1
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Cai H, Zhang K, Wang M, Li X, Ran F, Han Y. Effects of mind-body exercise on cognitive performance in middle-aged and older adults with mild cognitive impairment: A meta-analysis study. Medicine (Baltimore) 2023; 102:e34905. [PMID: 37653776 PMCID: PMC10470775 DOI: 10.1097/md.0000000000034905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND To systematically evaluate the clinical efficacy of physical and mental exercise on cognitive performance in middle-aged people with mild cognitive impairment (MCI). METHODS Computer searches of PubMed, Web of science, Embase, Cochrane Library, China Biomedical Literature Service, Wanfang database, China Knowledge Network, and VIP full-text database of Veep journals were conducted to obtain clinical randomized controlled trials on physical and mental exercise interventions in middle-aged and elderly people with MCI. The literature was screened according to inclusion and exclusion criteria, and the final included literature was subjected to data extraction and risk of bias assessment. Meta-analysis was performed using Review Manager 5.4.1 software, and publication bias test was performed using stata17.0 software. RESULTS A total of 27 publications with a total of 2565 cases of elderly people with MCI were included. The control group was conventional care, health education, or blank control, and the physical and mental exercise group was exercises including Tai Chi, dance, orthopraxia, and qigong for 30 to 90 minutes each time, 3 to 6 times per week, for a total duration of 8 to 36 weeks. Meta-analysis results showed that Montreal cognitive assessment scores (mean difference [MD] = 2.33, 95% CI [1.55, 3.10], P < .00001), the mini-mental state examination score (MD = 1.73, 95% CI [0.60, 2.86], P = .003), trail making test-A score (MD = -4.00, 95% CI [-6.75, -1.25], P = .004), trail making test-B score (MD = -18.46, 95% CI [-23.87, -13.06], P < .00001), global deterioration scale score (MD = -0.72, 95% CI [-1.09, -0.34], P = .0002), Wechsler Logical Memory Scale score (MD = 2.07, 95% CI [0.03, 4.10], P = .05), berg score (MD = -0.70, 95% CI [0.32, 1.07], P < .0003), cerebrospinal fluid Tau protein level (MD = -166.69, 95% CI [-196.93, -136.45], P < .00001), and cerebrospinal fluid levels of αβ1-42 protein (MD = 180.39, 95% CI [134.24, 226.55], P < .00001). CONCLUSION Mind-body exercise can improve cognitive performance, depressive status, and balance as well as increase αβ1-42 protein levels and decrease Tau protein levels in middle-aged and older adults with mild cognitive impairment.
Collapse
Affiliation(s)
- Hejia Cai
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Kainan Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Mengzhao Wang
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Xiaomei Li
- Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Fei Ran
- College of Physical Education, Yunnan Normal University, Kunming, China
| | - Yanbai Han
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| |
Collapse
|
3
|
Baazaoui N, Iqbal K. Alzheimer's Disease: Challenges and a Therapeutic Opportunity to Treat It with a Neurotrophic Compound. Biomolecules 2022; 12:biom12101409. [PMID: 36291618 PMCID: PMC9599095 DOI: 10.3390/biom12101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with an insidious onset and multifactorial nature. A deficit in neurogenesis and synaptic plasticity are considered the early pathological features associated with neurofibrillary tau and amyloid β pathologies and neuroinflammation. The imbalance of neurotrophic factors with an increase in FGF-2 level and a decrease in brain derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) in the hippocampus, frontal cortex and parietal cortex and disruption of the brain micro-environment are other characteristics of AD. Neurotrophic factors are crucial in neuronal differentiation, maturation, and survival. Several attempts to use neurotrophic factors to treat AD were made, but these trials were halted due to their blood-brain barrier (BBB) impermeability, short-half-life, and severe side effects. In the present review we mainly focus on the major etiopathology features of AD and the use of a small neurotrophic and neurogenic peptide mimetic compound; P021 that was discovered in our laboratory and was found to overcome the difficulties faced in the administration of the whole neurotrophic factor proteins. We describe pre-clinical studies on P021 and its potential as a therapeutic drug for AD and related neurodegenerative disorders. Our study is limited because it focuses only on P021 and the relevant literature; a more thorough investigation is required to review studies on various therapeutic approaches and potential drugs that are emerging in the AD field.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
- Correspondence: ; Tel.: +1-718-494-5259; Fax: +1-718-494-1080
| |
Collapse
|
4
|
Bukhari SNA. Dietary Polyphenols as Therapeutic Intervention for Alzheimer’s Disease: A Mechanistic Insight. Antioxidants (Basel) 2022; 11:antiox11030554. [PMID: 35326204 PMCID: PMC8945272 DOI: 10.3390/antiox11030554] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Dietary polyphenols encompass a diverse range of secondary metabolites found in nature, such as fruits, vegetables, herbal teas, wine, and cocoa products, etc. Structurally, they are either derivatives or isomers of phenol acid, isoflavonoids and possess hidden health promoting characteristics, such as antioxidative, anti-aging, anti-cancerous and many more. The use of such polyphenols in combating the neuropathological war raging in this generation is currently a hotly debated topic. Lately, Alzheimer’s disease (AD) is emerging as the most common neuropathological disease, destroying the livelihoods of millions in one way or another. Any therapeutic intervention to curtail its advancement in the generation to come has been in vain to date. Using dietary polyphenols to construct the barricade around it is going to be an effective strategy, taking into account their hidden potential to counter multifactorial events taking place under such pathology. Besides their strong antioxidant properties, naturally occurring polyphenols are reported to have neuroprotective effects by modulating the Aβ biogenesis pathway in Alzheimer’s disease. Thus, in this review, I am focusing on unlocking the hidden secrets of dietary polyphenols and their mechanistic advantages to fight the war with AD and related pathology.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 2014, Saudi Arabia
| |
Collapse
|
5
|
Miziak B, Błaszczyk B, Czuczwar SJ. Some Candidate Drugs for Pharmacotherapy of Alzheimer's Disease. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050458. [PMID: 34068096 PMCID: PMC8152728 DOI: 10.3390/ph14050458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Barbara Błaszczyk
- Faculty of Health Sciences, High School of Economics, Law and Medical Sciences, 25-734 Kielce, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-65-00; Fax: +48-81-65-00-01
| |
Collapse
|
6
|
Kiss E, Kins S, Gorgas K, Orlik M, Fischer C, Endres K, Schlicksupp A, Kirsch J, Kuhse J. Artemisinin-treatment in pre-symptomatic APP-PS1 mice increases gephyrin phosphorylation at Ser270: a modification regulating postsynaptic GABA AR density. Biol Chem 2021; 403:73-87. [PMID: 33878252 DOI: 10.1515/hsz-2021-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 01/26/2023]
Abstract
Artemisinins, a group of plant-derived sesquiterpene lactones, are efficient antimalarial agents. They also share anti-inflammatory and anti-viral activities and were considered for treatment of neurodegenerative disorders like Alzheimer's disease (AD). Additionally, artemisinins bind to gephyrin, the multifunctional scaffold of GABAergic synapses, and modulate inhibitory neurotransmission in vitro. We previously reported an increased expression of gephyrin and GABAA receptors in early pre-symptomatic stages of an AD mouse model (APP-PS1) and in parallel enhanced CDK5-dependent phosphorylation of gephyrin at S270. Here, we studied the effects of artemisinin on gephyrin in the brain of young APP-PS1 mice. We detected an additional increase of gephyrin protein level, elevated gephyrin phosphorylation at Ser270, and an increased amount of GABAAR-γ2 subunits after artemisinin-treatment. Interestingly, the CDK5 activator p35 was also upregulated. Moreover, we demonstrate decreased density of postsynaptic gephyrin and GABAAR-γ2 immunoreactivities in cultured hippocampal neurons expressing gephyrin with alanine mutations at two CDK5 phosphorylation sites. In addition, the activity-dependent modulation of synaptic protein density was abolished in neurons expressing gephyrin lacking one or both of these phosphorylation sites. Thus, our results reveal that artemisinin modulates expression as well as phosphorylation of gephyrin at sites that might have important impact on GABAergic synapses in AD.
Collapse
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120Heidelberg, Germany.,Department of Cellular and Molecular Biology, University of Medicine, Pharmacy, Science and Technology "G.E. Palade" of Târgu Mures, Str. Gheorghe Marinescu nr. 38, 540 139Târgu Mureș, Romania
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67633 Kaiserslautern, Germany
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120Heidelberg, Germany
| | - Maret Orlik
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120Heidelberg, Germany
| | - Carolin Fischer
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120Heidelberg, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Andrea Schlicksupp
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120Heidelberg, Germany
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, D-69120Heidelberg, Germany
| |
Collapse
|
7
|
Wei W, Liu Y, Dai CL, Baazaoui N, Tung YC, Liu F, Iqbal K. Neurotrophic Treatment Initiated During Early Postnatal Development Prevents the Alzheimer-Like Behavior and Synaptic Dysfunction. J Alzheimers Dis 2021; 82:631-646. [PMID: 34057082 PMCID: PMC8385525 DOI: 10.3233/jad-201599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Cognitive dysfunction and loss of neuronal plasticity are known to begin decades before the clinical diagnosis of the disease. The important influence of congenital genetic mutations on the early development of AD provides a novel opportunity to initiate treatment during early development to prevent the Alzheimer-like behavior and synaptic dysfunction. OBJECTIVE To explore strategies for early intervention to prevent Alzheimer's disease. METHODS In the present study, we investigated the effect of treatment during early development with a ciliary neurotrophic factor (CNTF) derived peptidergic compound, P021 (Ac-DGGLAG-NH2) on cognitive function and synaptic plasticity in 3xTg-AD transgenic mouse model of AD. 3xTg-AD and genetic background-matched wild type female mice were treated from birth to postnatal day 120 with P021 in diet or as a control with vehicle diet, and cognitive function and molecular markers of neuroplasticity were evaluated. RESULTS P021 treatment during early development prevented cognitive impairment and increased expressions of pCREB and BDNF that activated downstream various signaling cascades such as PLC/PKC, MEK/ERK and PI3K/Akt, and ameliorated synaptic protein deficit in 4-month-old 3xTg-AD mice. CONCLUSION These findings indicate that treatment with the neurotrophic peptide mimetic such as P021 during early development can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial AD and related tauopathies.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, China
| | - Yinghua Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Narjes Baazaoui
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- King Khalid University, Abha 61421, Abha, Saudi Arabia
| | - Yunn Chyn Tung
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
8
|
Clinically approved IVIg delivered to the hippocampus with focused ultrasound promotes neurogenesis in a model of Alzheimer's disease. Proc Natl Acad Sci U S A 2020; 117:32691-32700. [PMID: 33288687 DOI: 10.1073/pnas.1908658117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Preclinical and clinical data support the use of focused ultrasound (FUS), in the presence of intravenously injected microbubbles, to safely and transiently increase the permeability of the blood-brain barrier (BBB). FUS-induced BBB permeability has been shown to enhance the bioavailability of administered intravenous therapeutics to the brain. Ideal therapeutics candidates for this mode of delivery are those capable of inducing benefits peripherally following intravenous injection and in the brain at FUS-targeted areas. In Alzheimer's disease, intravenous immunoglobulin (IVIg), a fractionated human blood product containing polyclonal antibodies, act as immunomodulator peripherally and centrally, and it can reduce amyloid pathology in the brain. Using the TgCRND8 mouse model of amyloidosis, we tested whether FUS can improve the delivery of IVIg, administered intravenously (0.4 g/kg), to the hippocampus and reach an effective dose to reduce amyloid plaque pathology and promote neurogenesis. Our results show that FUS-induced BBB permeability is required to deliver a significant amount of IVIg (489 ng/mg) to the targeted hippocampus of TgCRN8 mice. Two IVIg-FUS treatments, administered at days 1 and 8, significantly increased hippocampal neurogenesis by 4-, 3-, and 1.5-fold in comparison to saline, IVIg alone, and FUS alone, respectively. Amyloid plaque pathology was significantly reduced in all treatment groups: IVIg alone, FUS alone, and IVIg-FUS. Putative factors promoting neurogenesis in response to IVIg-FUS include the down-regulation of the proinflammatory cytokine TNF-α in the hippocampus. In summary, FUS was required to deliver an effective dose of IVIg to promote hippocampal neurogenesis and modulate the inflammatory milieu.
Collapse
|
9
|
Bomba M, Granzotto A, Castelli V, Onofrj M, Lattanzio R, Cimini A, Sensi SL. Exenatide Reverts the High-Fat-Diet-Induced Impairment of BDNF Signaling and Inflammatory Response in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2020; 70:793-810. [PMID: 31256135 DOI: 10.3233/jad-190237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial condition in which, along with amyloid-β (Aβ) and tau-related pathology, the synergistic activity of co-morbidity factors promote the onset and progression of the disease. Epidemiological evidence indicates that glucose intolerance, deficits in insulin secretion, or type-2 diabetes mellitus (T2DM) participate in increasing cognitive impairment or dementia risk. Insulin plays a pivotal role in the process as the hormone critically regulates brain functioning. GLP-1, the glucagon-like peptide 1, facilitates insulin signaling, regulates glucose homeostasis, and modulates synaptic plasticity. Exenatide is a synthetic GLP-1 analog employed in T2DM. However, exenatide has also been shown to affect the signaling of the brain-derived neurotrophic factor (BDNF), synaptic plasticity, and cognitive performances in animal models. In this study, we tested whether exenatide exerts neuroprotection in a preclinical AD model set to mimic the clinical complexity of the human disease. We investigated the effects of exenatide treatment in 3xTg-AD mice challenged with a high-fat diet (HFD). Endpoints of the study were variations in systemic metabolism, insulin and neurotrophic signaling, neuroinflammation, Aβ and tau pathology, and cognitive performances. Results of the study indicate that exenatide reverts the adverse changes of BDNF signaling and the neuroinflammation status of 3xTg-AD mice undergoing HFD without affecting systemic metabolism or promoting changes in cognitive performances.
Collapse
Affiliation(s)
- Manuela Bomba
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Marco Onofrj
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Rossano Lattanzio
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Medical, Oral, and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders - iMIND, University of California - Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Vanhunsel S, Beckers A, Moons L. Designing neuroreparative strategies using aged regenerating animal models. Ageing Res Rev 2020; 62:101086. [PMID: 32492480 DOI: 10.1016/j.arr.2020.101086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
In our ever-aging world population, the risk of age-related neuropathies has been increasing, representing both a social and economic burden to society. Since the ability to regenerate in the adult mammalian central nervous system is very limited, brain trauma and neurodegeneration are often permanent. As a consequence, novel scientific challenges have emerged and many research efforts currently focus on triggering repair in the damaged or diseased brain. Nevertheless, stimulating neuroregeneration remains ambitious. Even though important discoveries have been made over the past decades, they did not translate into a therapy yet. Actually, this is not surprising; while these disorders mainly manifest in aged individuals, most of the research is being performed in young animal models. Aging of neurons and their environment, however, greatly affects the central nervous system and its capacity to repair. This review provides a detailed overview of the impact of aging on central nervous system functioning and regeneration potential, both in non-regenerating and spontaneously regenerating animal models. Additionally, we highlight the need for aging animal models with regenerative capacities in the search for neuroreparative strategies.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Gupta UC, Gupta SC. Optimizing Modifiable and Lifestyle-related Factors in the Prevention of Dementia Disorders with Special Reference to Alzheimer, Parkinson and Autism Diseases. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190801120306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dementia is a syndrome and an umbrella term that encompasses Alzheimer, Parkinson and
autism diseases. These diseases are by far the most common cause of dementia; therefore this investigation
will chiefly include these disorders, with a limited discussion of few other disorders related
to dementia. Alzheimer’s disease (AD) is characterized by the accumulation of cerebral β-amyloid
plaques, tau proteins and memory loss; Parkinson by the deterioration of brain cells which regulate
the movement of body parts and produce dopamine; and autism by abnormalities of social disorder
and difficulty in communicating and forming relationships. Alzheimer’s disease and cognitive impairment
in dementia are age-related and manageable only with early diagnosis and prevention. Data
based on several decades of research has shown that the major factors responsible for the induction
of inflammation in dementia and many chronic diseases are infections, obesity, alcohol, radiation,
environmental pollutants, improper nutrition, lack of physical activity, depression, anxiety, genetic
factors, and sleep deprivation. There are some studied preventive measures for dementia including
continued physical activity and consuming predominantly a plant-based Mediterranean diet comprising
olive oil and foods containing flavonoids and other phytochemicals having strong antioxidant and
anti-inflammatory properties and along with management of chronic conditions.
Collapse
Affiliation(s)
- Umesh C. Gupta
- Agriculture and Agri-Food Canada, Charlottetown Research and Development Centre, 440 University Avenue, Charlottetown, PE, Canada
| | - Subhas C. Gupta
- The Department of Plastic Surgery, Loma Linda University School of Medicine, Loma Linda, California 92354, United States
| |
Collapse
|
12
|
Khoury R, Grossberg GT. Deciphering Alzheimer's disease: predicting new therapeutic strategies via improved understanding of biology and pathogenesis. Expert Opin Ther Targets 2020; 24:859-868. [PMID: 32603232 DOI: 10.1080/14728222.2020.1790530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is no cure for Alzheimer's disease (AD). One explanation may pertain to the need to intervene as early as possible upstream from the accumulation of β-amyloid plaques and tau tangles. AREAS COVERED A PUBMED literature search was completed to review the biological or pathological changes at the basis of disease initiation; this includes neuroinflammation, oxidative stress, microbiome changes and glymphatic system dysfunction. Innovative therapeutic strategies based on these mechanisms are also discussed. EXPERT OPINION Improved understanding of the pathophysiological mechanisms that underly AD would assist in the identification of drug targets for clinical trials. Furthermore, pharmacokinetic and pharmacodynamic studies are key for the characterization of the properties of disease-modifying drugs and the improvement of their penetration of the blood-brain barrier. Drug targets can be examined at different stages of the disease, hence the importance of selecting and recruiting the appropriate participants, preferably at the earliest stage of AD. New trial designs should be established which primarily involve combination therapies that can work synergistically on common pathways. Going forward, innovative treatment strategies involving nanotechnology, young blood products transfusion and photobiomodulation also offer promise for the future.
Collapse
Affiliation(s)
- Rita Khoury
- Saint George Hospital University Medical Center-SGHUMC, University of Balamand School of Medicine , Beirut, Lebanon
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine , Saint Louis, Missouri, USA
| |
Collapse
|
13
|
Adav SS, Sze SK. Hypoxia-Induced Degenerative Protein Modifications Associated with Aging and Age-Associated Disorders. Aging Dis 2020; 11:341-364. [PMID: 32257546 PMCID: PMC7069466 DOI: 10.14336/ad.2019.0604] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aging is an inevitable time-dependent decline of various physiological functions that finally leads to death. Progressive protein damage and aggregation have been proposed as the root cause of imbalance in regulatory processes and risk factors for aging and neurodegenerative diseases. Oxygen is a modulator of aging. The oxygen-deprived conditions (hypoxia) leads to oxidative stress, cellular damage and protein modifications. Despite unambiguous evidence of the critical role of spontaneous non-enzymatic Degenerative Protein Modifications (DPMs) such as oxidation, glycation, carbonylation, carbamylation, and deamidation, that impart deleterious structural and functional protein alterations during aging and age-associated disorders, the mechanism that mediates these modifications is poorly understood. This review summarizes up-to-date information and recent developments that correlate DPMs, aging, hypoxia, and age-associated neurodegenerative diseases. Despite numerous advances in the study of the molecular hallmark of aging, hypoxia, and degenerative protein modifications during aging and age-associated pathologies, a major challenge remains there to dissect the relative contribution of different DPMs in aging (either natural or hypoxia-induced) and age-associated neurodegeneration.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
14
|
Rajpoot K. Nanotechnology-based Targeting of Neurodegenerative Disorders: A Promising Tool for Efficient Delivery of Neuromedicines. Curr Drug Targets 2020; 21:819-836. [PMID: 31906836 DOI: 10.2174/1389450121666200106105633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
Traditional drug delivery approaches remained ineffective in offering better treatment to various neurodegenerative disorders (NDs). In this context, diverse types of nanocarriers have shown their great potential to cross the blood-brain barrier (BBB) and have emerged as a prominent carrier system in drug delivery. Moreover, nanotechnology-based methods usually involve numerous nanosized carrier platforms, which potentiate the effect of the therapeutic agents in the therapy of NDs especially in diagnosis and drug delivery with negligible side effects. In addition, nanotechnology-based techniques have offered several strategies to cross BBB to intensify the bioavailability of drug moieties in the brain. In the last few years, diverse kinds of nanoparticles (NPs) have been developed by incorporating various biocompatible components (e.g., polysaccharide-based NPs, polymeric NPs, selenium NPs, AuNPs, protein-based NPs, gadolinium NPs, etc.), that showed great therapeutic benefits against NDs. Eventually, this review provides deep insights to explore recent applications of some innovative nanocarriers enclosing active molecules for the efficient treatment of NDs.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495 009, Chhattisgarh, India
| |
Collapse
|
15
|
Cervellati C, Trentini A, Rosta V, Passaro A, Bosi C, Sanz JM, Bonazzi S, Pacifico S, Seripa D, Valacchi G, Guerini R, Zuliani G. Serum beta-secretase 1 (BACE1) activity as candidate biomarker for late-onset Alzheimer's disease. GeroScience 2019; 42:159-167. [PMID: 31745860 DOI: 10.1007/s11357-019-00127-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/17/2019] [Indexed: 01/02/2023] Open
Abstract
Beta-secretase (BACE1) is a key enzyme in the formation of amyloid-β; its activity/concentration is increased in brain and cerebrospinal fluid of patients with late-onset Alzheimer's disease (LOAD). Since BACE1 was found also in blood, we evaluated its potential as peripheral biomarker. To this aim, serum BACE1 activity was assessed in 115 subjects with LOAD and 151 controls. We found that BACE1 changed across groups (p < 0.001) with a 25% increase in LOAD versus controls. High levels of BACE1 (IV quartile) were independently associated with the diagnosis of LOAD (OR 2.8; 1.4-5.7). Diagnostic accuracy was 76% for LOAD. Our data suggest that increased BACE1 activity in serum may represent a potential biomarker for LOAD. Additional studies are needed to confirm the usefulness of BACE1, alone or in combination with other markers, in discriminating patients and predicting LOAD onset and progression.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Valentina Rosta
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Angelina Passaro
- Department of Morphology, Surgery, and Medical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Cristina Bosi
- Department of Morphology, Surgery, and Medical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Juana Maria Sanz
- Department of Morphology, Surgery, and Medical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Stefania Bonazzi
- Department of Morphology, Surgery, and Medical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 1, 71013, San Giovanni Rotondo, Italy
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.,Plants for Human Health Institute, Animal Science Department, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA.,Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Remo Guerini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Giovanni Zuliani
- Department of Morphology, Surgery, and Medical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
16
|
Wu X, Geng Z, Zhou S, Bai T, Wei L, Ji GJ, Zhu W, Yu Y, Tian Y, Wang K. Brain Structural Correlates of Odor Identification in Mild Cognitive Impairment and Alzheimer's Disease Revealed by Magnetic Resonance Imaging and a Chinese Olfactory Identification Test. Front Neurosci 2019; 13:842. [PMID: 31474819 PMCID: PMC6702423 DOI: 10.3389/fnins.2019.00842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/26/2019] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a common memory-impairment disorder frequently accompanied by olfactory identification (OI) impairments. In fact, OI is a valuable marker for distinguishing AD from normal age-related cognitive impairment and may predict the risk of mild cognitive impairment (MCI)-to-AD transition. However, current olfactory tests were developed based on Western social and cultural conditions, and are not very suitable for Chinese patients. Moreover, the neural substrate of OI in AD is still unknown. The present study investigated the utility of a newly developed Chinese smell identification test (CSIT) for OI assessment in Chinese AD and MCI patients. We then performed a correlation analysis of gray matter volume (GMV) at the voxel and region-of-interest (ROI) levels to reveal the neural substrates of OI in AD. Thirty-seven AD, 27 MCI, and 30 normal controls (NCs) completed the CSIT and MRI scans. Patients (combined AD plus MCI) scored significantly lower on the CSIT compared to NCs [F(2,91) = 62.597, p < 0.001)]. Voxel-level GMV analysis revealed strong relationships between CSIT score and volumes of the left precentral gyrus and left inferior frontal gyrus (L-IFG). In addition, ROI-level GMV analysis revealed associations between CSIT score and left amygdala volumes. Our results suggest the following: (1) OI, as measured by the CSIT, is impaired in AD and MCI patients compared with healthy controls in the Chinese population; (2) the severity of OI dysfunction can distinguish patients with cognitive impairment from controls and AD from MCI patients; and (3) the left-precentral cortex and L-IFG may be involved in the processing of olfactory cues.
Collapse
Affiliation(s)
- Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Ling Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanqiu Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Department of Medical Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Neuro-regeneration Therapeutic for Alzheimer's Dementia: Perspectives on Neurotrophic Activity. Trends Pharmacol Sci 2019; 40:655-668. [PMID: 31402121 DOI: 10.1016/j.tips.2019.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), the leading disorder of memory impairment in our aging population, is increasing at an alarming rate. AD is currently identified by three 'gold standard criteria': (i) dementia in life, (ii) amyloid plaques at autopsy, and (iii) neurofibrillary tangles at autopsy. Several autopsy studies have indicated that dementia in life is a consequence of lost synaptic networks in the brain, while many clinical trials targeting neurotoxic amyloid beta (Aβ) have consistently failed to produce therapeutic effects on memory function in AD patients. Restoring cognitive function(s) by activating endogenous repairing/regenerating mechanisms that are synaptogenic and antiapoptotic (preventing neuronal death), however, is emerging as a necessary disease-modifying therapeutic strategy against AD and possibly for other degenerative dementias, such as Parkinson's disease and multi-infarct dementia.
Collapse
|
18
|
Jackson J, Jambrina E, Li J, Marston H, Menzies F, Phillips K, Gilmour G. Targeting the Synapse in Alzheimer's Disease. Front Neurosci 2019; 13:735. [PMID: 31396031 PMCID: PMC6664030 DOI: 10.3389/fnins.2019.00735] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Dynamic gain and loss of synapses is fundamental to healthy brain function. While Alzheimer's Disease (AD) treatment strategies have largely focussed on beta-amyloid and tau protein pathologies, the synapse itself may also be a critical endpoint to consider regarding disease modification. Disruption of mechanisms of neuronal plasticity, eventually resulting in a net loss of synapses, is implicated as an early pathological event in AD. Synaptic dysfunction therefore may be a final common biological mechanism linking protein pathologies to disease symptoms. This review summarizes evidence supporting the idea of early neuroplastic deficits being prevalent in AD. Changes in synaptic density can occur before overt neurodegeneration and should not be considered to uniformly decrease over the course of the disease. Instead, synaptic levels are influenced by an interplay between processes of degeneration and atrophy, and those of maintenance and compensation at regional and network levels. How these neuroplastic changes are driven by amyloid and tau pathology are varied. A mixture of direct effects of amyloid and tau on synaptic integrity, as well as indirect effects on processes such as inflammation and neuronal energetics are likely to be at play here. Focussing on the synapse and mechanisms of neuroplasticity as therapeutic opportunities in AD raises some important conceptual and strategic issues regarding translational research, and how preclinical research can inform clinical studies. Nevertheless, substrates of neuroplasticity represent an emerging complementary class of drug target that would aim to normalize synapse dynamics and restore cognitive function in the AD brain and in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Johanna Jackson
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Enrique Jambrina
- Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Spain
| | - Jennifer Li
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Hugh Marston
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Fiona Menzies
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Keith Phillips
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| |
Collapse
|
19
|
Watari H, Shimada Y, Matsui M, Tohda C. Kihito, a Traditional Japanese Kampo Medicine, Improves Cognitive Function in Alzheimer's Disease Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4086749. [PMID: 31217803 PMCID: PMC6537006 DOI: 10.1155/2019/4086749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS We previously reported that the administration of traditional Japanese medicines, kihito (Gui-Pi-Tang in Chinese) and kamikihito (Jia-Wei-Gui-Pi-Tang in Chinese), to Alzheimer's disease (AD) model mice improved memory impairment. There are a few reports that show kihito and kamikihito have a beneficial effect on the cognitive function of AD patients in clinical studies. However, these studies are not comparative and are retrospective studies; thus, more evidence is needed. Therefore, we conducted an open-label, crossover designed clinical trial to investigate the effect of kihito on cognitive function of AD patients. METHODS The inclusion criteria for eligible patients were as follows: (1) imaging diagnosis (magnetic resonance imaging and single-photon emission computed tomography) of AD, (2) a treatment regimen including acetylcholinesterase inhibitors (ChEIs), and (3) a Mini-Mental State Examination (MMSE) score ≥15. The exclusion criteria were as follows: (1) change in ChEI dosage, (2) memantine usage, and (3) MMSE score < 15. To prevent bias in age and baseline cognitive function, patients were divided into two groups: the first group received 2.5 g of kihito extract 3 times/day during the first half of the study (weeks 0-16) and the second group received the same dose of kihito during the second half of the study (weeks 17-32). ChEI dosage did not change during the study period. Patients underwent a cognitive function test during weeks 0, 16, and 32. Cognitive function was evaluated by Japanese versions of the Mini-Mental State Examination (MMSE-J) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS-J) test. RESULTS Ten patients completed the clinical trial (4 males, 6 females, average age 71.7 years). MMSE-J scores significantly increased during the kihito intake period. RBANS-J test scores had a slight improvement during the kihito intake period compared with the ChEI alone treatment period, but no significant changes were observed. CONCLUSION Kihito improves cognitive function in AD patients.
Collapse
Affiliation(s)
- Hidetoshi Watari
- Department of Japanese Oriental Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yutaka Shimada
- Department of Japanese Oriental Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mie Matsui
- Laboratory of Neuropsychology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
20
|
Hadar A, Gurwitz D. Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease? DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936769 PMCID: PMC6436957 DOI: 10.31887/dcns.2018.20.4/dgurwitz] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is the major epidemic of the 21st century, its prevalence rising along with improved human longevity. Early AD diagnosis is key to successful treatment, as currently available therapeutics only allow small benefits for diagnosed AD patients. By contrast, future therapeutics, including those already in preclinical or clinical trials, are expected to afford neuroprotection prior to widespread brain damage and dementia. Brain imaging technologies are developing as promising tools for early AD diagnostics, yet their high cost limits their utility for screening at-risk populations. Blood or plasma transcriptomics, proteomics, and/or metabolomics may pave the way for cost-effective AD risk screening in middle-aged individuals years ahead of cognitive decline. This notion is exemplified by data mining of blood transcriptomics from a published dataset. Consortia blood sample collection and analysis from large cohorts with mild cognitive impairment followed longitudinally for their cognitive state would allow the development of a reliable and inexpensive early AD screening tool.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978 Israel
| |
Collapse
|
21
|
Xia H, Wang M, Li JQ, Tan CC, Cao XP, Tan L, Yu JT. The Influence of BDNF Val66Met Polymorphism on Cognition, Cerebrospinal Fluid, and Neuroimaging Markers in Non-Demented Elderly. J Alzheimers Dis 2019; 68:405-414. [PMID: 30775992 DOI: 10.3233/jad-180971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hui Xia
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Min Wang
- College of Nursing, Qingdao University, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
22
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
23
|
Hadar A. Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease? DIALOGUES IN CLINICAL NEUROSCIENCE 2018; 20:293-300. [PMID: 30936769 PMCID: PMC6436957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Alzheimer disease (AD) is the major epidemic of the 21st century, its prevalence rising along with improved human longevity. Early AD diagnosis is key to successful treatment, as currently available therapeutics only allow small benefits for diagnosed AD patients. By contrast, future therapeutics, including those already in preclinical or clinical trials, are expected to afford neuroprotection prior to widespread brain damage and dementia. Brain imaging technologies are developing as promising tools for early AD diagnostics, yet their high cost limits their utility for screening at-risk populations. Blood or plasma transcriptomics, proteomics, and/or metabolomics may pave the way for cost-effective AD risk screening in middle-aged individuals years ahead of cognitive decline. This notion is exemplified by data mining of blood transcriptomics from a published dataset. Consortia blood sample collection and analysis from large cohorts with mild cognitive impairment followed longitudinally for their cognitive state would allow the development of a reliable and inexpensive early AD screening tool.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine
| |
Collapse
|
24
|
Merlo S, Spampinato SF, Sortino MA. Early compensatory responses against neuronal injury: A new therapeutic window of opportunity for Alzheimer's Disease? CNS Neurosci Ther 2018; 25:5-13. [PMID: 30101571 DOI: 10.1111/cns.13050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extensive neurodegeneration and inflammation in selective brain areas, linked to severely disabling cognitive deficits. Before full manifestation, different stages appear with progressively increased brain pathology and cognitive impairment. This significantly extends the time lag between initial molecular triggers and appearance of detectable symptoms. Notably, a number of studies in the last decade have revealed that in the early stage of mild cognitive impairment, events that appear in contrast with neuronal distress may occur. These have been reproduced in vitro and in animal models and include increase in synaptic elements, increase in synaptic and metabolic activity, enhancement of neurotrophic milieu and changes in glial cell reactivity and inflammation. They have been interpreted as compensatory responses that could either delay disease progression or, in the long run, result detrimental. For this reason, these mechanisms define a new and previously undervalued window of opportunity for intervention. Their importance resides especially in their early appearance. Directing efforts to better characterize this stage, in order to identify new pharmacological targets, is an exciting new avenue to future advances in AD research.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Fan WJ, Yan MC, Wang L, Sun YZ, Deng JB, Deng JX. Synaptic aging disrupts synaptic morphology and function in cerebellar Purkinje cells. Neural Regen Res 2018; 13:1019-1025. [PMID: 29926829 PMCID: PMC6022458 DOI: 10.4103/1673-5374.233445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synapses are key structures in neural networks, and are involved in learning and memory in the central nervous system. Investigating synaptogenesis and synaptic aging is important in understanding neural development and neural degeneration in diseases such as Alzheimer disease and Parkinson's disease. Our previous study found that synaptogenesis and synaptic maturation were harmonized with brain development and maturation. However, synaptic damage and loss in the aging cerebellum are not well understood. This study was designed to investigate the occurrence of synaptic aging in the cerebellum by observing the ultrastructural changes of dendritic spines and synapses in cerebellar Purkinje cells of aging mice. Immunocytochemistry, DiI diolistic assays, and transmission electron microscopy were used to visualize the morphological characteristics of synaptic buttons, dendritic spines and synapses of Purkinje cells in mice at various ages. With synaptic aging in the cerebellum, dendritic spines and synaptic buttons were lost, and the synaptic ultrastructure was altered, including a reduction in the number of synaptic vesicles and mitochondria in presynaptic termini and smaller thin specialized zones in pre- and post-synaptic membranes. These findings confirm that synaptic morphology and function is disrupted in aging synapses, which may be an important pathological cause of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen-Juan Fan
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Ming-Chao Yan
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Lai Wang
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Yi-Zheng Sun
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jin-Bo Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jie-Xin Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|