1
|
Mule S, Pawar V, Tekade M, Vasdev N, Gupta T, Singh A, Sarker SD, Tekade RK. Psychopharmacology in late life: Key challenges and opportunities. PUBLIC HEALTH AND TOXICOLOGY ISSUES DRUG RESEARCH, VOLUME 2 2024:755-785. [DOI: 10.1016/b978-0-443-15842-1.00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Ren G, Song S, Zhang SX, Liu Y, Lv Y, Wang YH, Zhao R, Li XY. Brain region-specific genome-wide deoxyribonucleic acid methylation analysis in patients with Alzheimer's disease. Front Mol Neurosci 2023; 16:971565. [PMID: 37122620 PMCID: PMC10133508 DOI: 10.3389/fnmol.2023.971565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/16/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuropathology and cognitive decline and associated with age. The comprehensive deoxyribonucleic acid methylation (DNAm)-transcriptome profile association analysis conducted in this study aimed to establish whole-genome DNAm profiles and explore DNAm-related genes and their potential functions. More appropriate biomarkers were expected to be identified in terms of AD. Materials and methods Illumina 450KGSE59685 dataset AD (n = 54) and HC (n = 21) and ribonucleic-acid-sequencing data GSE118553 dataset AD patients (n = 21) and HCs (n = 13) were obtained from the gene expression omnibus database before a comprehensive DNAm-transcriptome profile association analysis, and we performed functional enrichment analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses (KEGG). Three transgenic mice and three wild-type mice were used to validate the hub genes. Results A total of 18,104 DNAm sites in healthy controls (n = 21) and AD patients (n = 54) were surveyed across three brain regions (superior temporal gyrus, entorhinal cortex, and dorsolateral prefrontal cortex). With the addition of the transcriptome analysis, eight hypomethylated-related highly expressed genes and 61 hypermethylated-related lowly expressed genes were identified. Based on 69 shared differentially methylated genes (DMGs), the function enrichment analysis indicated Guanosine triphosphate enzymes (GTPase) regulator activity, a synaptic vesicle cycle, and tight junction functioning. Following this, mice-based models of AD were constructed, and five hub DMGs were verified, which represented a powerful, disease-specific DNAm signature for AD. Conclusion The results revealed that the cross-brain region DNAm was altered in those with AD. The alterations in DNAm affected the target gene expression and participated in the key biological processes of AD. The study provides a valuable epigenetic resource for identifying DNAm-based diagnostic biomarkers, developing effective drugs, and studying AD pathogenesis.
Collapse
Affiliation(s)
- Gang Ren
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shan Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yan Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yan Lv
- Department of Nephrology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yan-Hong Wang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Xin-Yi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- *Correspondence: Xin-Yi Li,
| |
Collapse
|
3
|
Roy D, Kundu S, Mukherjee S. Development of Computational Correlations among Known Drug Scaffolds and their Target-Specific Non-Coding RNA Scaffolds of Alzheimer's Disease. Curr Alzheimer Res 2023; 20:539-556. [PMID: 37870052 DOI: 10.2174/0115672050261526231013095933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Alzheimer's disease is the most common neurodegenerative disorder. Recent development in sciences has also identified the pivotal role of microRNAs (miRNAs) in AD pathogenesis. OBJECTIVES We proposed a novel method to identify AD pathway-specific statistically significant miRNAs from the targets of known AD drugs. Moreover, microRNA scaffolds and corresponding drug scaffolds of different pathways were also discovered. MATERIAL AND METHODS A Wilcoxon signed-rank test was performed to identify pathway-specific significant miRNAs. We generated feed-forward loop regulations of microRNA-TF-gene-based networks, studied the minimum free energy structures of pre-microRNA sequences, and clustered those microRNAs with their corresponding structural motifs of robust transcription factors. Conservation analyses of significant microRNAs were done, and the phylogenetic trees were constructed. We identified 3'UTR binding sites and chromosome locations of these significant microRNAs. RESULTS In this study, hsa-miR-4261, hsa-miR-153-5p, hsa-miR-6766, and hsa-miR-4319 were identified as key miRNAs for the ACHE pathway and hsa-miR-326, hsa-miR-6133, hsa-miR-4251, hsa-miR-3148, hsa-miR-10527-5p, hsa-miR-527, and hsa-miR-518a were identified as regulatory miRNAs for the NMDA pathway. These miRNAs were regulated by several AD-specific TFs, namely RAD21, FOXA1, and ESR1. It has been observed that anisole and adamantane are important chemical scaffolds to regulate these significant miRNAs. CONCLUSION This is the first study that developed a detailed correlation between known AD drug scaffolds and their AD target-specific miRNA scaffolds. This study identified chromosomal locations of microRNAs and corresponding structural scaffolds of transcription factors that may be responsible for miRNA co-regulation for Alzheimer's disease. Our study provides hope for therapeutic improvements in the existing microRNAs by regulating pathways and targets.
Collapse
Affiliation(s)
- Debjani Roy
- Department of Biological Sciences Bose Institute, Unified Academic Campus. EN-80, Sector V, Bidhan Nagar, Kolkata- 700091, West Bengal, India
| | - Shymodip Kundu
- Department of Pharmaceutical Science and Technology, Maulana Abul Kalam Azad University of Technology, Nadia, Haringhata, 741249, India
| | - Swayambhik Mukherjee
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| |
Collapse
|
4
|
Chen Z, Wu M, Lai Q, Zhou W, Wen X, Yin X. Epigenetic regulation of synaptic disorder in Alzheimer’s disease. Front Neurosci 2022; 16:888014. [PMID: 35992921 PMCID: PMC9382295 DOI: 10.3389/fnins.2022.888014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Synapses are critical structures involved in neurotransmission and neuroplasticity. Their activity depends on their complete structure and function, which are the basis of learning, memory, and cognitive function. Alzheimer’s disease (AD) is neuropathologically characterized by synaptic loss, synaptic disorder, and plasticity impairment. AD pathogenesis is characterized by complex interactions between genetic and environmental factors. Changes in various receptors on the postsynaptic membrane, synaptic components, and dendritic spines lead to synaptic disorder. Changes in epigenetic regulation, including DNA methylation, RNA interference, and histone modification, are closely related to AD. These can affect neuronal and synaptic functions by regulating the structure and expression of neuronal genes. Some drugs have ameliorated synaptic and neural dysfunction in AD models via epigenetic regulation. We reviewed the recent progress on pathological changes and epigenetic mechanisms of synaptic dysregulation in AD to provide a new perspective on this disease.
Collapse
Affiliation(s)
- Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Qin Lai
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Xiaoqing Wen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
- *Correspondence: Xiaoping Yin,
| |
Collapse
|
5
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
6
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
7
|
Liu T, Zhu B, Liu Y, Zhang X, Yin J, Li X, Jiang L, Hodges AP, Rosenthal SB, Zhou L, Yancey J, McQuade A, Blurton-Jones M, Tanzi RE, Huang TY, Xu H. Multi-omic comparison of Alzheimer's variants in human ESC-derived microglia reveals convergence at APOE. J Exp Med 2021; 217:152099. [PMID: 32941599 PMCID: PMC7953740 DOI: 10.1084/jem.20200474] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Variations in many genes linked to sporadic Alzheimer’s disease (AD) show abundant expression in microglia, but relationships among these genes remain largely elusive. Here, we establish isogenic human ESC–derived microglia-like cell lines (hMGLs) harboring AD variants in CD33, INPP5D, SORL1, and TREM2 loci and curate a comprehensive atlas comprising ATAC-seq, ChIP-seq, RNA-seq, and proteomics datasets. AD-like expression signatures are observed in AD mutant SORL1 and TREM2 hMGLs, while integrative multi-omic analysis of combined epigenetic and expression datasets indicates up-regulation of APOE as a convergent pathogenic node. We also observe cross-regulatory relationships between SORL1 and TREM2, in which SORL1R744X hMGLs induce TREM2 expression to enhance APOE expression. AD-associated SORL1 and TREM2 mutations also impaired hMGL Aβ uptake in an APOE-dependent manner in vitro and attenuated Aβ uptake/clearance in mouse AD brain xenotransplants. Using this modeling and analysis platform for human microglia, we provide new insight into epistatic interactions in AD genes and demonstrate convergence of microglial AD genes at the APOE locus.
Collapse
Affiliation(s)
- Tongfei Liu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bing Zhu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Yan Liu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Xiaoming Zhang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jun Yin
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Xiaoguang Li
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - LuLin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Andrew P Hodges
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego School of Medicine, La Jolla, CA
| | - Lisa Zhou
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Joel Yancey
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Amanda McQuade
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA
| | - Rudolph E Tanzi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
8
|
Abstract
The history of Alzheimer's disease (AD) started in 1907, but we needed to wait until the end of the century to identify the components of pathological hallmarks and genetic subtypes and to formulate the first pathogenic hypothesis. Thanks to biomarkers and new technologies, the concept of AD then rapidly changed from a static view of an amnestic dementia of the presenium to a biological entity that could be clinically manifested as normal cognition or dementia of different types. What is clearly emerging from studies is that AD is heterogeneous in each aspect, such as amyloid composition, tau distribution, relation between amyloid and tau, clinical symptoms, and genetic background, and thus it is probably impossible to explain AD with a single pathological process. The scientific approach to AD suffers from chronological mismatches between clinical, pathological, and technological data, causing difficulty in conceiving diagnostic gold standards and in creating models for drug discovery and screening. A recent mathematical computer-based approach offers the opportunity to study AD in real life and to provide a new point of view and the final missing pieces of the AD puzzle.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
9
|
Guo XC, Li L, Gao ZH, Zhou HW, Li J, Wang QQ. The long non-coding RNA PTTG3P promotes growth and metastasis of cervical cancer through PTTG1. Aging (Albany NY) 2020; 11:1333-1341. [PMID: 30853662 PMCID: PMC6428096 DOI: 10.18632/aging.101830] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
The outgrowth and metastasis of cervical cancer (CC) contribute to its malignancy. Pituitary Tumor Transforming Gene 1 (PTTG1) is upregulated in many types of cancer, and enhances tumor cell growth and metastasis. However, the activation and regulation of PTTG1 in CC, especially by its pseudogene PTTG3P, have not been shown. Here, we detected significantly higher levels of PTTG1 and PTTG3P in the resected CC tissue, compared to the paired adjacent normal cervical tissue. Interestingly, the PTTG3P levels positively correlated with the PTTG1 levels. High PTTG3P levels were associated with poor patients’ survival. In vitro, PTTG1 were increased by PTTG3P overexpression, but was inhibited by PTTG3P depletion in CC cells. However, PTTG3P levels were not altered by modulation of PTTG1 in CC cells, suggesting that PTTG3P is upstream of PTTG1. Moreover, PTTG3P increased CC cell growth, likely through CCNB1-mediated increase in cell proliferation, rather than through decrease in cell apoptosis. Furthermore, PTTG3P increased CC cell invasiveness, likely through upregulation of SNAIL and downregulation of E-cadherin. Our work thus suggests that PTTG3P may promote growth and metastasis of CC through PTTG1.
Collapse
Affiliation(s)
- Xiang-Cui Guo
- Gynecologic Oncology, Xinxiang City Central Hospital, Xinxian 453000, Henan, China
| | - Li Li
- Gynecologic Oncology, Xinxiang City Central Hospital, Xinxian 453000, Henan, China
| | - Zhi-Hui Gao
- Gynecologic Oncology, Xinxiang City Central Hospital, Xinxian 453000, Henan, China
| | - Hong-Wei Zhou
- Nuclear Medicine Department, Xinxiang City Central Hospital, Xinxian 453000, Henan, China
| | - Jun Li
- Gynecologic Oncology, Xinxiang City Central Hospital, Xinxian 453000, Henan, China
| | - Qian-Qing Wang
- Gynecologic Oncology, Xinxiang City Central Hospital, Xinxian 453000, Henan, China
| |
Collapse
|
10
|
Cartron PF, Cheray M, Bretaudeau L. Epigenetic protein complexes: the adequate candidates for the use of a new generation of epidrugs in personalized and precision medicine in cancer. Epigenomics 2020; 12:171-177. [DOI: 10.2217/epi-2019-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Until recently, drug development in oncology was focused on treating most patients for a specific cancer type without taking in account the heterogeneity between these patients in term of response to treatment. Therefore, this type of broad treatment approach excludes the treatment of patient not responding to disease-specific common drugs. In this review, we focus on the different types of epigenetic drugs currently used as DNA methylation inhibitor agents and their limits in patient care due to their lack of specificity. We also highlight the emergence of a new type of epidrug with higher target specificity due to their original mechanism of action: the disruption of protein complexes involved in the epigenetic modifications.
Collapse
Affiliation(s)
- Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors’ Network, Cancéropôle Grand Ouest, Nantes, France
- EpiSAVMEN Consortium, Région Pays de la Loire, Nantes, France
- LabEX IGO, Université de Nantes, Nantes, France
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm 17177, Sweden
| | | |
Collapse
|
11
|
Ghaffari M, Sanadgol N, Abdollahi M. A Systematic Review of Current Progresses in the Nucleic Acid-Based Therapies for Neurodegeneration with Implications for Alzheimer's Disease. Mini Rev Med Chem 2020; 20:1499-1517. [PMID: 32400332 DOI: 10.2174/1389557520666200513122357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Recently, manipulation of gene expression and switching genes on or off highlight the potential of nucleic acid-based therapies (NA-BTs). Alzheimer's Disease (AD) is a common devastating neurodegenerative disease (NDs) responsible for 60-80% of all cases of dementia and predicted as a main public health concern among aged populations. The aim of this study was to outline the current research in the field of NA-BTs for the treatment of AD disabilities, including strategies to suppress the memory and learning defects, to promote recovery processes, and to reinforce social relationships in these patients. This review was performed via evaluating PubMed reported studies from January 2010 to November 2019. Also, reference lists were checked to find additional studies. All intermediation or complementarity of animal models, case-control and cohort studies, and controlled trials (CTs) on specific NA-BTs to AD were acceptable, although in vitro studies were excluded due to the considerable diversities and heterogeneities. After removing the duplicates according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) instruction, we merged remaining titles across search databases. There are 48 ongoing studies related to the application of nucleic acids in the treatment and diagnosis of AD where more consideration is given to DNA targeting strategies (18 targets for vectors and aptamers), antisense oligonucleotides (10 targets), micro-RNAs mimics (7 targets), antagomiRs (6 targets), small interferences-RNAs (5 targets), as well as mRNAs (2 targets) respectively. All of these targets are grouped into 4 categories according to their role in molecular pathways where amyloid-β (18 targets), neural survival (11 targets), memory and cognition (8 targets), and tau (3 targets) are more targeted pathways, respectively. With recent successes in the systemic delivery of nucleic acids via intravenous injection; it is worth investing in the production of new-generation medicines. There are still several challenges for NA-BTs including, their delivery to the effective modulators, mass production at low cost, sustaining efficacy and minimizing off-target effects. Regarding miRNA-based therapies, given the obvious involvement of miRNAs in numerous facets of brain disease, and the many sophisticated techniques for delivery to the brain, miRNA-based therapies will make new hope for the treatment of neurological diseases such as AD.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran
| |
Collapse
|
12
|
Janssens Y, Wynendaele E, Vanden Berghe W, De Spiegeleer B. Peptides as epigenetic modulators: therapeutic implications. Clin Epigenetics 2019; 11:101. [PMID: 31300053 PMCID: PMC6624906 DOI: 10.1186/s13148-019-0700-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Peptides originating from different sources (endogenous, food derived, environmental, and synthetic) are able to influence different aspects of epigenetic regulation. Endogenous short peptides, resulting from proteolytic cleavage of proteins or upon translation of non-annotated out of frame transcripts, can block DNA methylation and hereby regulate gene expression. Peptides entering the body by digestion of food-related proteins can modulate DNA methylation and/or histone acetylation while environmental peptides, synthesized by bacteria, fungi, and marine sponges, mainly inhibit histone deacetylation. In addition, synthetic peptides that reverse or inhibit different epigenetic modifications of both histones and the DNA can be developed as well. Next to these DNA and histone modifications, peptides can also influence the expression of non-coding RNAs such as lncRNAs and the maturation of miRNAs. Seen the advantages over small molecules, the development of peptide therapeutics is an interesting approach to treat diseases with a strong epigenetic basis like cancer and Alzheimer’s disease. To date, only a limited number of drugs with a proven epigenetic mechanism of action have been approved by the FDA of which two (romidepsin and nesiritide) are peptides. A large knowledge gap concerning epigenetic effects of peptides is present, and this class of molecules deserves more attention in the development as epigenetic modulators. In addition, none of the currently approved peptide drugs are under investigation for their potential effects on epigenetics, hampering drug repositioning of these peptides to other indications with an epigenetic etiology.
Collapse
Affiliation(s)
- Yorick Janssens
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Wim Vanden Berghe
- Protein Science, Proteomics and Epigenetic Signaling (PPES), Department Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
13
|
Abstract
This review addresses novel approaches for influencing the transcriptome, the
epigenome, the microbiome, the proteome, and the energy metabolome. These innovations
help develop psychotropic medications which will directly reach the molecular
targets, leading to beneficial effects, and which will be individually adapted to
provide more efficacy and less toxicity. The series of advances described here show
that these once utopian goals for psychiatric treatment are now real themes of
research, indicating that the future path for psychopharmacology might not be as
narrow and grim as considered during the last few decades.
Collapse
Affiliation(s)
- Pierre Schulz
- Private practice as psychiatrist; Head of the Unit of Clinical Psychopharmacology (retired), Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
14
|
Modrego P, Lobo A. A good marker does not mean a good target for clinical trials in Alzheimer's disease: the amyloid hypothesis questioned. Neurodegener Dis Manag 2019; 9:119-121. [DOI: 10.2217/nmt-2019-0006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Pedro Modrego
- Department of Neurology, Hospital Universitario Miguel Servet, Aragon, Spain
| | - Antonio Lobo
- Department of Psychiatry, University of Zaragoza, Aragon, Spain
| |
Collapse
|
15
|
Hernández HG, Sandoval-Hernández AG, Garrido-Gil P, Labandeira-Garcia JL, Zelaya MV, Bayon GF, Fernández AF, Fraga MF, Arboleda G, Arboleda H. Alzheimer's disease DNA methylome of pyramidal layers in frontal cortex: laser-assisted microdissection study. Epigenomics 2018; 10:1365-1382. [PMID: 30324800 DOI: 10.2217/epi-2017-0160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To study DNA methylation patterns of cortical pyramidal layers susceptible to late-onset Alzheimer's disease (LOAD) neurodegeneration. METHODS Laser-assisted microdissection to select pyramidal layers' cells in frontal cortex of 32 human brains (18 LOAD) and Infinium DNA Methylation 450K analysis were performed to find differential methylated positions and regions, in addition to the corresponding gene set functional enrichment analyses. RESULTS Differential hypermethylation in several genomic regions and genes mainly in HOXA3, GSTP1, CXXC1-3 and BIN1. The functional enrichment analysis revealed genes significantly related to oxidative-stress and synapsis. CONCLUSION The present results indicate the differentially methylated genes related to neural projections, synapsis, oxidative stress and epigenetic regulator genes and represent the first epigenome of cortical pyramidal layers in LOAD.
Collapse
Affiliation(s)
- Hernán Guillermo Hernández
- PhD Program in Dentistry, Universidad Santo Tomás, Bucaramanga, Colombia.,Research Unity, Universidad Manuela Beltrán, Bucaramanga, Colombia
| | - Adrián Gabriel Sandoval-Hernández
- Grupo de Neurociencias y muerte Celular, Facultad de Medicina e instituto de Genética, Universidad Nacional de Colombia, Colombia.,Área de Bioquímica, Departamento de Química Universidad Nacional de Colombia, Colombia
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - José Luis Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Victoria Zelaya
- Navarrabiomed Brain Bank, Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Gustavo F Bayon
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Principado de Asturias, Spain
| | - Agustín F Fernández
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Principado de Asturias, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Spain
| | - Gonzalo Arboleda
- Grupo de Neurociencias y muerte Celular, Facultad de Medicina e instituto de Genética, Universidad Nacional de Colombia, Colombia.,Área de Bioquímica, Departamento de Química Universidad Nacional de Colombia, Colombia
| | - Humberto Arboleda
- Grupo de Neurociencias y muerte Celular, Facultad de Medicina e instituto de Genética, Universidad Nacional de Colombia, Colombia
| |
Collapse
|
16
|
Preventive and Therapeutic Potential of Vitamin C in Mental Disorders. Curr Med Sci 2018; 38:1-10. [PMID: 30074145 DOI: 10.1007/s11596-018-1840-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/15/2018] [Indexed: 12/11/2022]
Abstract
In this review, we summarize the involvement of vitamin C in mental disorders by presenting available evidence on its pharmacological effects in animal models as well as in clinical studies. Vitamin C, especially its reduced form, has gained interest for its multiple functions in various tissues and organs, including central nervous system (CNS). Vitamin C protects the neuron against oxidative stress, alleviates inflammation, regulates the neurotransmission, affects neuronal development and controls epigenetic function. All of these processes are closely associated with psychopathology. In the past few decades, scientists have revealed that the deficiency of vitamin C may lead to motor deficit, cognitive impairment and aberrant behaviors, whereas supplement of vitamin C has a potential preventive and therapeutic effect on mental illness, such as major depressive disorder (MDD), schizophrenia, anxiety and Alzheimer's disease (AD). Although several studies support a possible role of vitamin C against mental disorders, more researches are essential to accelerate the knowledge and investigate the mechanism in this field.
Collapse
|