1
|
Wang Z, Li D, Chen M, Yu X, Chen C, Chen Y, Zhang L, Shu Y. A comprehensive study on the regulation of Compound Zaoren Granules on cAMP/CREB signaling pathway and metabolic disorder in CUMS-PCPA induced insomnia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118401. [PMID: 38815875 DOI: 10.1016/j.jep.2024.118401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Zaoren Granules (CZG), an optimized herbal formulation based on the traditional Chinese medicine prescription Suanzaoren decoction, are designed specifically for insomnia treatment. However, the mechanisms underlying its efficacy in treating insomnia are not yet fully understood. AIM OF THE STUDY The research investigated the mechanisms of CZG's improvement in insomnia by regulating cAMP/CREB signaling pathway and metabolic profiles. METHODS The main components of CZG were characterized by liquid chromatography-mass spectrometry (LC-MS). Subsequently, these validated components were applied to network pharmacological analysis to predict signaling pathways associated with insomnia. We evaluated the effect of CZG on BV-2 cells in vitro. We also evaluated the behavioral indexes of CUMS combined with PCPA induced insomnia in rats. HE staining and Nissl staining were used to observe the pathological damage of hippocampus. ELISA was used to detect the levels of various neurotransmitters, orexins, HPA axis, and inflammatory factors in insomnia rats. Then we detected the expression of cAMP/CREB signaling pathway through ELISA, WB, and IHC. Finally, the metabolomics was further analyzed by using UHPLC-QTOF-MS/MS to investigate the changes in the hippocampus of insomnia rats and the possible metabolic pathways were also speculated. RESULTS The results of CZG in vitro experiments showed that CZG has protective and anti-inflammatory effects on LPS induced BV-2 cells. A total of 161 chemical components were identified in CZG. After conducting network pharmacology analysis through these confirmed components, we select the cAMP/CREB signaling pathway for further investigate. The behavioral research results on insomnia rats showed that CZG significantly prolonged sleep time, mitigated brain tissue pathological damage, and exhibited liver protective properties. CZG treats insomnia by regulating the content of various neurotransmitters, reducing levels of orexin, HPA axis, and inflammatory factors. It can also treat insomnia by upregulating the expression of the cAMP/CREB signaling pathway. Hippocampus metabolomics analysis identified 69 differential metabolites associated with insomnia. The metabolic pathways related to these differential metabolites have also been predicted. CONCLUSION These results indicate that CZG can significantly prolong sleep time. CZG is used to treat insomnia by regulating various neurotransmitters, HPA axis, inflammatory factors, cAMP/CREB signaling pathways, and metabolic disorders.
Collapse
Affiliation(s)
- Zekun Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Danting Li
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Key laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xiaocong Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Chen Chen
- Nanjing Women and Children's Healthcare Hospital, 210029, China
| | - Yajun Chen
- Nanjing Women and Children's Healthcare Hospital, 210029, China
| | - Lingfeng Zhang
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, China
| | - Yachun Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Seaside Rehabilitation Hospital, Lianyungang, 222042, China.
| |
Collapse
|
2
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Filannino FM, Panaro MA, Benameur T, Pizzolorusso I, Porro C. Extracellular Vesicles in the Central Nervous System: A Novel Mechanism of Neuronal Cell Communication. Int J Mol Sci 2024; 25:1629. [PMID: 38338906 PMCID: PMC10855168 DOI: 10.3390/ijms25031629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Cell-to-cell communication is essential for the appropriate development and maintenance of homeostatic conditions in the central nervous system. Extracellular vesicles have recently come to the forefront of neuroscience as novel vehicles for the transfer of complex signals between neuronal cells. Extracellular vesicles are membrane-bound carriers packed with proteins, metabolites, and nucleic acids (including DNA, mRNA, and microRNAs) that contain the elements present in the cell they originate from. Since their discovery, extracellular vesicles have been studied extensively and have opened up new understanding of cell-cell communication; they may cross the blood-brain barrier in a bidirectional way from the bloodstream to the brain parenchyma and vice versa, and play a key role in brain-periphery communication in physiology as well as pathology. Neurons and glial cells in the central nervous system release extracellular vesicles to the interstitial fluid of the brain and spinal cord parenchyma. Extracellular vesicles contain proteins, nucleic acids, lipids, carbohydrates, and primary and secondary metabolites. that can be taken up by and modulate the behaviour of neighbouring recipient cells. The functions of extracellular vesicles have been extensively studied in the context of neurodegenerative diseases. The purpose of this review is to analyse the role extracellular vesicles extracellular vesicles in central nervous system cell communication, with particular emphasis on the contribution of extracellular vesicles from different central nervous system cell types in maintaining or altering central nervous system homeostasis.
Collapse
Affiliation(s)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy;
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ilaria Pizzolorusso
- Child and Adolescent Neuropsychiatry Unit, Department of Mental Health, ASL Foggia, 71121 Foggia, Italy;
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| |
Collapse
|
4
|
Boleti APDA, Cardoso PHDO, Frihling BEF, de Moraes LFRN, Nunes EAC, Mukoyama LTH, Nunes EAC, Carvalho CME, Macedo MLR, Migliolo L. Pathophysiology to Risk Factor and Therapeutics to Treatment Strategies on Epilepsy. Brain Sci 2024; 14:71. [PMID: 38248286 PMCID: PMC10813806 DOI: 10.3390/brainsci14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Epilepsy represents a condition in which abnormal neuronal discharges or the hyperexcitability of neurons occur with synchronicity, presenting a significant public health challenge. Prognostic factors, such as etiology, electroencephalogram (EEG) abnormalities, the type and number of seizures before treatment, as well as the initial unsatisfactory effects of medications, are important considerations. Although there are several third-generation antiepileptic drugs currently available, their multiple side effects can negatively affect patient quality of life. The inheritance and etiology of epilepsy are complex, involving multiple underlying genetic and epigenetic mechanisms. Different neurotransmitters play crucial roles in maintaining the normal physiology of different neurons. Dysregulations in neurotransmission, due to abnormal transmitter levels or changes in their receptors, can result in seizures. In this review, we address the roles played by various neurotransmitters and their receptors in the pathophysiology of epilepsy. Furthermore, we extensively explore the neurological mechanisms involved in the development and progression of epilepsy, along with its risk factors. Furthermore, we highlight the new therapeutic targets, along with pharmacological and non-pharmacological strategies currently employed in the treatment of epileptic syndromes, including drug interventions employed in clinical trials related to epilepsy.
Collapse
Affiliation(s)
- Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Ellynes Amancio Correia Nunes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Lincoln Takashi Hota Mukoyama
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Ellydberto Amancio Correia Nunes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Cristiano Marcelo Espinola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Unidade de Tecnologia de Alimentos e da Saúde Pública, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil; (A.P.d.A.B.); (P.H.d.O.C.); (B.E.F.F.); (L.F.R.N.d.M.); (E.A.C.N.); (L.T.H.M.); (E.A.C.N.); (C.M.E.C.)
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
5
|
Abdelmaksoud NM, Sallam AAM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Al-Noshokaty TM, Elrebehy MA, Elshaer SS, Mahmoud NA, Fathi D, Rizk NI, Elballal MS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Alzheimer's disease. Pathol Res Pract 2024; 253:155007. [PMID: 38061270 DOI: 10.1016/j.prp.2023.155007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is a multifaceted, advancing neurodegenerative illness that is responsible for most cases of neurological impairment and dementia in the aged population. As the disease progresses, affected individuals may experience cognitive decline, linguistic problems, affective instability, and behavioral changes. The intricate nature of AD reflects the altered molecular mechanisms participating in the affected human brain. MicroRNAs (miRNAs, miR) are essential for the intricate control of gene expression in neurobiology. miRNAs exert their influence by modulating the transcriptome of brain cells, which typically exhibit substantial genetic activity, encompassing gene transcription and mRNA production. Presently, comprehensive studies are being conducted on AD to identify miRNA-based signatures that are indicative of the disease pathophysiology. These findings can contribute to the advancement of our understanding of the mechanisms underlying this disorder and can inform the development of therapeutic interventions based on miRNA and related RNA molecules. Therefore, this comprehensive review provides a detailed holistic analysis of the latest advances discussing the emerging role of miRNAs in the progression of AD and their possible application as potential biomarkers and targets for therapeutic interventions in future studies.
Collapse
Affiliation(s)
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Naira Ali Mahmoud
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Bai Y, Ren H, Bian L, Zhou Y, Wang X, Xiong Z, Liu Z, Han B, Yao H. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci Bull 2023; 39:440-452. [PMID: 36161582 PMCID: PMC10043107 DOI: 10.1007/s12264-022-00950-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Bian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinping Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
MCU knockdown in hippocampal neurons improves memory performance of an Alzheimer's disease mouse model. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1528-1539. [PMID: 36239352 PMCID: PMC9828087 DOI: 10.3724/abbs.2022138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by cognitive decline, which could be promoted by mitochondrial dysfunction induced by mitochondrial Ca 2+ (mCa 2+) homeostasis Mitochondrial calcium uniporter (MCU), a key channel of mCa 2+ uptake, may be a target for AD treatment. In the present study, we reveal for the first time that MCU knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through radial arm maze task. Western blot analysis, transmission electron microscopy (TEM), Golgi staining, immunohistochemistry (IHC) and ELISA results demonstrate that MCU knockdown in hippocampal neurons upregulates the levels of postsynaptic density protein 95 (PSD95) and synaptophysin (SYP), and increases the numbers of synapses and dendritic spines. Meanwhile, MCU knockdown in hippocampal neurons decreases the neuroinflammatory response induced by astrogliosis and high levels of IL-1β and TNF-α, and improves the PINK1-Parkin mitophagy signaling pathway and increases the level of Beclin-1 but decreases the level of P62. In addition, MCU knockdown in hippocampal neurons recovers the average volume and number of mitochondria. These data confirm that MCU knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through ameliorating the synapse structure and function, relieving the inflammation response and recovering mitophagy, indicating that MCU inhibition has the potential to be developed as a novel therapy for AD.
Collapse
|
8
|
Xiao M, Yang S, Zhou A, Li T, Liu J, Chen Y, Luo Y, Qian C, Yang F, Tang B, Li C, Su N, Li J, Jiang M, Yang S, Lin H. MiR-27a-3p and miR-30b-5p inhibited-vitamin D receptor involved in the progression of tuberculosis. Front Microbiol 2022; 13:1020542. [PMID: 36304947 PMCID: PMC9593098 DOI: 10.3389/fmicb.2022.1020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background MicroRNAs (miRNAs) play a vital role in tuberculosis (TB). Vitamin D receptor (VDR), an miRNA target gene, and its ligand, vitamin D3 (VitD3), have been reported to exert protective effects against TB. However, whether miRNAs can affect the progression of TB by targeting VDR has not been reported. Materials and methods Research subjects were selected according to defined inclusion criteria. A clinical database of 360 samples was established, including the subjects’ demographic information, miRNA expression profiles and cellular experimental results. Two candidate miRNAs, miR-27a-3p, and miR-30b-5p, were identified by a high-throughput sequencing screen and validated by qRT–PCR assays. Univariate and multivariate statistical analyses were performed. VDR and NF-kB p65 protein levels were detected by Western blot assays. Proinflammatory cytokine expression levels were detected by enzyme-linked immunosorbent assay (ELISA). Luciferase assays and fluorescence-activated cell sorting (FACS) were further applied to elucidate the detailed mechanisms. Results Differential miRNA expression profiles were obtained, and miR-27a-3p and miR-30b-5p were highly expressed in patients with TB. These results showed that the two miRNAs were able to induce M1 macrophage differentiation and inhibit M2 macrophage differentiation. Further experiments showed that the two miRNAs decreased the VDR protein level and increased proinflammatory cytokine secretion by macrophages. Mechanistically, the miRNAs targeted the 3′ untranslated region (3′UTR) of the VDR mRNA and thereby downregulated VDR protein levels by post-transcriptional regulation. Then, due to the reduction in VDR protein levels, the NF-kB inflammatory cytokine signaling pathway was activated, thus promoting the progression of TB. Conclusion Our study not only identified differentially expressed miRNAs between the TB and control groups but also revealed that miR-27a-3p and miR-30b-5p regulate proinflammatory cytokine secretion and macrophage differentiation through VDR in macrophages. Thus, these two miRNAs influence the progression of TB.
Collapse
Affiliation(s)
- Min Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Song Yang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - An Zhou
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ya Luo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunfang Qian
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Fuping Yang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunhua Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Na Su
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Jing Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mingying Jiang
- Chongqing Public Health Medical Center, Southwest University, Chongqing, China
- *Correspondence: Mingying Jiang,
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Shiming Yang,
| | - Hui Lin
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Hui Lin,
| |
Collapse
|
9
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
10
|
Jiang W, Tang M, Yang L, Zhao X, Gao J, Jiao Y, Li T, Tie C, Gao T, Han Y, Jiang JD. Analgesic Alkaloids Derived From Traditional Chinese Medicine in Pain Management. Front Pharmacol 2022; 13:851508. [PMID: 35620295 PMCID: PMC9127080 DOI: 10.3389/fphar.2022.851508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are “direct efficacy”, including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and “background efficacy”, including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30–50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with “Jun”, “Chen”, “Zuo”, and “Shi” properties. In dCloud, “Jun” drug acts directly on the major symptom of the disease; “Chen” drug generates major background effects; “Zuo” drug has salutary and supportive functions; and “Shi” drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.
Collapse
Affiliation(s)
- Wei Jiang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Mingze Tang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Limin Yang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Xu Zhao
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Zielinski MR, Gibbons AJ. Neuroinflammation, Sleep, and Circadian Rhythms. Front Cell Infect Microbiol 2022; 12:853096. [PMID: 35392608 PMCID: PMC8981587 DOI: 10.3389/fcimb.2022.853096] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Molecules involved in innate immunity affect sleep and circadian oscillators and vice versa. Sleep-inducing inflammatory molecules are activated by increased waking activity and pathogens. Pathologies that alter inflammatory molecules, such as traumatic brain injury, cancer, cardiovascular disease, and stroke often are associated with disturbed sleep and electroencephalogram power spectra. Moreover, sleep disorders, such as insomnia and sleep disordered breathing, are associated with increased dysregulation of inflammatory processes. Inflammatory molecules in both the central nervous system and periphery can alter sleep. Inflammation can also modulate cerebral vascular hemodynamics which is associated with alterations in electroencephalogram power spectra. However, further research is needed to determine the interactions of sleep regulatory inflammatory molecules and circadian clocks. The purpose of this review is to: 1) describe the role of the inflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha and nucleotide-binding domain and leucine-rich repeat protein-3 inflammasomes in sleep regulation, 2) to discuss the relationship between the vagus nerve in translating inflammatory signals between the periphery and central nervous system to alter sleep, and 3) to present information about the relationship between cerebral vascular hemodynamics and the electroencephalogram during sleep.
Collapse
Affiliation(s)
- Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States,Harvard Medical School, West Roxbury, MA, United States,*Correspondence: Mark R. Zielinski,
| | - Allison J. Gibbons
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| |
Collapse
|
12
|
Ebrahimi R, Golestani A. The emerging role of noncoding RNAs in neuroinflammation: Implications in pathogenesis and therapeutic approaches. J Cell Physiol 2021; 237:1206-1224. [PMID: 34724212 DOI: 10.1002/jcp.30624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Noncoding RNAs (ncRNAs) are important regulators of gene expression in different cell processes. Due to their ability in monitoring neural development genes, these transcripts confer neurons with the potential to exert broad control over the expression of genes for performing neurobiological functions. Although the change of ncRNA expression in different neurodegenerative diseases has been reviewed elsewhere, only recent evidence drove our attention to unravel the involvement of these molecules in neuroinflammation within these devastating disorders. Remarkably, the interactions between ncRNAs and inflammatory pathways are not fully recognized. Therefore, this review has focused on the interplay between diverse inflammatory pathways and the related ncRNAs, including microRNAs, long noncoding RNAs, and competing endogenous RNAs in Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, multiple sclerosis, Huntington's disease, and prion diseases. Providing novel insights in the field of combining biomarkers is a critical step for using them as diagnostic tools and therapeutic targets in clinical settings.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Bai Y, Su X, Piao L, Jin Z, Jin R. Involvement of Astrocytes and microRNA Dysregulation in Neurodegenerative Diseases: From Pathogenesis to Therapeutic Potential. Front Mol Neurosci 2021; 14:556215. [PMID: 33815055 PMCID: PMC8010124 DOI: 10.3389/fnmol.2021.556215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are the most widely distributed and abundant glial cells in the central nervous system (CNS). Neurodegenerative diseases (NDDs) are a class of diseases with a slow onset, progressive progression, and poor prognosis. Common clinical NDDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). Although these diseases have different etiologies, they are all associated with neuronal loss and pathological dysfunction. Accumulating evidence indicates that neurotransmitters, neurotrophic factors, and toxic metabolites that are produced and released by activated astrocytes affect and regulate the function of neurons at the receptor, ion channel, antigen transfer, and gene transcription levels in the pathogenesis of NDDs. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a wide range of biological roles by regulating the transcription and post-transcriptional translation of target mRNAs to induce target gene expression and silencing. Recent studies have shown that miRNAs participate in the pathogenesis of NDDs by regulating astrocyte function through different mechanisms and may be potential targets for the treatment of NDDs. Here, we review studies of the role of astrocytes in the pathogenesis of NDDs and discuss possible mechanisms of miRNAs in the regulation of astrocyte function, suggesting that miRNAs may be targeted as a novel approach for the treatment of NDDs.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xing Su
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lianhua Piao
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Rihua Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Bollinger J, Wohleb E. The formative role of microglia in stress-induced synaptic deficits and associated behavioral consequences. Neurosci Lett 2019; 711:134369. [PMID: 31422099 PMCID: PMC9875737 DOI: 10.1016/j.neulet.2019.134369] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/27/2023]
Abstract
Psychological stress can precipitate depression, and emerging preclinical data suggest a link between stress-induced alterations in microglia function and development of depressive-like behaviors. Microglia are highly dynamic, and play an integral role in maintaining neuronal homeostasis and synaptic plasticity. In this capacity, microglial dysfunction represents a compelling avenue through which stress might disrupt neuronal integrity and induce psychopathology. This review examines preclinical and clinical postmortem findings that indicate microglia-neuron interactions contribute to stress-induced synaptic deficits and associated behavioral and cognitive consequences. We focus on pathways that are implicated in microglia-mediated neuronal remodeling, including CSF1-CSF1R, CX3CL1-CX3CR1, and CD11b (CR3)-C3, as well as purinergic signaling via P2RX7 and P2RY12. We also highlight sex differences in stress effects on microglia, and the potential for microglia in the development of sex-specific treatments for depressive disorders.
Collapse
Affiliation(s)
| | - E.S. Wohleb
- Corresponding author at: Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 2120 East Galbraith Road, Cincinnati, OH, 45237, USA. (E.S. Wohleb)
| |
Collapse
|
15
|
Herrera-Espejo S, Santos-Zorrozua B, Álvarez-González P, Lopez-Lopez E, Garcia-Orad Á. A Systematic Review of MicroRNA Expression as Biomarker of Late-Onset Alzheimer's Disease. Mol Neurobiol 2019; 56:8376-8391. [PMID: 31240600 DOI: 10.1007/s12035-019-01676-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
Abstract
Late-onset Alzheimer's disease (LOAD) is a high-occurrence neurological disorder but the difficulty in identifying precise and early biomarkers has complicated the understanding of the disease and the development of new treatments. In this sense, important knowledge is emerging regarding novel molecular and biological candidates with diagnostic potential, including microRNAs (miRNAs), which have a key role in gene repression. The aim of this systematic review was to define the role of miRNAs' expression as biomarkers for LOAD both in brain tissues, which could help understand the biology of the disease, and circulating tissues, which could serve as non-invasive markers of the pathology. A systematic search was performed in Web of Science and PubMed using the keywords ((Alzheimer or Alzheimer's) and (microRNA or microRNAs or miRNA or miRNAs or miR)) until August 2018 to retrieve all articles that presented independent original data evaluating the impact of miRNA expression on the development of LOAD in human population. A total of 90 studies investigating the role of miRNAs' expression in the development of LOAD were identified. While other widely studied miRNAs such as hsa-miR-146a presented contradictory results among studies, deregulation in brain tissue of seven miRNAs, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-107, hsa-miR-125-5p, hsa-miR-132-3p, hsa-miR-181-3p, and hsa-miR-212-3p, was consistently identified in LOAD patients. Their role in the disease could be mediated through the regulation of key pathways, such as axon guidance, longevity, insulin, and MAPK signaling pathway. However, regarding their role as non-invasive biomarkers of LOAD in fluids, although the limited results available are promising, further studies are required.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Borja Santos-Zorrozua
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Paula Álvarez-González
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
- BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - África Garcia-Orad
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
- BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
16
|
González-Giraldo Y, Forero DA, Echeverria V, Garcia-Segura LM, Barreto GE. Tibolone attenuates inflammatory response by palmitic acid and preserves mitochondrial membrane potential in astrocytic cells through estrogen receptor beta. Mol Cell Endocrinol 2019; 486:65-78. [PMID: 30822454 DOI: 10.1016/j.mce.2019.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022]
Abstract
Palmitic acid (PA) induces several metabolic and molecular changes in astrocytes, and, it is involved in pathological conditions related to neurodegenerative diseases. Previously, we demonstrated that tibolone, a synthetic steroid with estrogenic, progestogenic and androgenic actions, protects cells from mitochondrial damage and morphological changes induced by PA. Here, we have evaluated which estrogen receptor is involved in protective actions of tibolone and analyzed whether tibolone reverses gene expression changes induced by PA. Tibolone actions on astrocytic cells were mimicked by agonists of estrogen receptor α (ERα) and β (ERβ), but the blockade of both ERs suggested a predominance of ERβ on mitochondria membrane potential. Expression analysis showed a significant effect of tibolone on genes associated with inflammation such as IL6, IL1B and miR155-3p. It is noteworthy that tibolone attenuated the increased expression of TERT, TERC and DNMT3B genes induced by palmitic acid. Our results suggest that tibolone has anti-inflammatory effects and can modulate pathways associated with DNA methylation and telomeric complex. However, future studies are needed to elucidate the role of epigenetic mechanisms and telomere-associated proteins on tibolone actions.
Collapse
Affiliation(s)
- Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| |
Collapse
|
17
|
Katsumoto A, Takeuchi H, Takahashi K, Tanaka F. Microglia in Alzheimer's Disease: Risk Factors and Inflammation. Front Neurol 2018; 9:978. [PMID: 30498474 PMCID: PMC6249341 DOI: 10.3389/fneur.2018.00978] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that originate from myeloid progenitor cells in the embryonic yolk sac and are maintained independently of circulating monocytes throughout life. In the healthy state, microglia are highly dynamic and control the environment by rapidly extending and retracting their processes. When the CNS is inflamed, microglia can give rise to macrophages, but the regulatory mechanisms underlying this process have not been fully elucidated. Recent genetic studies have suggested that microglial function is compromised in Alzheimer's disease (AD), and that environmental factors such as diet and brain injury also affect microglial activation. In addition, studies of triggering receptor expressed on myeloid cells 2-deficiency in AD mice revealed heterogeneous microglial reactions at different disease stages, complicating the therapeutic strategy for AD. In this paper, we describe the relationship between genetic and environmental risk factors and the roles of microglia in AD pathogenesis, based on studies performed in human patients and animal models. We also discuss the mechanisms of inflammasomes and neurotransmitters in microglia, which accelerate the development of amyloid-β and tau pathology.
Collapse
Affiliation(s)
- Atsuko Katsumoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|