1
|
Hoang B, Pang Y, Liang S, Zhan L, Thompson PM, Zhou J. Distributed Harmonization: Federated Clustered Batch Effect Adjustment and Generalization. KDD : PROCEEDINGS. INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING 2024; 2024:5105-5115. [PMID: 39493643 PMCID: PMC11529347 DOI: 10.1145/3637528.3671590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Independent and identically distributed (i.i.d.) data is essential to many data analysis and modeling techniques. In the medical domain, collecting data from multiple sites or institutions is a common strategy that guarantees sufficient clinical diversity, determined by the decentralized nature of medical data. However, data from various sites are easily biased by the local environment or facilities, thereby violating the i.i.d. rule. A common strategy is to harmonize the site bias while retaining important biological information. The COMBAT is among the most popular harmonization approaches and has recently been extended to handle distributed sites. However, when faced with situations involving newly joined sites in training or evaluating data from unknown/unseen sites, COMBAT lacks compatibility and requires retraining with data from all the sites. The retraining leads to significant computational and logistic overhead that is usually prohibitive. In this work, we develop a novel Cluster ComBat harmonization algorithm, which leverages cluster patterns of the data in different sites and greatly advances the usability of COMBAT harmonization. We use extensive simulation and real medical imaging data from ADNI to demonstrate the superiority of the proposed approach. Our codes are provided in https://github.com/illidanlab/distributed-cluster-harmonization.
Collapse
Affiliation(s)
- Bao Hoang
- Michigan State University, East Lansing, Michigan, USA
| | - Yijiang Pang
- Michigan State University, East Lansing, Michigan, USA
| | - Siqi Liang
- Michigan State University, East Lansing, Michigan, USA
| | - Liang Zhan
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul M Thompson
- University of Southern California, Los Angeles, California, USA
| | - Jiayu Zhou
- Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Zhou Y, Si X, Chao YP, Chen Y, Lin CP, Li S, Zhang X, Sun Y, Ming D, Li Q. Automated Classification of Mild Cognitive Impairment by Machine Learning With Hippocampus-Related White Matter Network. Front Aging Neurosci 2022; 14:866230. [PMID: 35774112 PMCID: PMC9237212 DOI: 10.3389/fnagi.2022.866230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Detection of mild cognitive impairment (MCI) is essential to screen high risk of Alzheimer’s disease (AD). However, subtle changes during MCI make it challenging to classify in machine learning. The previous pathological analysis pointed out that the hippocampus is the critical hub for the white matter (WM) network of MCI. Damage to the white matter pathways around the hippocampus is the main cause of memory decline in MCI. Therefore, it is vital to biologically extract features from the WM network driven by hippocampus-related regions to improve classification performance. Methods Our study proposes a method for feature extraction of the whole-brain WM network. First, 42 MCI and 54 normal control (NC) subjects were recruited using diffusion tensor imaging (DTI), resting-state functional magnetic resonance imaging (rs-fMRI), and T1-weighted (T1w) imaging. Second, mean diffusivity (MD) and fractional anisotropy (FA) were calculated from DTI, and the whole-brain WM networks were obtained. Third, regions of interest (ROIs) with significant functional connectivity to the hippocampus were selected for feature extraction, and the hippocampus (HIP)-related WM networks were obtained. Furthermore, the rank sum test with Bonferroni correction was used to retain significantly different connectivity between MCI and NC, and significant HIP-related WM networks were obtained. Finally, the classification performances of these three WM networks were compared to select the optimal feature and classifier. Results (1) For the features, the whole-brain WM network, HIP-related WM network, and significant HIP-related WM network are significantly improved in turn. Also, the accuracy of MD networks as features is better than FA. (2) For the classification algorithm, the support vector machine (SVM) classifier with radial basis function, taking the significant HIP-related WM network in MD as a feature, has the optimal classification performance (accuracy = 89.4%, AUC = 0.954). (3) For the pathologic mechanism, the hippocampus and thalamus are crucial hubs of the WM network for MCI. Conclusion Feature extraction from the WM network driven by hippocampus-related regions provides an effective method for the early diagnosis of AD.
Collapse
Affiliation(s)
- Yu Zhou
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
- Institute of Applied Psychology, Tianjin University, Tianjin, China
- *Correspondence: Xiaopeng Si,
| | - Yi-Ping Chao
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yuanyuan Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Sicheng Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Xingjian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Yulin Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
- Dong Ming,
| | - Qiang Li
- School of Microelectronics, Tianjin University, Tianjin, China
- Qiang Li,
| |
Collapse
|
3
|
Veitch DP, Weiner MW, Aisen PS, Beckett LA, DeCarli C, Green RC, Harvey D, Jack CR, Jagust W, Landau SM, Morris JC, Okonkwo O, Perrin RJ, Petersen RC, Rivera‐Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Trojanowski JQ. Using the Alzheimer's Disease Neuroimaging Initiative to improve early detection, diagnosis, and treatment of Alzheimer's disease. Alzheimers Dement 2022; 18:824-857. [PMID: 34581485 PMCID: PMC9158456 DOI: 10.1002/alz.12422] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has accumulated 15 years of clinical, neuroimaging, cognitive, biofluid biomarker and genetic data, and biofluid samples available to researchers, resulting in more than 3500 publications. This review covers studies from 2018 to 2020. METHODS We identified 1442 publications using ADNI data by conventional search methods and selected impactful studies for inclusion. RESULTS Disease progression studies supported pivotal roles for regional amyloid beta (Aβ) and tau deposition, and identified underlying genetic contributions to Alzheimer's disease (AD). Vascular disease, immune response, inflammation, resilience, and sex modulated disease course. Biologically coherent subgroups were identified at all clinical stages. Practical algorithms and methodological changes improved determination of Aβ status. Plasma Aβ, phosphorylated tau181, and neurofilament light were promising noninvasive biomarkers. Prognostic and diagnostic models were externally validated in ADNI but studies are limited by lack of ethnocultural cohort diversity. DISCUSSION ADNI has had a profound impact in improving clinical trials for AD.
Collapse
Affiliation(s)
- Dallas P. Veitch
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of Veterans Affairs Medical CenterNorthern California Institute for Research and Education (NCIRE)San FranciscoCaliforniaUSA
| | - Michael W. Weiner
- Department of Veterans Affairs Medical CenterCenter for Imaging of Neurodegenerative DiseasesSan FranciscoCaliforniaUSA
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Paul S. Aisen
- Alzheimer's Therapeutic Research InstituteUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Laurel A. Beckett
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Charles DeCarli
- Department of Neurology and Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Broad Institute, Ariadne Labsand Harvard Medical SchoolBostonMassachusettsUSA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health SciencesUniversity of California DavisDavisCaliforniaUSA
| | | | - William Jagust
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John C. Morris
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Richard J. Perrin
- Knight Alzheimer's Disease Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSaint LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | | | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arthur W. Toga
- Laboratory of Neuroimaging, USC Stevens Institute of Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Duygu Tosun
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
4
|
Zhang Y, Zhan L, Wu S, Thompson P, Huang H. Disentangled and Proportional Representation Learning for Multi-View Brain Connectomes. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2021; 12907:508-518. [PMID: 35449787 PMCID: PMC9020272 DOI: 10.1007/978-3-030-87234-2_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Diffusion MRI-derived brain structural connectomes or brain networks are widely used in the brain research. However, constructing brain networks is highly dependent on various tractography algorithms, which leads to difficulties in deciding the optimal view concerning the downstream analysis. In this paper, we propose to learn a unified representation from multi-view brain networks. Particularly, we expect the learned representations to convey the information from different views fairly and in a disentangled sense. We achieve the disentanglement via an approach using unsupervised variational graph auto-encoders. We achieve the view-wise fairness, i.e. proportionality, via an alternative training routine. More specifically, we construct an analogy between training the deep network and the network flow problem. Based on the analogy, the fair representations learning is attained via a network scheduling algorithm aware of proportionality. The experimental results demonstrate that the learned representations fit various downstream tasks well. They also show that the proposed approach effectively preserves the proportionality.
Collapse
Affiliation(s)
- Yanfu Zhang
- Department of Electrical and Computer Engineering, University of Pittsburgh,Pittsburgh, PA 15260, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh,Pittsburgh, PA 15260, USA
| | - Shandong Wu
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA 90032, USA
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh,Pittsburgh, PA 15260, USA
- JD Finance America Corporation, Mountain View, CA 94043, USA
| |
Collapse
|
5
|
Reproducible Evaluation of Diffusion MRI Features for Automatic Classification of Patients with Alzheimer's Disease. Neuroinformatics 2021; 19:57-78. [PMID: 32524428 DOI: 10.1007/s12021-020-09469-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diffusion MRI is the modality of choice to study alterations of white matter. In past years, various works have used diffusion MRI for automatic classification of Alzheimer's disease. However, classification performance obtained with different approaches is difficult to compare because of variations in components such as input data, participant selection, image preprocessing, feature extraction, feature rescaling (FR), feature selection (FS) and cross-validation (CV) procedures. Moreover, these studies are also difficult to reproduce because these different components are not readily available. In a previous work (Samper-González et al. 2018), we propose an open-source framework for the reproducible evaluation of AD classification from T1-weighted (T1w) MRI and PET data. In the present paper, we first extend this framework to diffusion MRI data. Specifically, we add: conversion of diffusion MRI ADNI data into the BIDS standard and pipelines for diffusion MRI preprocessing and feature extraction. We then apply the framework to compare different components. First, FS has a positive impact on classification results: highest balanced accuracy (BA) improved from 0.76 to 0.82 for task CN vs AD. Secondly, voxel-wise features generally gives better performance than regional features. Fractional anisotropy (FA) and mean diffusivity (MD) provided comparable results for voxel-wise features. Moreover, we observe that the poor performance obtained in tasks involving MCI were potentially caused by the small data samples, rather than by the data imbalance. Furthermore, no extensive classification difference exists for different degree of smoothing and registration methods. Besides, we demonstrate that using non-nested validation of FS leads to unreliable and over-optimistic results: 5% up to 40% relative increase in BA. Lastly, with proper FR and FS, the performance of diffusion MRI features is comparable to that of T1w MRI. All the code of the framework and the experiments are publicly available: general-purpose tools have been integrated into the Clinica software package ( www.clinica.run ) and the paper-specific code is available at: https://github.com/aramis-lab/AD-ML .
Collapse
|
6
|
Lella E, Amoroso N, Diacono D, Lombardi A, Maggipinto T, Monaco A, Bellotti R, Tangaro S. Communicability Characterization of Structural DWI Subcortical Networks in Alzheimer's Disease. ENTROPY 2019; 21:e21050475. [PMID: 33267189 PMCID: PMC7514963 DOI: 10.3390/e21050475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/18/2022]
Abstract
In this paper, we investigate the connectivity alterations of the subcortical brain network due to Alzheimer’s disease (AD). Mostly, the literature investigated AD connectivity abnormalities at the whole brain level or at the cortex level, while very few studies focused on the sub-network composed only by the subcortical regions, especially using diffusion-weighted imaging (DWI) data. In this work, we examine a mixed cohort including 46 healthy controls (HC) and 40 AD patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set. We reconstruct the brain connectome through the use of state of the art tractography algorithms and we propose a method based on graph communicability to enhance the information content of subcortical brain regions in discriminating AD. We develop a classification framework, achieving 77% of area under the receiver operating characteristic (ROC) curve in the binary discrimination AD vs. HC only using a 12×12 subcortical features matrix. We find some interesting AD-related connectivity patterns highlighting that subcortical regions tend to increase their communicability through cortical regions to compensate the physical connectivity reduction between them due to AD. This study also suggests that AD connectivity alterations mostly regard the inter-connectivity between subcortical and cortical regions rather than the intra-subcortical connectivity.
Collapse
Affiliation(s)
- Eufemia Lella
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, 70125 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
| | - Nicola Amoroso
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, 70125 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
| | - Angela Lombardi
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
- Correspondence:
| | - Tommaso Maggipinto
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, 70125 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
| | - Alfonso Monaco
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, 70125 Bari, Italy
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, 70125 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
| |
Collapse
|