in each group were subjected to behavioral tests from days 7 to 10. RESULTS Peripheral administration of LPS to mice led to learning and memory deficits in behavioral tests, which were associated with mitochondrial impairment and ATP depletion in the hippocampus. Repeated DPX treatment protected the mitochondria against LPS-induced morphological and functional impairment; inhibited the activation of the Nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-caspase-1-dependent pyroptosis pathway and cytochrome c (Cyt-c)-caspase-3-dependent apoptosis pathway; and attenuated LPS-induced neuroinflammation and cell death in the hippocampus in SAE mice. CONCLUSIONS Mitochondria-mediated pyroptosis and apoptosis are involved in the pathogenesis of cognitive deficits in a mouse model of SAE and DPX protects mitochondria and suppresses the mitochondria-medicated pyroptosis and apoptosis pathways, and ameliorates LPS-induced neuroinflammation and cognitive deficits. This study provides theoretical evidence supporting DPX for the treatment of SAE.
Collapse
Affiliation(s)
- Yibao Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University
| | - Qun Fu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaping Ruan
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Changxi Shi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School
| | - Wuguang Lu
- Department of Anesthesiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou
| | - Zhiqiang Zhou
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University
| |
Collapse
|
5
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Gao CQ, Zhou YK, Xin XH, Min H, Du PF. DDA-SKF: Predicting Drug-Disease Associations Using Similarity Kernel Fusion. Front Pharmacol 2022; 12:784171. [PMID: 35095495 PMCID: PMC8792612 DOI: 10.3389/fphar.2021.784171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Drug repositioning provides a promising and efficient strategy to discover potential associations between drugs and diseases. Many systematic computational drug-repositioning methods have been introduced, which are based on various similarities of drugs and diseases. In this work, we proposed a new computational model, DDA-SKF (drug-disease associations prediction using similarity kernels fusion), which can predict novel drug indications by utilizing similarity kernel fusion (SKF) and Laplacian regularized least squares (LapRLS) algorithms. DDA-SKF integrated multiple similarities of drugs and diseases. The prediction performances of DDA-SKF are better, or at least comparable, to all state-of-the-art methods. The DDA-SKF can work without sufficient similarity information between drug indications. This allows us to predict new purpose for orphan drugs. The source code and benchmarking datasets are deposited in a GitHub repository (https://github.com/GCQ2119216031/DDA-SKF).
Collapse
Affiliation(s)
| | | | | | | | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010474. [PMID: 35008899 PMCID: PMC8745199 DOI: 10.3390/ijms23010474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination.
Collapse
|
8
|
Chen P, Bao T, Yu X, Liu Z. A drug repositioning algorithm based on a deep autoencoder and adaptive fusion. BMC Bioinformatics 2021; 22:532. [PMID: 34717542 PMCID: PMC8556784 DOI: 10.1186/s12859-021-04406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug repositioning has caught the attention of scholars at home and abroad due to its effective reduction of the development cost and time of new drugs. However, existing drug repositioning methods that are based on computational analysis are limited by sparse data and classic fusion methods; thus, we use autoencoders and adaptive fusion methods to calculate drug repositioning. RESULTS In this study, a drug repositioning algorithm based on a deep autoencoder and adaptive fusion was proposed to mitigate the problems of decreased precision and low-efficiency multisource data fusion caused by data sparseness. Specifically, a drug is repositioned by fusing drug-disease associations, drug target proteins, drug chemical structures and drug side effects. First, drug feature data integrated by drug target proteins and chemical structures were processed with dimension reduction via a deep autoencoder to characterize feature representations more densely and abstractly. Then, disease similarity was computed using drug-disease association data, while drug similarity was calculated with drug feature and drug-side effect data. Predictions of drug-disease associations were also calculated using a top-k neighbor method that is commonly used in predictive drug repositioning studies. Finally, a predicted matrix for drug-disease associations was acquired after fusing a wide variety of data via adaptive fusion. Based on experimental results, the proposed algorithm achieves a higher precision and recall rate than the DRCFFS, SLAMS and BADR algorithms with the same dataset. CONCLUSION The proposed algorithm contributes to investigating the novel uses of drugs, as shown in a case study of Alzheimer's disease. Therefore, the proposed algorithm can provide an auxiliary effect for clinical trials of drug repositioning.
Collapse
Affiliation(s)
- Peng Chen
- College of Computer and Information Technology, China Three Gorges University, Hubei, China
| | - Tianjiazhi Bao
- College of Computer and Information Technology, China Three Gorges University, Hubei, China
| | - Xiaosheng Yu
- College of Computer and Information Technology, China Three Gorges University, Hubei, China
| | - Zhongtu Liu
- College of Computer and Information Technology, China Three Gorges University, Hubei, China
| |
Collapse
|
9
|
Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021; 12:1281-1311. [PMID: 34458736 PMCID: PMC8372206 DOI: 10.1039/d1md00113b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.
Collapse
Affiliation(s)
| | - William Mahy
- MSD The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | | |
Collapse
|
10
|
Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Curr Mol Pharmacol 2021; 13:273-294. [PMID: 32321414 DOI: 10.2174/1874467213666200422090135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. OBJECTIVE Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. METHODS We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were "Alzheimer's disease" or "dementia" and "medicine" or "drug" or "treatment" and "clinical trials" and "interventions". Manuscripts that met the objective of this study were included for further evaluations. RESULTS Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. CONCLUSION The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Perez Ortiz JM, Swerdlow RH. Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 2019; 176:3489-3507. [PMID: 30675901 PMCID: PMC6715612 DOI: 10.1111/bph.14585] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of cell bioenergetics is a common feature of neurodegenerative diseases, the most common of which is Alzheimer's disease (AD). Disrupted energy utilization implicates mitochondria at its nexus. This review summarizes some of the evidence that points to faulty mitochondrial function in AD and highlights past and current therapeutic development efforts. Classical neuropathological hallmarks of disease (β-amyloid and τ) and sporadic AD risk genes (APOE) may trigger mitochondrial disturbance, yet mitochondrial dysfunction may incite pathology. Preclinical and clinical efforts have overwhelmingly centred on the amyloid pathway, but clinical trials have yet to reveal clear-cut benefits. AD therapies aimed at mitochondrial dysfunction are few and concentrate on reversing oxidative stress and cell death pathways. Novel research efforts aimed at boosting mitochondrial and bioenergetic function offer an alternative treatment strategy. Enhancing cell bioenergetics in preclinical models may yield widespread favourable effects that could benefit persons with AD. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Judit M. Perez Ortiz
- University of Kansas Alzheimer's Disease CenterFairwayKSUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKSUSA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer's Disease CenterFairwayKSUSA
- Department of NeurologyUniversity of Kansas Medical CenterKansas CityKSUSA
- Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityKSUSA
- Department of Biochemistry and Molecular BiologyUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
13
|
Hertz E, Terenius L, Vukojević V, Svenningsson P. GPR37 and GPR37L1 differently interact with dopamine 2 receptors in live cells. Neuropharmacology 2018; 152:51-57. [PMID: 30423289 PMCID: PMC6599889 DOI: 10.1016/j.neuropharm.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/26/2018] [Accepted: 11/08/2018] [Indexed: 02/09/2023]
Abstract
Receptor-receptor interactions are essential to fine tune receptor responses and new techniques enable closer characterization of the interactions between involved proteins directly in the plasma membrane. Fluorescence cross-correlation spectroscopy (FCCS), which analyses concurrent movement of bound molecules with single-molecule detection limit, was here used to, in live N2a cells, study interactions between the Parkinson's disease (PD) associated orphan receptor GPR37, its homologue GPR37L1, and the two splice variants of the dopamine 2 receptor (D2R). An interaction between GPR37 and both splice forms of D2R was detected. 4-phenylbutyrate (4-PBA), a neuroprotective chemical chaperone known to increase GPR37 expression at the cell surface, increased the fraction of interacting molecules. The interaction was also increased by pramipexole, a D2R agonist commonly used in the treatment of PD, indicating a possible clinically relevance. Cross-correlation, indicating interaction between GPR37L1 and the short isoform of D2R, was also detected. However, this interaction was not changed with 4-PBA or pramipexole treatment. Overall, these data provide further evidence that heteromeric GPR37-D2R exist and can be pharmacologically modulated, which is relevant for the treatment of PD. This article is part of the Special Issue entitled ‘Receptor heteromers and their allosteric receptor-receptor interactions’. GPCR interaction is studied with fluorescence cross-correlation spectroscopy. Interaction between GPR37 and both isoforms of D2R is detected in live cells. GPR37's homologue GPR37L1 is detected to interact with D2RS in live cells. GPR37-D2R interaction is increased by D2-like agonist and 4-PBA treatment.
Collapse
Affiliation(s)
- E Hertz
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - L Terenius
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - V Vukojević
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - P Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
14
|
Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des 2018; 23:731-752. [PMID: 28034353 DOI: 10.2174/1381612822666161230144517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial function and energy metabolism are impaired in neurodegenerative diseases. There is evidence for these functional declines both within the brain and systemically in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Due to these observations, therapeutics targeted to alter mitochondrial function and energy pathways are increasingly studied in pre-clinical and clinical settings. METHODS The goal of this article was to review therapies with specific implications on mitochondrial energy metabolism published through May 2016 that have been tested for treatment of neurodegenerative diseases. RESULTS We discuss implications for mitochondrial dysfunction in neurodegenerative diseases and how this drives new therapeutic initiatives. CONCLUSION Thus far, treatments have achieved varying degrees of success. Further investigation into the mechanisms driving mitochondrial dysfunction and bioenergetic failure in neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K Morris
- University of Kansas School of Medicine, University of Kansas Alzheimer's Disease Center MS 6002, 3901 Rainbow Blvd, Kansas City, KS 66160. United States
| |
Collapse
|
15
|
Dupont AC, Largeau B, Guilloteau D, Santiago Ribeiro MJ, Arlicot N. The Place of PET to Assess New Therapeutic Effectiveness in Neurodegenerative Diseases. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7043578. [PMID: 29887768 PMCID: PMC5985069 DOI: 10.1155/2018/7043578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/01/2018] [Indexed: 12/16/2022]
Abstract
In vivo exploration of neurodegenerative diseases by positron emission tomography (PET) imaging has matured over the last 20 years, using dedicated radiopharmaceuticals targeting cellular metabolism, neurotransmission, neuroinflammation, or abnormal protein aggregates (beta-amyloid and intracellular microtubule inclusions containing hyperphosphorylated tau). The ability of PET to characterize biological processes at the cellular and molecular levels enables early detection and identification of molecular mechanisms associated with disease progression, by providing accurate, reliable, and longitudinally reproducible quantitative biomarkers. Thus, PET imaging has become a relevant imaging method for monitoring response to therapy, approved as an outcome measure in bioclinical trials. The aim of this paper is to review and discuss the current inputs of PET in the assessment of therapeutic effectiveness in neurodegenerative diseases connected by common pathophysiological mechanisms, including Parkinson's disease, Huntington's disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. We also discuss opportunities for PET imaging to drive more personalized neuroprotective and therapeutic strategies, taking into account individual variability, within the growing framework of precision medicine.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
| | | | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vitro, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| | - Maria Joao Santiago Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vivo, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| |
Collapse
|
16
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|