1
|
Tavares C, Memória CM, da Costa LGV, Quintão VC, Antunes AA, Teodoro D, Carmona MJC. Effect of melatonin on postoperative cognitive function in elderly patients submitted to transurethral resection of the prostate under spinal anesthesia. Clinics (Sao Paulo) 2024; 80:100562. [PMID: 39729834 PMCID: PMC11732585 DOI: 10.1016/j.clinsp.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 12/01/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Hospitalization for Transurethral Prostate Resection (TURP) involves circadian rhythm disturbance - a possible cause of Postoperative Neurocognitive Disorder (POCD) in elderly patients. This study investigated whether melatonin ameliorated this effect. METHODS A double-blind, randomized clinical trial used a battery of neuropsychological tests to evaluate cognitive performance of 118 patients aged ≥ 60, before TURP with spinal anesthesia, and at 21- and 180-days PO. Patients received 10 mg of melatonin, or a placebo, on the night before surgery and 1-, 2- and 3-days PO. Delayed neurocognitive recovery in the two groups at 21 days PO was compared using the Chi-Squared test; individual performances in each test at each date were compared using the General Mixed Model. Results with p < 0.05 were considered significant. RESULTS Pre-surgery, both groups had significant cognitive deficits. Delayed cognitive recovery at 21 days PO was the same in both. There were no cases of POCD at 180 days. The melatonin group performed better in the delayed-recall FOME, which assesses memory, and in the Digit Span test, which assesses attention and cognitive flexibility. Unexpectedly, global neurocognitive performance was improved at 180 PO in both groups. CONCLUSIONS Melatonin had no statistical effect on POCD, but a selective beneficial effect was observed in two cognitive areas. The high prevalence of preoperative cognitive impairment may be related to the lower urinary tract symptoms which were reasons for the surgery; the unexpected improvement of cognitive performance in all patients at 180 days PO may reflect alleviation of these symptoms.
Collapse
Affiliation(s)
- Cristiane Tavares
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil.
| | - Cláudia Maia Memória
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | | - Vinícius Caldeira Quintão
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Alberto Azoubel Antunes
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Deborah Teodoro
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | |
Collapse
|
2
|
Menczel Schrire Z, Phillips CL, Duffy SL, Marshall NS, Mowszowski L, La Monica HM, Stranks L, Gordon CJ, Chapman JL, Saini B, Naismith SL, Grunstein RR, Hoyos CM. 3-Month Melatonin Supplementation to Reduce Brain Oxidative Stress and Improve Sleep in Mild Cognitive Impairment: A Randomised Controlled Feasibility Trial. J Pineal Res 2024; 76:e70019. [PMID: 39702983 DOI: 10.1111/jpi.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/02/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Melatonin has multiple proposed therapeutic benefits including antioxidant properties, circadian rhythm synchronisation and sleep promotion. Since these areas are also recognised risk factors for dementia, melatonin has been hypothesised to slow cognitive decline in older adults. Participants with Mild Cognitive Impairment (MCI) were recruited from the community for a 12-week randomised placebo-controlled parallel, feasibility trial of 25 mg oral melatonin nightly. Primary outcomes were feasibility, acceptability, and tolerability. Secondary efficacy outcomes were brain oxidative stress, cognition, mood, and sleep at 12 weeks. Forty participants (mean [SD] age = 68.2 [4.7] years; 19 female) were randomised. Feasibility, defined as those who met eligibility criteria, was 42/389, 11%. Acceptability, determined by the proportion of eligible people who agreed to be randomised, was 40/44, 91%. Tolerability, determined by adherence to the nightly melatonin and completion of the main secondary outcome (Magnetic Resonance Spectroscopy scan) was over the pre-defined 80% threshold for all participants. The study was not powered to detect effectiveness. Accordingly, there were no significant differences between melatonin and placebo interventions in any of the secondary outcomes. The protocol was developed, and successfully implemented, with the planned number of eligible participants recruited. All participants were able to complete all aspects of the trial, including online visits and assessments, with no differences in adverse events between groups. This is promising for future trials, which should conduct the study with a larger sample size and longer duration to yield necessary efficacy data.
Collapse
Affiliation(s)
- Zoe Menczel Schrire
- Healthy Brain Ageing Program, Brain and Mind Centre, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Craig L Phillips
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shantel L Duffy
- Healthy Brain Ageing Program, Brain and Mind Centre, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Allied Health, Research and Strategic Partnerships; Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
| | - Nathaniel S Marshall
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Loren Mowszowski
- Healthy Brain Ageing Program, Brain and Mind Centre, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Haley M La Monica
- Healthy Brain Ageing Program, Brain and Mind Centre, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Lachlan Stranks
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher J Gordon
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Julia L Chapman
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Bandana Saini
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, New South Wales, Australia
| | - Camilla M Hoyos
- Healthy Brain Ageing Program, Brain and Mind Centre, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- CIRUS, Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
- Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Chinnathambi S. Histone deacetylase's regulates Tau function in Alzheimer's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:339-361. [PMID: 39843140 DOI: 10.1016/bs.apcsb.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease associated with dementia and neuronal impairments in brain. AD is characterized histopathologically by two hallmark lesions: abnormally phosphorylated Tau inside neurons as intracellular NFTs and extracellular accumulation of amyloid β peptide (Aβ). Furthermore, it is unable to clarify the distinction between the brief association between the development and build-up of Aβ and the commencement of illness. Additionally, a number of experimental findings suggest that symptoms related to Aβ may only manifest within the framework of anabatic Tauopathies. Tau, a natively unfolded protein, essentially involved in microtubule binding and assembly. Tau protein consists of truncated segment and the purpose of this truncated fragment is to initiate and promote the conversion of soluble Tau into aggregates. The most common aberrant posttranslational change found in Neuro Fibrillary Tangles is hyperphosphorylation, which is essentially composed of aggregated Tau. Tau phosphorylation and acetylation of Tau protein at the locations controlled by histone deacetylase 6 compete, which modulates Tau function. Considering the potential benefits of targeting HDAC6 in AD, we propose focusing on the role of HDAC6 in regulating Tau functions and the other targets are the therapeutic understanding of AD.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Qureshi T, Chandrashekar M, Ananthanarayana V, Kumarappan M, Rangappa N, Velmurugan G, Chinnathambi S. Nuclear podosomes regulates cellular migration in Tau and Alzheimer's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:411-426. [PMID: 39843144 DOI: 10.1016/bs.apcsb.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The neuronal cytoskeleton has remained a less explored area of research in establishing neuroprotection. HDAC6 has been studied with respect to many neurodegenerative diseases, especially AD. It exhibits the ability to interact with various cytoskeletal proteins and to promote migration in cells. Podosomes are actin microstructures that help cells to migrate in the extracellular environment. The aim of this review is to bring into focus the significance of studies on the involvement of podosomes in Alzheimer's disease. We have suggested that Histone Deacetylase 6 plays a vital role in AD, through its interactions with the various signalling processes in the cell, most importantly the cytoskeletal remodelling machinery within the podosomes.
Collapse
Affiliation(s)
- Tazeen Qureshi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Vaishnavi Ananthanarayana
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Murugappan Kumarappan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Nagaraj Rangappa
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Gowshika Velmurugan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
5
|
Chinnathambi S, Adithyan A, Chandrashekar M. Lipid role in synapse and nuclear envelope-associated endocytic pathways in Tauopathy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:387-409. [PMID: 39843142 DOI: 10.1016/bs.apcsb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity. The lipid compositions of pre-synaptic and post-synaptic membranes influence vesicle generation and receptor mobility, highlighting their active involvement in synaptic processes. Astrocytes also contribute to synaptic health by upholding the blood-brain barrier, regulating ion levels, and providing metabolic support. Lipid-mediated processes control synaptic plasticity and development, with astrocytes playing a crucial role in glutamate homeostasis. Amyloid-beta and Tau proteins are key in Alzheimer's disease (AD), where synaptic disruption leads to cognitive deficits. Clathrin-mediated endocytosis (CME) and caveolin-mediated endocytosis are critical pathways for lipid-mediated synaptic function, with disruptions in these pathways contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Anusree Adithyan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Alzheimer's Disease and Impaired Bone Microarchitecture, Regeneration and Potential Genetic Links. Life (Basel) 2023; 13:life13020373. [PMID: 36836731 PMCID: PMC9963274 DOI: 10.3390/life13020373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's Disease (AD) and osteoporosis are both age-related degenerative diseases. Many studies indicate that these two diseases share common pathogenesis mechanisms. In this review, the osteoporotic phenotype of AD mouse models was discussed, and shared mechanisms such as hormonal imbalance, genetic factors, similar signaling pathways and impaired neurotransmitters were identified. Moreover, the review provides recent data associated with these two diseases. Furthermore, potential therapeutic approaches targeting both diseases were discussed. Thus, we proposed that preventing bone loss should be one of the most important treatment goals in patients with AD; treatment targeting brain disorders is also beneficial for osteoporosis.
Collapse
|
8
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
9
|
Guzman-Lopez EG, Reina M, Perez-Gonzalez A, Francisco-Marquez M, Hernandez-Ayala LF, Castañeda-Arriaga R, Galano A. CADMA-Chem: A Computational Protocol Based on Chemical Properties Aimed to Design Multifunctional Antioxidants. Int J Mol Sci 2022; 23:13246. [PMID: 36362034 PMCID: PMC9658414 DOI: 10.3390/ijms232113246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 10/12/2023] Open
Abstract
A computational protocol aimed to design new antioxidants with versatile behavior is presented. It is called Computer-Assisted Design of Multifunctional Antioxidants and is based on chemical properties (CADMA-Chem). The desired multi-functionality consists of in different methods of antioxidant protection combined with neuroprotection, although the protocol can also be used to pursue other health benefits. The dM38 melatonin derivative is used as a study case to illustrate the protocol in detail. This was found to be a highly promising candidate for the treatment of neurodegeneration, in particular Parkinson's and Alzheimer's diseases. This also has the desired properties of an oral-drug, which is significantly better than Trolox for scavenging free radicals, and has chelates redox metals, prevents the ●OH production, via Fenton-like reactions, repairs oxidative damage in biomolecules (lipids, proteins, and DNA), and acts as a polygenic neuroprotector by inhibiting catechol-O-methyl transferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase B (MAOB). To the best of our best knowledge, CADMA-Chem is currently the only protocol that simultaneously involves the analyses of drug-like behavior, toxicity, manufacturability, versatile antioxidant protection, and receptor-ligand binding affinities. It is expected to provide a starting point that helps to accelerate the discovery of oral drugs with the potential to prevent, or slow down, multifactorial human health disorders.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzman-Lopez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adriana Perez-Gonzalez
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | | | - Luis Felipe Hernandez-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Romina Castañeda-Arriaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Mexico City 09310, Mexico
| |
Collapse
|
10
|
Zhai Z, Xie D, Qin T, Zhong Y, Xu Y, Sun T. Effect and Mechanism of Exogenous Melatonin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic review and Meta-analysis. Neuroscience 2022; 505:91-110. [PMID: 36116555 DOI: 10.1016/j.neuroscience.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
Melatonin (MT) has been reported to control and prevent Alzheimer's disease (AD) in the clinic; however, the effect and mechanism of MT on AD have not been specifically described. Therefore, the main purpose of this meta-analysis was to explore the effect and mechanism of MT on AD models by studying behavioural indicators and pathological features. Seven databases were searched and 583 articles were retrieved. Finally, nine studies (13 analyses, 294 animals) were included according to pre-set criteria. Three authors independently judged the selected literature and the methodological quality. Meta-analysis showed that MT markedly ameliorated the learning ability by reducing the escape latency (EL), and the memory deficit was significantly corrected by increasing the dwell time in the target quadrant and crossings over the platform location in the Morris Water Maze (MWM). Among the pathological features, subgroup analysis found that MT may ease the symptoms of AD mainly by reducing the deposition of Aβ40 and Aβ42 in the cortex. In addition, MT exerted a superior effect on ameliorating the learning ability of senescence-related and metabolic AD models, and corrected the memory deficit of the toxin-induced AD model. The study was registered at PROSPERO (CRD42021226594).
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Ma H, Dong Y, Chu Y, Guo Y, Li L. The mechanisms of ferroptosis and its role in alzheimer’s disease. Front Mol Biosci 2022; 9:965064. [PMID: 36090039 PMCID: PMC9459389 DOI: 10.3389/fmolb.2022.965064] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 12/06/2022] Open
Abstract
Alzheimer’s disease (AD) accounts for two-thirds of all dementia cases, affecting 50 million people worldwide. Only four of the more than 100 AD drugs developed thus far have successfully improved AD symptoms. Furthermore, these improvements are only temporary, as no treatment can stop or reverse AD progression. A growing number of recent studies have demonstrated that iron-dependent programmed cell death, known as ferroptosis, contributes to AD-mediated nerve cell death. The ferroptosis pathways within nerve cells include iron homeostasis regulation, cystine/glutamate (Glu) reverse transporter (system xc−), glutathione (GSH)/glutathione peroxidase 4 (GPX4), and lipid peroxidation. In the regulation pathway of AD iron homeostasis, abnormal iron uptake, excretion and storage in nerve cells lead to increased intracellular free iron and Fenton reactions. Furthermore, decreased Glu transporter expression leads to Glu accumulation outside nerve cells, resulting in the inhibition of the system xc− pathway. GSH depletion causes abnormalities in GPX4, leading to excessive accumulation of lipid peroxides. Alterations in these specific pathways and amino acid metabolism eventually lead to ferroptosis. This review explores the connection between AD and the ferroptosis signaling pathways and amino acid metabolism, potentially informing future AD diagnosis and treatment methodologies.
Collapse
Affiliation(s)
- Hongyue Ma
- Department of Neurology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yan Dong
- Department of Neurology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yanqin Guo
- Department of Neurology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- *Correspondence: Yanqin Guo, ; Luxin Li,
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- *Correspondence: Yanqin Guo, ; Luxin Li,
| |
Collapse
|
12
|
Li LB, Fan YG, Wu WX, Bai CY, Jia MY, Hu JP, Gao HL, Wang T, Zhong ML, Huang XS, Guo C. Novel melatonin-trientine conjugate as potential therapeutic agents for Alzheimer's disease. Bioorg Chem 2022; 128:106100. [PMID: 35988518 DOI: 10.1016/j.bioorg.2022.106100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022]
Abstract
Researchers continue to explore drug targets to treat the characteristic pathologies of Alzheimer's disease (AD). Some drugs relieve the pathological processes of AD to some extent, but the failed clinical trials indicate that multifunctional agents seem more likely to achieve the therapy goals for this neurodegenerative disease. Herein, a novel compound named melatonin-trientine (TM) has been covalently synthesized with the natural antioxidant compounds melatonin and the metal ion chelator trientine. After toxicological and pharmacokinetic verification, we elucidated the effects of intraperitoneal administration of TM on AD-like pathology in 6-month-old mice that express both the β-amyloid (Aβ) precursor protein and presenilin-1 (APP/PS1). We found that TM significantly decreased Aβ deposition and neuronal degeneration in the brains of the APP/PS1 double transgenic mice. This result may be due to the upregulation of iron regulatory protein-2 (IRP2), insulin degrading enzyme (IDE), and low density lipoprotein receptor related protein 1 (LRP1), which leads to decreases in APP and Aβ levels. Additionally, TM may promote APP non-amyloidogenic processing by activating the melatonin receptor-2 (MT2)-dependent signaling pathways, but not MT1. In addition, TM plays an important role in blocking γ-secretase, tau hyperphosphorylation, neuroinflammation, oxidative stress, and metal ion dyshomeostasis. Our results suggest that TM may effectively maximize the therapeutic efficacy of targeting multiple mechanisms associated with AD pathology.
Collapse
Affiliation(s)
- Lin-Bo Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Gang Fan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wen-Xi Wu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Chen-Yang Bai
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Meng-Yu Jia
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jiang-Ping Hu
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Hui-Ling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Man-Li Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
13
|
Bazhanova ED. Desynchronosis: Types, Main Mechanisms, Role in the Pathogenesis of Epilepsy and Other Diseases: A Literature Review. Life (Basel) 2022; 12:1218. [PMID: 36013397 PMCID: PMC9410012 DOI: 10.3390/life12081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian information is stored in mammalian tissues by an autonomous network of transcriptional feedback loops that have evolved to optimally regulate tissue-specific functions. Currently, stable circadian rhythms of the expression of clock genes (Bmal1/Per2/Cry1, etc.), hormones, and metabolic genes (Glut4/leptin, etc.) have been demonstrated. Desynchronoses are disorders of the body's biorhythms, where the direction and degree of shift of various indicators of the oscillatory process are disturbed. Desynchronosis can be caused by natural conditions or man-made causes. The disruption of circadian rhythms is a risk factor for the appearance of physiological and behavioral disorders and the development of diseases, including epilepsy, and metabolic and oncological diseases. Evidence suggests that seizure activity in the epilepsy phenotype is associated with circadian dysfunction. Interactions between epilepsy and circadian rhythms may be mediated through melatonin, sleep-wake cycles, and clock genes. The correction of circadian dysfunction can lead to a decrease in seizure activity and vice versa. Currently, attempts are being made to pharmacologically correct desynchronosis and related psycho-emotional disorders, as well as combined somatic pathology. On the other hand, the normalization of the light regimen, the regulation of sleep-wake times, and phototherapy as additions to standard treatment can speed up the recovery of patients with various diseases.
Collapse
Affiliation(s)
- Elena D. Bazhanova
- Laboratory of Comparative Biochemistry of Cell Function, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia; ; Tel.: +7-9119008134
- Laboratory of Morphology and Electron Microscopy, Golikov Research Center of Toxicology, 192019 St. Petersburg, Russia
- Laboratory of Apoptosis Studying, Astrakhan State University, 414040 Astrakhan, Russia
| |
Collapse
|
14
|
Zhang J, Fang Y, Tang D, Xu X, Zhu X, Wu S, Yu H, Cheng H, Luo T, Shen Q, Gao Y, Ma C, Liu Y, Wei Z, Chen X, Tao F, He X, Cao Y. Activation of MT1/MT2 to Protect Testes and Leydig Cells against Cisplatin-Induced Oxidative Stress through the SIRT1/Nrf2 Signaling Pathway. Cells 2022; 11:cells11101690. [PMID: 35626727 PMCID: PMC9139217 DOI: 10.3390/cells11101690] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing concern that chemotherapy drugs can damage Leydig cells and inhibit the production of testosterone. Increasing evidence shows that melatonin benefits the reproductive process. This study mainly explores the protective effect and possible molecular mechanism of melatonin regarding cisplatin-induced oxidative stress in testicular tissue and Leydig cells. We found that there were only Leydig and Sertoli cells in the testes of gastrointestinal tumor patients with azoospermia caused by platinum chemotherapeutic drugs. Melatonin (Mel) receptor 1/melatonin receptor 2 (MT1/MT2) was mainly expressed in human and mouse Leydig cells of the testes. We also observed that the melatonin level in the peripheral blood decreased and oxidative stress occurred in mice treated with cisplatin or gastrointestinal tumor patients treated with platinum-based chemotherapeutic drugs. iTRAQ proteomics showed that SIRT1/Nrf2 signaling and MT1 proteins were downregulated in cisplatin-treated mouse testes. The STRING database predicted that MT1 might be able to regulate the SIRT1/Nrf2 signaling pathway. Melatonin reduced oxidative stress and upregulated SIRT1/Nrf2 signaling in cisplatin-treated mouse testes and Leydig cells. Most importantly, after inhibiting MT1/MT2, melatonin could not upregulate SIRT1/Nrf2 signaling in cisplatin-treated Leydig cells. The MT1/MT2 inhibitor aggravated the cisplatin-induced downregulation of SIRT1/Nrf2 signaling and increased the apoptosis of Leydig cells. We believe that melatonin stimulates SIRT1/Nrf2 signaling by activating MT1/MT2 to prevent the cisplatin-induced apoptosis of Leydig cells.
Collapse
Affiliation(s)
- Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Yuan Fang
- Department of Blood Transfusion, Anhui NO. 2 Provincial People’s Hospital, Hefei 230041, China;
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Xingyu Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| | - Xiaoqian Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Shusheng Wu
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China;
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang 236000, China
| | - Huiru Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Ting Luo
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei 230032, China;
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei 230032, China;
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei 230032, China;
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei 230032, China
| | - Cong Ma
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei 230032, China;
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei 230032, China
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei 230032, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei 230032, China;
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei 230032, China;
| | - Fangbiao Tao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei 230032, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei 230032, China
- Correspondence: (X.H.); (Y.C.)
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (J.Z.); (D.T.); (X.Z.); (H.Y.); (H.C.); (Q.S.); (Y.G.); (C.M.); (Y.L.); (Z.W.); (F.T.)
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei 230032, China
- Correspondence: (X.H.); (Y.C.)
| |
Collapse
|
15
|
Huang Y, Zhao M, Chen X, Zhang R, Le A, Hong M, Zhang Y, Jia L, Zang W, Jiang C, Wang J, Fan X, Wang J. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis 2022; 14:858-878. [PMID: 37191427 DOI: 10.14336/ad.2022.0916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolism of L-tryptophan (TRP) regulates homeostasis, immunity, and neuronal function. Altered TRP metabolism has been implicated in the pathophysiology of various diseases of the central nervous system. TRP is metabolized through two main pathways, the kynurenine pathway and the methoxyindole pathway. First, TRP is metabolized to kynurenine, then kynurenic acid, quinolinic acid, anthranilic acid, 3-hydroxykynurenine, and finally 3-hydroxyanthranilic acid along the kynurenine pathway. Second, TRP is metabolized to serotonin and melatonin along the methoxyindole pathway. In this review, we summarize the biological properties of key metabolites and their pathogenic functions in 12 disorders of the central nervous system: schizophrenia, bipolar disorder, major depressive disorder, spinal cord injury, traumatic brain injury, ischemic stroke, intracerebral hemorrhage, multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Furthermore, we summarize preclinical and clinical studies, mainly since 2015, that investigated the metabolic pathway of TRP, focusing on changes in biomarkers of these neurologic disorders, their pathogenic implications, and potential therapeutic strategies targeting this metabolic pathway. This critical, comprehensive, and up-to-date review helps identify promising directions for future preclinical, clinical, and translational research on neuropsychiatric disorders.
Collapse
|
16
|
Melatonin and sleep disorders in patients with severe atopic dermatitis. Postepy Dermatol Alergol 2021; 38:746-751. [PMID: 34849119 PMCID: PMC8610046 DOI: 10.5114/ada.2020.95028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Many atopic dermatitis (AD) patients suffer from insomnia. Out of numerous factors associated with sleep disorders, melatonin seems to play a significant role. Aim To assess the relation between melatonin concentration and sleep disorders in adult patients with severe and very severe AD. Material and methods The study included 36 adult patients with severe and very severe AD and 20 healthy Caucasian volunteers. The severity of skin lesions was assessed by the EASI scale. Skin itch was evaluated by a visual-analogue scale (VAS), and sleep disorders were assessed by the Polish version of the Athens Insomnia Scale (AIS). Serum melatonin concentration of patients and controls was determined by ELISA. Results Melatonin concentration in patients with very severe AD was significantly (p < 0.001) lower than in patients with severe AD, however, melatonin concentration in the group of AD patients did not differ significantly (p = 0.33) from that observed in the control group. There was a significant negative correlation between the concentration of melatonin in the study group and the severity of itching (R = -0.54, p < 0.001). The intensity of sleep disorders was significantly higher (p < 0.001) in patients with a very severe form of AD compared to patients with severe AD. Moreover, there was a significant negative correlation between melatonin concentration and sleep disorders (R = -0.67, p < 0.001). Conclusions Our results clearly showed that sleep disturbances are more expressed in very severe AD patients compared to subjects suffering from severe disease. We also suggest that melatonin serum concentration could play a role in the pathogenesis of sleep disturbances in AD patients.
Collapse
|
17
|
Zhu L, Gong Y, Lju H, Sun G, Zhang Q, Qian Z. Mechanisms of melatonin binding and destabilizing the protofilament and filament of tau R3-R4 domains revealed by molecular dynamics simulation. Phys Chem Chem Phys 2021; 23:20615-20626. [PMID: 34514491 DOI: 10.1039/d1cp03142b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accumulation of β-amyloid (Aβ) and tau protein is considered to be an important pathological characteristic of Alzheimer's disease (AD). Failure of medicine targeting Aβ has drawn more attention to the influence of tau protein and its fibrillization on neurodegeneration. Increasing evidence shows that melatonin (Mel) can effectively inhibit the formation of tau fibrils and disassemble preformed tau fibrils. However, the underlying mechanism is poorly understood. In this work, we investigated the kinetics of melatonin binding and destabilizing the tetrameric protofilament and octameric filament of tau R3-R4 domains by performing microsecond all-atom molecular dynamics simulations. Our results show that Mel is able to disrupt the C-shaped structure of the tau protofilament and filament, and destabilizes the association between N- and C-termini. Mel predominantly binds to β1 and β6-β8 regions and favors contact with the elongation surface, which is dominantly driven by hydrogen bonding interactions and facilitated by other interactions. The strong π-π stacking interaction of Mel with Y310 impedes the intramolecular CH-π interaction between I308 and Y310, and the cation-π interaction of Mel with R379 interferes with the formation of the D348-R379 salt bridge. Moreover, Mel occupies the protofilament surface in the tetrameric protofilament and prevents the formation of intermolecular hydrogen bonds between residues K331 and Q336 in the octameric filament. Our work provides molecular insights into Mel hindering tau fibrillization or destabilizing the protofilament and filament, and the revealed inhibitory mechanisms provide useful clues for the design of efficient anti-amyloid agents.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Hao Lju
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Gongwu Sun
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
18
|
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer's disease. MOLECULAR BIOMEDICINE 2021; 2:17. [PMID: 35006431 PMCID: PMC8607389 DOI: 10.1186/s43556-021-00036-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the presence of amyloid-β plaques in the extracellular environment and aggregates of Tau protein that forms neurofibrillary tangles (NFTs) in neuronal cells. Along with these pathological proteins, the disease shows neuroinflammation, neuronal death, impairment in the immune function of microglia and synaptic loss, which are mediated by several important signaling pathways. The PI3K/Akt-mediated survival-signaling pathway is activated by many receptors such as G-protein coupled receptors (GPCRs), triggering receptor expressed on myeloid cells 2 (TREM2), and lysophosphatidic acid (LPA) receptor. The signaling pathway not only increases the survival of neurons but also regulates inflammation, phagocytosis, cellular protection, Tau phosphorylation and Aβ secretion as well. In this review, we focused on receptors, which activate PI3K/Akt pathway and its potential to treat Alzheimer's disease. Among several membrane receptors, GPCRs are the major drug targets for therapy, and GPCR signaling pathways are altered during Alzheimer's disease. Several GPCRs are involved in the pathogenic progression, phosphorylation of Tau protein by activation of various cellular kinases and are involved in the amyloidogenic pathway of amyloid-β synthesis. Apart from various GPCR signaling pathways, GPCR regulating/ interacting proteins are involved in the pathogenesis of Alzheimer's disease. These include several small GTPases, Ras homolog enriched in brain, GPCR associated sorting proteins, β-arrestins, etc., that play a critical role in disease progression and has been elaborated in this review.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
19
|
Pradhan A, Mishra S, Surolia A, Panda D. C1 Inhibits Liquid-Liquid Phase Separation and Oligomerization of Tau and Protects Neuroblastoma Cells against Toxic Tau Oligomers. ACS Chem Neurosci 2021; 12:1989-2002. [PMID: 34008959 DOI: 10.1021/acschemneuro.1c00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pathological aggregation of tau is one of the major contributing factors for several neurodegenerative tauopathies, including Alzheimer's disease. Here, we report that C1, a synthetic derivative of curcumin, strongly inhibited both the aggregation and filament formation of purified tau and protected neuroblastoma cells from the deleterious effects of the tau oligomers. Using confocal microscopy, C1 was found to reduce both the size and number of the tau droplets and increased the critical concentration of tau required for the droplet formation in vitro indicating that C1 suppressed the liquid-liquid phase separation of tau. C1 inhibited the aggregation of tau with a half-maximal inhibitory concentration of 1.5 ± 0.1 μM. An analysis of the aggregation kinetics data indicated that C1 strongly reduced the initial rate of the aggregation of tau. A dot blot analysis using tau-oligomer-specific antibody indicated that C1 inhibited the oligomerization of tau. Furthermore, dynamic light scattering experiments suggested that C1 strongly reduced the mean diameter of the tau oligomers. Atomic force microscopy experiments showed that C1 treatment reduced both the size and number of tau oligomers, suppressed the transition of tau oligomers into filaments, and also disintegrated preformed tau filaments. Also, the binding interaction of C1 with tau was monitored using absorbance and fluorescence spectroscopy. C1 bound to Y310W-tau with a dissociation constant of 2.0 ± 0.5 μM. The findings suggested that C1 is a potent inhibitor of tau aggregation and provided insights into the inhibitory mechanism of C1 on the oligomerization and fibril formation of tau.
Collapse
Affiliation(s)
- Arpan Pradhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Satyendra Mishra
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Koba Institutional Area, Koba, Gandhinagar 382426, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
20
|
Plascencia-Villa G, Perry G. Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid Redox Signal 2021; 34:591-610. [PMID: 32486897 PMCID: PMC8098758 DOI: 10.1089/ars.2020.8134] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Significance: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. AD is currently ranked as the sixth leading cause of death, but some sources put it as third, after heart disease and cancer. Currently, there are no effective therapeutic approaches to treat or slow the progression of chronic neurodegeneration. In addition to the accumulation of amyloid-β (Aβ) and tau, AD patients show progressive neuronal loss and neuronal death, also high oxidative stress that correlates with abnormal levels or overload of brain metals. Recent Advances: Several promising compounds targeting oxidative stress, redox metals, and neuronal death are under preclinical or clinical evaluation as an alternative or complementary therapeutic strategy in mild cognitive impairment and AD. Here, we present a general analysis and overview, discuss limitations, and suggest potential directions for these treatments for AD and related dementia. Critical Issues: Most of the disease-modifying therapeutic strategies for AD under evaluation in clinical trials have focused on components of the amyloid cascade, including antibodies to reduce levels of Aβ and tau, as well as inhibitors of secretases. Unfortunately, several of the amyloid-focused therapeutics have failed the clinical outcomes or presented side effects, and numerous clinical trials of compounds have been halted, reducing realistic options for the development of effective AD treatments. Future Directions: The focus of research on AD and related dementias is shifting to alternative or innovative areas, such as ApoE, lipids, synapses, oxidative stress, cell death mechanisms, neuroimmunology, and neuroinflammation, as well as brain metabolism and bioenergetics.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| |
Collapse
|
21
|
Trait anxiety, a personality risk factor associated with Alzheimer's Disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110124. [PMID: 33035604 DOI: 10.1016/j.pnpbp.2020.110124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly population and the leading cause of dementia worldwide. While senile plaques and neurofibrillary tangles have been proposed as the principal histopathologic hallmarks of AD, the exact etiology of this disease is still far from being clearly understood. AD has been recognized as pathological consequences of complex interactions among genetic, aging, medical, life style and psychosocial factors. Recently, the roles of neuroticism personality traits in AD incidence and progression have come into focus. More specifically, increasing evidence has further shown that the trait anxiety, one major component of neuroticism predicting the individual vulnerability in response to stress, is a risk factor for AD and may correlated with various AD pathologies. In this review, we summarized recent literature on the association of trait anxiety with AD. We also discussed the possible neuroendocrinological and neurochemical mechanisms of this association, which may provide clinical implications for AD diagnosis and therapy.
Collapse
|
22
|
Kopustinskiene DM, Bernatoniene J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics 2021; 13:129. [PMID: 33498316 PMCID: PMC7909293 DOI: 10.3390/pharmaceutics13020129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023] Open
Abstract
Melatonin, an endogenously synthesized indolamine, is a powerful antioxidant exerting beneficial action in many pathological conditions. Melatonin protects from oxidative stress in ischemic/reperfusion injury, neurodegenerative diseases, and aging, decreases inflammation, modulates the immune system, inhibits proliferation, counteracts the Warburg effect, and promotes apoptosis in various cancer models. Melatonin stimulates antioxidant enzymes in the cells, protects mitochondrial membrane phospholipids, especially cardiolipin, from oxidation thus preserving integrity of the membranes, affects mitochondrial membrane potential, stimulates activity of respiratory chain enzymes, and decreases the opening of mitochondrial permeability transition pore and cytochrome c release. This review will focus on the molecular mechanisms of melatonin effects in the cells during normal and pathological conditions and possible melatonin clinical applications.
Collapse
Affiliation(s)
- Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
23
|
Das R, Balmik AA, Chinnathambi S. Melatonin Reduces GSK3β-Mediated Tau Phosphorylation, Enhances Nrf2 Nuclear Translocation and Anti-Inflammation. ASN Neuro 2020; 12:1759091420981204. [PMID: 33342257 PMCID: PMC7754800 DOI: 10.1177/1759091420981204] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease is a neuropathological condition with abnormal accumulation of extracellular Amyloid-β plaques and intracellular neurofibrillary tangles of Microtubule-associated protein Tau (Tau) in the brain. In pathological conditions, Tau undergoes post-translational modifications such as hyperphosphorylation by the activity of cellular kinases, which eventually leads to protein aggregation in neurons. Melatonin is a neuro-hormone that is mainly secreted from the pineal gland and functions to modulate the cellular kinases. In our study, we have checked the neuroprotective function of Melatonin by MTT and LDH assay, where Melatonin inhibited the Tau aggregates-mediated cytotoxicity and membrane leakage in Neuro2A cells. The potency of Melatonin has also been studied for the quenching of intracellular reactive oxygen species level by DCFDA assay and caspase 3 activity. Melatonin was shown to reduce the GSK3β mRNA and subsequent protein level as well as the phospho-Tau level (pThr181 and pThr212-pSer214) in okadaic acid-induced Neuro2A cells, as observed by western blot and immunofluorescence assay. Further, Melatonin has increased the cellular Nrf2 level and its nuclear translocation as an oxidative stress response in Tauopathy. The Melatonin was found to induce pro- and anti-inflammatory cytokines levels in N9 microglia. The mRNA level of cellular kinases such as as-GSK3β, MAPK were also studied by qRT-PCR assay in Tau-exposed N9 and Neuro2A cells. The immunomodulatory effect of Melatonin was evident as it induced IL-10 and TGF-β cytokine levels and activated MAP3K level in Tau-exposed microglia and neurons, respectively. Melatonin also downregulated the mRNA level of pro-inflammatory markers, IL-1β and Cyclooxygenase-2 in N9 microglia. Together, these findings suggest that Melatonin remediated the cytokine profile of Tau-exposed microglia, reduced Tau hyperphosphorylation by downregulating GSK3β level, and alleviated oxidative stress via Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research, 201002 Ghaziabad, India
| | - Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research, 201002 Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research, 201002 Ghaziabad, India
| |
Collapse
|
24
|
Chen D, Mei Y, Kim N, Lan G, Gan CL, Fan F, Zhang T, Xia Y, Wang L, Lin C, Ke F, Zhou XZ, Lu KP, Lee TH. Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer's disease. J Pineal Res 2020; 69:e12665. [PMID: 32358852 PMCID: PMC7890046 DOI: 10.1111/jpi.12665] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Death-associated protein kinase 1 (DAPK1) is upregulated in the brains of human Alzheimer's disease (AD) patients compared with normal subjects, and aberrant DAPK1 regulation is implicated in the development of AD. However, little is known about whether and how DAPK1 function is regulated in AD. Here, we identified melatonin as a critical regulator of DAPK1 levels and function. Melatonin significantly decreases DAPK1 expression in a post-transcriptional manner in neuronal cell lines and mouse primary cortical neurons. Moreover, melatonin directly binds to DAPK1 and promotes its ubiquitination, resulting in increased DAPK1 protein degradation through a proteasome-dependent pathway. Furthermore, in tau-overexpressing mouse brain slices, melatonin treatment and the inhibition of DAPK1 kinase activity synergistically decrease tau phosphorylation at multiple sites related to AD. In addition, melatonin and DAPK1 inhibitor dramatically accelerate neurite outgrowth and increase the assembly of microtubules. Mechanistically, melatonin-mediated DAPK1 degradation increases the activity of Pin1, a prolyl isomerase known to play a protective role against tau hyperphosphorylation and tau-related pathologies. Finally, elevated DAPK1 expression shows a strong correlation with the decrease in melatonin levels in human AD brains. Combined, these results suggest that DAPK1 regulation by melatonin is a novel mechanism that controls tau phosphorylation and function and offers new therapeutic options for treating human AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yingxue Mei
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Nami Kim
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guihua Lan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Chen-Ling Gan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Institute of Materia Medica, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Fei Fan
- Fujian Provincial Key Laboratory of Neuroglia and Diseases, Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Health College, Fuzhou, Fujian, China
| | - Tao Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yongfang Xia
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Chun Lin
- Fujian Provincial Key Laboratory of Neuroglia and Diseases, Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Fang Ke
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Institute of Materia Medica, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
25
|
Mihardja M, Roy J, Wong KY, Aquili L, Heng BC, Chan YS, Fung ML, Lim LW. Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer's disease. Ann N Y Acad Sci 2020; 1478:43-62. [PMID: 32700392 DOI: 10.1111/nyas.14436] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the hallmark pathologies of amyloid-beta plaques and neurofibrillary tangles. Symptoms of this devastating disease include behavioral changes and deterioration of higher cognitive functions. Impairment of neurogenesis has also been shown to occur in AD, which adversely impacts new neuronal cell growth, differentiation, and survival. This impairment possibly results from the cumulative effects of the various pathologies of AD. Preclinical studies have suggested that the administration of melatonin-the pineal hormone primarily responsible for the regulation of the circadian rhythm-targets the effects of AD pathologies and improves cognitive impairment. It is postulated that by mitigating the effect of these pathologies, melatonin can also rescue neurogenesis impairment. This review aims to explore the effect of AD pathologies on neurogenesis, as well as the mechanisms by which melatonin is able to ameliorate AD pathologies to potentially promote neurogenesis.
Collapse
Affiliation(s)
- Mazel Mihardja
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Luca Aquili
- Division of Psychology, College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Boon Chin Heng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Peking University School of Stomatology, Beijing, China
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
26
|
Zhao Y, Ren J, Hillier J, Jones M, Lu W, Jones EY. Structural characterization of melatonin as an inhibitor of the Wnt deacylase Notum. J Pineal Res 2020; 68:e12630. [PMID: 31876313 PMCID: PMC7027535 DOI: 10.1111/jpi.12630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
The hormone melatonin, secreted from the pineal gland, mediates multiple physiological effects including modulation of Wnt/β-catenin signalling. The Wnt palmitoleate lipid modification is essential for its signalling activity, while the carboxylesterase Notum can remove the lipid from Wnt and inactivate it. Notum enzyme inhibition can therefore upregulate Wnt signalling. While searching for Notum inhibitors by crystallographic fragment screening, a hit compound N-[2-(5-fluoro-1H-indol-3-yl)ethyl]acetamide that is structurally similar to melatonin came to our attention. We then soaked melatonin and its precursor N-acetylserotonin into Notum crystals and obtained high-resolution structures (≤1.5 Å) of their complexes. In each of the structures, two compound molecules bind with Notum: one at the enzyme's catalytic pocket, overlapping the space occupied by the acyl tail of the Wnt palmitoleate lipid, and the other at the edge of the pocket opposite the substrate entrance. Although the inhibitory activity of melatonin shown by in vitro enzyme assays is low (IC50 75 µmol/L), the structural information reported here provides a basis for the design of potent and brain accessible drugs for neurodegenerative diseases such as Alzheimer's disease, in which upregulation of Wnt signalling may be beneficial.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Jingshan Ren
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - James Hillier
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Margaret Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Weixian Lu
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Edith Yvonne Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
27
|
Melatonin interacts with repeat domain of Tau to mediate disaggregation of paired helical filaments. Biochim Biophys Acta Gen Subj 2020; 1864:129467. [DOI: 10.1016/j.bbagen.2019.129467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023]
|
28
|
Gorantla NV, Balaraman E, Chinnathambi S. Cobalt-based metal complexes prevent Repeat Tau aggregation and nontoxic to neuronal cells. Int J Biol Macromol 2020; 152:171-179. [PMID: 32105696 DOI: 10.1016/j.ijbiomac.2020.02.278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder with an alarming increase in the death rate every year. AD is characterised by an aberrant accumulation of proteins in the form of aggregates. The axonal microtubule-associated protein Tau and amyloid-β undergo structural transition to β-sheet rich structure and form aggregates in neuronal soma as well as in the extracellular region. The loss of Tau from microtubules leads to the disintegration of axon and causing neuronal degeneration. This led to the development of effective drugs against AD, to prevent Tau aggregation. Here, we synthesized and screen metal-based complexes to prevent Tau protein aggregation. ThS fluorescence and TEM suggested the role of synthetic cobalt complexes in inhibiting Tau aggregation. CD spectroscopy showed that these complexes prevented conformational changes in Tau to β-sheet. CBMCs were not toxic at lower concentrations and formed non-toxic Tau species. L1 and L2 prevented membrane leakage; whereas, higher concentrations of L3 caused membrane leakage as observed by LDH release assay. The overall results indicate the synthetic cobalt complexes to be a promising molecule against AD.
Collapse
Affiliation(s)
- Nalini V Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| | - Ekambaram Balaraman
- Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| |
Collapse
|
29
|
Das R, Balmik AA, Chinnathambi S. Effect of Melatonin on Tau aggregation and Tau-mediated cell surface morphology. Int J Biol Macromol 2020; 152:30-39. [PMID: 32044365 DOI: 10.1016/j.ijbiomac.2020.01.296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Aggregation of Microtubule-associated protein Tau and its deposition in the form of neurofibrillary tangles (NFTs) is one of the pathological hallmarks of Alzheimer's disease (AD). Tau aggregation inhibition has been targeted in various studies including natural compounds and synthetic small molecules. Here, we have studied neurohormone- Melatonin against in vitro Tau aggregation and observed its effect on membrane topology, tubulin network and Tau phosphorylation in Neuro2A and N9 cell lines. The aggregation and conformation of Tau was determined by ThT fluorescence and CD spectroscopy respectively. The morphology of Tau aggregates in presence and absence of Melatonin was studied by transmission electron microscopy. Melatonin was found to reduce the formation of higher order oligomeric structures without affecting the overall aggregation kinetics of Tau. Melatonin also modulates and helps to maintain membrane morphology, independent on tubulin network as evidenced by FE-SEM and immunofluorescence analysis. Overall, Melatonin administration shows mild anti-aggregation and cytoprotective effects.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 110025 New Delhi, India
| | - Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 110025 New Delhi, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 110025 New Delhi, India.
| |
Collapse
|
30
|
Ferini-Strambi L, Galbiati A, Casoni F, Salsone M. Therapy for Insomnia and Circadian Rhythm Disorder in Alzheimer Disease. Curr Treat Options Neurol 2020; 22:4. [PMID: 32025925 DOI: 10.1007/s11940-020-0612-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF THE REVIEW There is strong evidence for a bidirectional association between sleep disorders and Alzheimer's disease (AD). In particular, insomnia may be a potentially modifiable risk factor for AD. The present review summarizes recent advances in treatment of sleep disorders in AD. RECENT FINDINGS Some studies investigated the efficacy and safety of hypnotic agents as ramelteon and mirtazapine to treat sleep disorders in AD but no significant therapeutic effects have been observed. Benzodiazepines are the most frequently used medication for treatment of insomnia but they may cause significant side effects in old subjects. Suvorexant, an orexin receptor antagonist, showed a positive effect on AD insomnia. Recent report suggests an association between trazodone use and delayed cognitive decline in AD. With respect to circadian rhythm disorders, non-pharmacological treatments, especially bright light therapy, could be useful and safe options for treatment in AD. Some pharmacological and non-pharmacological treatments might have benefits in AD patients with sleep disturbances, but further well-designed controlled trials are needed.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Department of Clinical Neurosciences, "Vita-Salute" San Raffaele University, Milan, Italy. .,Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Andrea Galbiati
- Department of Clinical Neurosciences, "Vita-Salute" San Raffaele University, Milan, Italy
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Salsone
- National Research Council, Institute of Molecular Bioimaging and Physiology, Catanzaro, Italy
| |
Collapse
|
31
|
Gonzalez A. Antioxidants and Neuron-Astrocyte Interplay in Brain Physiology: Melatonin, a Neighbor to Rely on. Neurochem Res 2020; 46:34-50. [PMID: 31989469 DOI: 10.1007/s11064-020-02972-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
This manuscript is a review focused onto the role of astrocytes in the protection of neurons against oxidative stress and how melatonin can contribute to the maintenance of brain homeostasis. The first part of the review is dedicated to the dependence of neurons on astrocytes by terms of survival under oxidative stress conditions. Additionally, the effects of melatonin against oxidative stress in the brain and its putative role in the protection against diseases affecting the brain are highlighted. The effects of melatonin on the physiology of neurons and astrocytes also are reviewed.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, 10003, Cáceres, Spain.
| |
Collapse
|
32
|
Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer's disease. Arch Biochem Biophys 2019; 676:108153. [PMID: 31622587 DOI: 10.1016/j.abb.2019.108153] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/16/2023]
Abstract
Ayurveda is the medicinal science, dealing with utilization of naturally available plant products for treatment. A wide variety of neuroprotective herbs have been reported in Ayurveda. Brahmi, Bacopa monnieri is a nootropic ayurvedic herb known to be effective in neurological disorders from ancient times. Numerous approaches including natural and synthetic compounds have been applied against Alzheimer's disease. Amyloid-β and Tau are the hallmarks proteins of several neuronal dysfunctions resulting in Alzheimer's disease. Tau is a microtubule-associated protein known to be involved in progression of Alzheimer's disease. The generation of reaction oxygen species, increased neuroinflammation and neurotoxicity are the major physiological dysfunctions associated with Tau aggregates, which leads to dementia and behavioural deficits. Bacoside A, Bacoside B, Bacosaponins, Betulinic acid, etc; are the bioactive component of Brahmi belonging to various chemical families. Each chemical component known have its significant role in neuroprotection. The neuroprotective properties of Brahmi and its bioactive components including reduction of ROS, neuroinflammation, aggregation inhibition of Amyloid-β and improvement of cognitive and learning behaviour. Here on basis of earlier studies we hypothesize the inhibitory role of Brahmi against Tau-mediated toxicity. The overall studies have concluded that Brahmi can be used as a lead formulation for treatment of Alzheimer's disease and other neurological disorders.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008, Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008, Pune, India.
| |
Collapse
|
33
|
Paulose JK, Wang C, O'Hara BF, Cassone VM. The effects of aging on sleep parameters in a healthy, melatonin-competent mouse model. Nat Sci Sleep 2019; 11:113-121. [PMID: 31496853 PMCID: PMC6697669 DOI: 10.2147/nss.s214423] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/24/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sleep disturbances are common maladies associated with human age. Sleep duration is decreased, sleep fragmentation is increased, and the timing of sleep onset and sleep offset is earlier. These disturbances have been associated with several neurodegenerative diseases. Mouse models for human sleep disturbances can be powerful due to the accessibility to neuroscientific and genetic approaches, but these are hampered by the fact that most mouse models employed in sleep research have spontaneous mutations in the biosynthetic pathway(s) regulating the rhythmic production of the pineal hormone melatonin, which has been implicated in human sleep. PURPOSE AND METHOD The present study employed a non-invasive piezoelectric measure of sleep wake cycles in young, middle-aged and old CBA mice, a strain capable of melatonin biosynthesis, to investigate naturally-occurring changes in sleep and circadian parameters as the result of aging. RESULTS The results indicate that young mice sleep less than do middle-aged or aged mice, especially during the night, while the timing of activity onset and acrophase is delayed in aged mice compared to younger mice. CONCLUSION These data point to an effect of aging on the quality and timing of sleep in these mice but also that there are fundamental differences between control of sleep in humans and in laboratory mice.
Collapse
Affiliation(s)
- Jiffin K Paulose
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| | - Chanung Wang
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| | - Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| |
Collapse
|