1
|
Rey-Bretal D, García-Varela L, Gómez-Lado N, Moscoso A, Piñeiro-Fiel M, Díaz-Platas L, Medin S, Fernández-Ferreiro A, Ruibal Á, Sobrino T, Silva-Rodríguez J, Aguiar P. Quantitative brain [ 18F]FDG PET beyond normal blood glucose levels. Neuroimage 2024; 300:120873. [PMID: 39341474 DOI: 10.1016/j.neuroimage.2024.120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction SUV measurements from static brain [18F]FDG PET acquisitions are a commonly used tool in preclinical research, providing a simple alternative for kinetic modelling, which requires complex and time-consuming dynamic acquisitions. However, SUV can be severely affected by the animal handling and preconditioning protocols, primarily by those that may induce changes in blood glucose levels (BGL). Here, we aimed at developing and investigating the feasibility of SUV-based approaches for a wide range of BGL far beyond normal values, and consequently, to develop and validate a new model to generate standardized and reproducible SUV measurements for any BGL. Material and methods We performed dynamic and static brain [18F]FDG PET acquisitions in 52 male Sprague-Dawley rats sorted into control (n = 10), non-fasting (n = 14), insulin-induced hypoglycemia (n = 12) and glucagon-induced hyperglycemia (n = 16) groups. Brain [18F]FDG PET images were cropped, aligned and co-registered to a standard template to calculate whole-brain and regional SUV. Cerebral Metabolic Rate of Glucose (CMRglc) was also estimated from 2-Tissue Compartment Model (2TCM) and Patlak plot for validation purposes. Results Our results showed that BGL=100±6 mg/dL can be considered a reproducible reference value for normoglycemia. Furthermore, we successfully established a 2nd-degree polynomial model (C1=0.66E-4, C2=-0.0408 and C3=7.298) relying exclusively on BGL measures at pre-[18F]FDG injection time, that characterizes more precisely the relationship between SUV and BGL for a wide range of BGL values (from 10 to 338 mg/dL). We confirmed the ability of this model to generate corrected SUV estimations that are highly correlated to CMRglc estimations (R2= 0.54 2TCM CMRgluc and R2= 0.49 Patlak CMRgluc). Besides, slight regional differences in SUV were found in animals from extreme BGL groups, showing that [18F]FDG uptake is mostly directed toward central regions of the brain when BGLs are significantly decreased. Conclusion Our study successfully established a non-linear model that relies exclusively on pre-scan BGL measurements to characterize the relationship between [18F]FDG SUV and BGL. The extensive validation confirmed its ability to generate SUV-based surrogates of CMRglu along a wide range of BGL and it holds the potential to be adopted as a standard protocol by the preclinical neuroimaging community using brain [18F]FDG PET imaging.
Collapse
Affiliation(s)
- David Rey-Bretal
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lara García-Varela
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Gómez-Lado
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Piñeiro-Fiel
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lucía Díaz-Platas
- Galician PET Radiopharmacy Unit, GALARIA, University Clinical Hospital, Santiago de Compostela, Spain
| | - Santiago Medin
- Galician PET Radiopharmacy Unit, GALARIA, University Clinical Hospital, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; FarmaCHUS Lab, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Álvaro Ruibal
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain.
| | - Pablo Aguiar
- Molecular Imaging Biomarkers Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Biomarkers Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Rong J, Wang Y, Liu N, Shen L, Ma Q, Wang M, Han B. Chronic stress induces insulin resistance and enhances cognitive impairment in AD. Brain Res Bull 2024; 217:111083. [PMID: 39304000 DOI: 10.1016/j.brainresbull.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chronic stress can induce the cognitive impairment, and even promote the occurrence and development of Alzheimer's disease (AD). Evidence has suggested that chronic stress impacts on glucose metabolism, and both of these have been implicated in AD. Here we focused on the effect of insulin resistance in glucose metabolism, and further evaluated the changes in cognition and pathology. METHODS Male 9-month-old wild-type and APP/PS1 mice were randomly divided into 4 groups. Mice in the chronic unpredictable mild stress (CUMS) groups were exposed for 4 weeks. Homeostatic Model Assessment (HOMA) was utilized to evaluate insulin sensitivity. A total of eighty-four genes related to the insulin signaling pathway were examined for rapid screening. Additionally, the phosphorylated protein expressions of insulin receptors (IR), IR substrate 1 (IRS1), c-Jun N-terminal kinase (JNK), and amyloid were detected in the hippocampus. Cognitive function was assessed through ethological methods. Cognitive function was assessed using both the Morris water maze (MWM) and the Passive avoidance test (PAT). RESULTS Four weeks of CUMS exposure significantly increased the HOMA value, indicating reduced insulin sensitivity. The gene expressions of Insr and Lipe were downregulated. Additionally, the analysis revealed a significant interaction between the genotype (wild-type vs. APP/PS1) and CUMS treatment on the phosphorylated protein expressions of insulin receptor substrate 1 (IRS1). Specifically, CUMS exposure increased the inhibitory phosphorylation site (IRS1-pSer636) and decreased the excitatory phosphorylation site (IRS1-pTyr465) in the post-insulin receptor signaling pathway within the hippocampus of both wild-type and APP/PS1 mice. Moreover, CUMS exposure induced and exacerbated cognitive impairments in both wild-type and APP/PS1 mice, as assessed by the Morris water maze (MWM) and Passive avoidance test (PAT). However, there was no significant effect of CUMS on senile plaque deposition or levels of Aβ42 and Aβ40 in wild-type mice. CONCLUSIONS Chronic stress significantly affects hippocampal cognitive function through insulin resistance and exacerbates AD pathology. This study reveals the complex relationship between chronic stress, insulin resistance, and AD, providing new insights for developing interventions targeting chronic stress and insulin resistance.
Collapse
Affiliation(s)
- Jiaying Rong
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yanyong Wang
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Na Liu
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Li Shen
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qinying Ma
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Mingwei Wang
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Bing Han
- Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China; Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Zhang S, Wang A, Liu S, Liu H, Zhu W, Zhang Z. Glycemic variability correlates with medial temporal lobe atrophy and decreased cognitive performance in patients with memory deficits. Front Aging Neurosci 2023; 15:1156908. [PMID: 37533764 PMCID: PMC10390778 DOI: 10.3389/fnagi.2023.1156908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Background In the past, researchers have observed a significant link between glycemia and dementia. Medial temporal atrophy (MTA) is regarded as a common marker of dementia. The correlation between glycemic variability and MTA is unclear, and it has not been determined whether glycemic variability can be utilized as a biomarker of MTA and cognitive performance. Methods The patients in a memory clinic who underwent brain MRI scans and cognitive assessments within the first week of their hospital visit, were enrolled. All participants underwent three fasting blood glucose and one HBA1c assessments on three self-selected days within 1 week of their first visit. The variability independent of the mean (VIM) was employed. Validated visual scales were used to rate the MTA results. The mini-mental state examination (MMSE) and Montreal Cognitive Assessment (MoCA) scales were employed to assess the cognitive functions of the participants. Spearman's correlation and regression models were used to examine the relationship between the MMSE and MoCA scales, and also determine the link between the MRI characteristics and cognitive status, where vascular risk factors, educational status, age, gender, and mean glucose parameters served as covariates. Results Four hundred sixty-one subjects completed the MMSE scale, while 447 participants completed the MoCA scale. Data analysis revealed that 47.72% of the participants were men (220/461), and the median age of the patients was 69.87 ± 5.37 years. The findings of Spearman's correlation analysis exhibited a strong negative relationship between the VIM and MMSE score (r = -0.729, P < 0.01), and the MoCA score (r = -0.710, P < 0.01). The VIM was regarded as an independent risk factor for determining cognitive impairment in both the MMSE and MoCA assessments. The results were unaffected by sensitivity analysis. In addition, a non-linear relationship was observed between the VIM and MTA scores. Conclusion The variability in the blood glucose levels, which was presented as VIM, was related to the reduced cognitive function, which was reflected by MMSE and MoCA scales. The relationship between the VIM and the MTA score was non-linear. The VIM was positively related to the MTA score when the VIM was less than 2.42.
Collapse
Affiliation(s)
- Shuangmei Zhang
- Department of Pain Rehabilitation, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Anrong Wang
- The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shen Liu
- The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Neurology of Traditional Chinese Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyu Liu
- Affiliated Hospital of Traditional Chinese Medicine of Guangzhou Medical University, Guangzhou, China
| | - Weifeng Zhu
- Affiliated Hospital of Traditional Chinese Medicine of Guangzhou Medical University, Guangzhou, China
| | - Zhaoxu Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
4
|
Li X, Le L, Shi Q, Xu H, Wang C, Xiong Y, Wang X, Wu G, Liu Q, Du X. Zinc exacerbates tau-induced Alzheimer-like pathology in C57BL/6J mice. Int J Biol Macromol 2023; 242:124652. [PMID: 37150371 DOI: 10.1016/j.ijbiomac.2023.124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is highly complex and multifactorial. Compared with Aβ, the pathological changes associated with tau are more related to the clinical symptoms and more indicative of the severity of AD. Studies have shown that the direct interaction between tau and Zn2+ plays an important role in tau toxicity, however, the mechanism by which Zn2+ contributes to tau-induced neurotoxicity is not fully understood. Our previous studies have found that Zn2+ bound to the third repeat unit of the microtubule-binding domain of tau (R3) with moderate affinity and induced R3 to form oligomers, thus increased the toxicity of R3 to nerve cells. Here, we demonstrated that Zn2+ binding to R3 (Zn2++R3) significantly reduced cognitive ability and increased blood lipid and glucose levels of C57BL/6J mice. In addition, Zn2++R3, not Zn2+ or R3 alone, markedly enhanced the endogenous Aβ and tau pathology and damaged the neurons of C57BL/6J mice. The study suggests that the main reason for the toxicity of Zn2+ may be the formation of Zn2+ and tau complex. Thus, preventing the combination of Zn2+ and tau may be a potential strategy for AD treatment. Furthermore, as the C57BL/6J mice injected with Zn2++R3 complex showed behavioral deficits, deposition of Aβ plaques and tau tangles, and the death of neurons within 45 days. Thus, they can be considered as a fast sporadic AD or other tauopathies mouse model.
Collapse
Affiliation(s)
- Xuexia Li
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Linfeng Le
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China.
| | - Qingqing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China.
| | - Hao Xu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China.
| | - Chao Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Yufang Xiong
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China.
| | - Xun Wang
- Shijiazhuang City Drainage Monitoring Station, Shijiazhuang 050091, China
| | - Guoli Wu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China.
| | - Qiong Liu
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Xiubo Du
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
5
|
Relationships between diabetes-related vascular risk factors and neurodegeneration biomarkers in healthy aging and Alzheimer's disease. Neurobiol Aging 2022; 118:25-33. [DOI: 10.1016/j.neurobiolaging.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/15/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022]
|
6
|
Hao Y, Liao X, Wang X, Lao S, Liao W. The biological regulatory activities of Flammulina velutipes polysaccharide in mice intestinal microbiota, immune repertoire and heart transcriptome. Int J Biol Macromol 2021; 185:582-591. [PMID: 34216660 DOI: 10.1016/j.ijbiomac.2021.06.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 01/21/2023]
Abstract
The effects of a novel Flammulina velutipes polysaccharide (FVP) on intestinal microbiota, immune repertoire and heart transcriptome were investigated in this study. The results showed that FVP treatment could effectively regulate the abundance of colonic microbiota. And FVP exhibited obvious immunoregulatory effect by influencing V gene and J gene fragments usage on TCRα chain. The usage frequency of TRBV1, TRBJ1-6 and TRBJ1-5 were significantly altered, and 41 V-J pairs were identified with obvious difference after FVP treatment. Furthermore, the mRNA of mice heart was analyzed by transcriptome assay. Total 525 genes and 1587 mRNA were significantly changed after FVP treatment. KEGG annotation indicated that the up-regulated mRNA was enriched in 17 pathways including adherens junction, mTOR signaling pathway, insulin signaling pathway, mitophagy, tight junction, PPAR signaling pathway and TNF signaling pathway, etc. Meanwhile, the down-regulated mRNA was gathered in AMPK signaling pathway, metabolism of xenobiotics by cytochrome P450, apelin signaling pathway, PPAR signaling pathway, PI3K-Akt signaling pathway, insulin signaling pathway, cardiac muscle contraction, adrenergic signaling in cardiomyocytes, Fc gamma R-mediated phagocytosis, etc. The great potential exhibited by FVP could make it an ideal candidate as complementary medicine or functional food for promotion of health.
Collapse
Affiliation(s)
- Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaoshan Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiangdong Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shenghui Lao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
7
|
Edlund AK, Chen K, Lee W, Protas H, Su Y, Reiman E, Caselli R, Nielsen HM. Plasma Apolipoprotein E3 and Glucose Levels Are Associated in APOE ɛ3/ɛ4 Carriers. J Alzheimers Dis 2021; 81:339-354. [PMID: 33814450 PMCID: PMC8203224 DOI: 10.3233/jad-210065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Altered cerebral glucose metabolism, especially prominent in APOE ɛ4 carriers, occurs years prior to symptoms in Alzheimer's disease (AD). We recently found an association between a higher ratio of plasma apolipoprotein E4 (apoE4) over apoE3, and cerebral glucose hypometabolism in cognitively healthy APOE ɛ3/ɛ4 subjects. Plasma apoE does not cross the blood-brain barrier, hence we speculate that apoE is linked to peripheral glucose metabolism which is known to affect glucose metabolism in the brain. OBJECTIVE Explore potential associations between levels of plasma insulin and glucose with previously acquired plasma apoE, cerebral metabolic rate of glucose (CMRgl), gray matter volume, and neuropsychological test scores. METHODS Plasma insulin and glucose levels were determined by ELISA and a glucose oxidase assay whereas apoE levels were earlier quantified by mass-spectrometry in 128 cognitively healthy APOE ɛ3/ɛ4 subjects. Twenty-five study subjects had previously undergone FDG-PET and structural MRI. RESULTS Lower plasma apoE3 associated with higher plasma glucose but not insulin in male subjects and subjects with a body mass index above 25. Negative correlations were found between plasma glucose and CMRgl in the left prefrontal and bilateral occipital regions. These associations may have functional implications since glucose levels in turn were negatively associated with neuropsychological test scores. CONCLUSION Plasma apoE3 but not apoE4 may be involved in insulin-independent processes governing plasma glucose levels. Higher plasma glucose, which negatively affects brain glucose metabolism, was associated with lower plasma apoE levels in APOE ɛ3/ɛ4 subjects. High plasma glucose and low apoE levels may be a hazardous combination leading to an increased risk of AD.
Collapse
Affiliation(s)
- Anna K Edlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Wendy Lee
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Eric Reiman
- Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Division of Neurogenomics, Translational Genomics Research Institute, Phoenix, AZ, USA.,Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Richard Caselli
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Zhou J, Walker RL, Gray SL, Marcum ZA, Barthold D, Bowen JD, McCormick W, McCurry SM, Larson EB, Crane PK. Glucose-Dementia Association Is Consistent Over Blood Pressure/Antihypertensive Groups. J Alzheimers Dis 2021; 80:79-90. [PMID: 33554906 DOI: 10.3233/jad-201138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Higher glucose levels are associated with dementia risk in people with and without diabetes. However, little is known about how this association might vary by hypertension status and antihypertensive treatment. Most studies on modifiable dementia risk factors consider each factor in isolation. OBJECTIVE To test the hypothesis that hypertension and antihypertensive treatments may modify associations between glucose levels and dementia. METHODS Analyses of data generated from a research study and clinical care of participants from a prospective cohort of dementia-free older adults, including glucose measures, diabetes and antihypertensive treatments, and blood pressure data. We defined groups based on blood pressure (hypertensive versus not, ≥140/90 mmHg versus <140/90 mmHg) and antihypertensive treatment intensity (0, 1, or ≥2 classes of antihypertensives). We used Bayesian joint models to jointly model longitudinal exposure and time to event data. RESULTS A total of 3,056 participants without diabetes treatment and 480 with diabetes treatment were included (mean age at baseline, 75.1 years; mean 7.5 years of follow-up). Higher glucose levels were associated with greater dementia risk among people without and with treated diabetes. Hazard ratios for dementia were similar across all blood pressure/antihypertensive treatment groups (omnibus p = 0.82 for people without and p = 0.59 for people with treated diabetes). CONCLUSION Hypertension and antihypertensive treatments do not appear to affect the association between glucose and dementia risk in this population-based longitudinal cohort study of community-dwelling older adults. Future studies are needed to examine this question in midlife and by specific antihypertensive treatments.
Collapse
Affiliation(s)
- Jing Zhou
- Kaiser Permanente Health Research Institute, Seattle, WA, USA
| | - Rod L Walker
- Kaiser Permanente Health Research Institute, Seattle, WA, USA
| | - Shelly L Gray
- Departments of Pharmacy, University of Washington, Seattle, WA, USA
| | - Zachary A Marcum
- Departments of Pharmacy, University of Washington, Seattle, WA, USA
| | - Douglas Barthold
- Departments of Pharmacy, University of Washington, Seattle, WA, USA
| | - James D Bowen
- Department of Neurology, Swedish Hospital Medical Center, Seattle, WA, USA
| | - Wayne McCormick
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan M McCurry
- Departments of Psychosocial and Community Health, University of Washington, Seattle, WA, USA
| | - Eric B Larson
- Kaiser Permanente Health Research Institute, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|