1
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
2
|
Kiani P, Hassanzadeh G, Jameie SB, Batouli SAH. Exploration of the white matter bundles connected to the pineal gland: A DTI study. Surg Radiol Anat 2024; 46:1571-1584. [PMID: 39102045 DOI: 10.1007/s00276-024-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Pineal gland (PG) is a structure located in the midline of the brain, and is considered as a main part of the epithalamus. There are reports on the role of this area for brain function by hormone secretion, as well as few reports on its role in brain cognition. However, little knowledge is available on the PG, and in particular on the structural connectivity of this region with the other brain structures. METHODS Using diffusion-weighted images collected by a 3T MRI scanner, and using a sample of 61 (29 F) mentally and physically healthy young individuals in the age range of 20-30 years old, we tried to extract the white matter bundles connected to the PG. Based on prior knowledge, seven target bundles were suggested to be between the PG body and the PG roots, Pons, Periventricular region, thalamus, caudate, lentiform, suprachiasmatic nuclei, and the supercervical ganglia. RESULTS Nearly all the target bundles were successfully extracted, with the exception of the lentiform. Rate of identification of the tracts was different, with the bundle between the PG body and roots having the highest identification rate (97%); then it was with the Pons (70%), Periventricular region (57%), SCN (55%), left thalamus (52%), right thalamus (47%), left caudate (27%) and right caudate (22%). CONCLUSION This study is an attempt to expand our knowledge on the neuroanatomy of the PG, which might help for identifying further roles for it in brain functionality, and also be a help for the treatment of some disorders in the future.
Collapse
Affiliation(s)
- Pejman Kiani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No.88, Italia Street, Keshavarz Boulevard, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No.88, Italia Street, Keshavarz Boulevard, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No.88, Italia Street, Keshavarz Boulevard, Tehran, Iran.
- BrainEE Research Group, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Addanki S, Patel K, Patel L, Smith B, Patel P, Uppalapati S, Nathanson L. Thyroid Function and Sleep Patterns: A Systematic Review. Cureus 2024; 16:e63447. [PMID: 39077291 PMCID: PMC11285688 DOI: 10.7759/cureus.63447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/31/2024] Open
Abstract
Hypothyroidism, defined as a low metabolic function of the thyroid gland that results in low thyroid hormone levels, and insomnia, a condition with the inability to sleep, are two distinct conditions with little overlap that have been extensively established. Both conditions have been studied independently in terms of epidemiology, pathophysiology, diagnosis, and management. The exact causal relationship between the two conditions has yet to be elucidated, and a direct underlying pathophysiology has not been pinpointed. To gain further insight into the relationship between hypothyroidism and insomnia, we performed a systematic review to explore this relationship using predetermined guidelines. Out of 59 studies assessed, four studies evaluated the mechanisms of these two potentially comorbid conditions. Our findings suggest that hypothyroidism and insomnia may have a bidirectional relationship, with symptomatic overlap that is tied to increased metabolic comorbidities and hormonal dysregulation. These findings warrant further research to verify these early findings and gain further insight into the relationship between these conditions. A better understanding of the pathophysiology of overlap between these two conditions will help improve diagnosis and target treatment more effectively.
Collapse
Affiliation(s)
- Sunaina Addanki
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Krina Patel
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Lisa Patel
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Blake Smith
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Prem Patel
- Medicine, Nova Southeastern University, Fort Lauderdale, USA
| | | | - Lubov Nathanson
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
4
|
Yoon SH, Kim HK, Lee JH, Chun JH, Sohn YH, Lee PH, Ryu YH, Cho H, Yoo HS, Lyoo CH. Association of Sleep Disturbances With Brain Amyloid and Tau Burden, Cortical Atrophy, and Cognitive Dysfunction Across the AD Continuum. Neurology 2023; 101:e2162-e2171. [PMID: 37813585 PMCID: PMC10663023 DOI: 10.1212/wnl.0000000000207917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with Alzheimer disease (AD) frequently suffer from various sleep disturbances. However, how sleep disturbance is associated with AD and its progression remains poorly investigated. We investigated the association of total sleep time with brain amyloid and tau burden, cortical atrophy, cognitive dysfunction, and their longitudinal changes in the AD spectrum. METHODS In this retrospective cohort study, we enrolled participants on the AD spectrum who were positive on 18F-florbetaben (FBB) PET. All participants underwent the Pittsburgh Sleep Quality Index, brain MRI, FBB PET, 18F-flortaucipir (FTP) PET, and detailed neuropsychological testing. In addition, a subset of participants completed follow-up assessments. We analyzed the association of total sleep time with the baseline and longitudinal FBB-standardized uptake value ratio (SUVR), FTP-SUVR, cortical thickness, and cognitive domain composite scores. RESULTS We examined 138 participants on the AD spectrum (15 with preclinical AD, 62 with prodromal AD, and 61 with AD dementia; mean age 73.4 ± 8.0 years; female 58.7%). Total sleep time was longer in the AD dementia group (7.4 ± 1.6 hours) compared with the preclinical (6.5 ± 1.4 hours; p = 0.026) and prodromal groups (6.6 ± 1.4 hours; p = 0.001), whereas other sleep parameters did not differ between groups. Longer total sleep time was not associated with amyloid accumulation but rather with tau accumulation, especially in the amygdala, hippocampus, basal forebrain, insular, cingulate, occipital, inferior temporal cortices, and precuneus. Longer total sleep time predicted faster tau accumulation in Braak regions V-VI (β = 0.016, p = 0.007) and disease progression to mild cognitive impairment or dementia (hazard ratio = 1.554, p = 0.024). Longer total sleep time was also associated with memory deficit (β = -0.19, p = 0.008). DISCUSSION Prolonged total sleep time was associated with tau accumulation in sleep-related cortical and subcortical areas as well as memory dysfunction. It also predicted faster disease progression with tau accumulation. Our study highlights the clinical importance of assessing total sleep time as a marker for disease severity and prognosis in the AD spectrum.
Collapse
Affiliation(s)
- So Hoon Yoon
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Kyeol Kim
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hoon Lee
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Hyun Chun
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young H Sohn
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Phil Hyu Lee
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Ryu
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna Cho
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Han Soo Yoo
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chul Hyoung Lyoo
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Mohammadi S, Mohammadi M, Ghaderi S. Sleep-related regions in neurodegenerative diseases by central nervous system localization using magnetic resonance imaging. Psychiatry Res Neuroimaging 2023; 336:111727. [PMID: 39492095 DOI: 10.1016/j.pscychresns.2023.111727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
Sleep disruptions associated with neurodegenerative diseases (NDDs) damage the brain's sleep-regulating regions. Advanced magnetic resonance imaging (MRI) techniques can characterize the signature of each neurodegenerative pathology. We performed an evaluation of sleep-related regions in NDDs using MRI to localize the central nervous system (CNS). In the initial search, 61 related papers were discovered using predetermined inclusion and exclusion criteria. Finally, 30 articles were included in this study. The study included patients with Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), rapid eye movement (REM) sleep behavior disorder (RBD), idiopathic RBD (iRBD), amyotrophic lateral sclerosis (ALS), and mild cognitive impairment (MCI). Sleep-related regions recognized by CNS localization in NDDs can be linked to important regions. MRI also revealed cortical thinning, GM atrophy, WM, and tract loss, changes in diffusion tensor imaging (DTI) biomarkers (fractional anisotropy (FA), axial diffusivity (Da), and radial diffusivity (Dr)), a decrease in DMN connectivity, a reduction in functional connectivity (FC), and amplitude of low-frequency fluctuation (ALFF) alterations. Sleep plays an important role in predicting future risks for the development of NDDs. Other neuroimaging, cognitive-behavioral, and clinical research can use the information found in this research about the brain regions, MRI biomarker changes, and their relationships.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
7
|
Casagrande M, Forte G, Favieri F, Corbo I. Sleep Quality and Aging: A Systematic Review on Healthy Older People, Mild Cognitive Impairment and Alzheimer’s Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148457. [PMID: 35886309 PMCID: PMC9325170 DOI: 10.3390/ijerph19148457] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023]
Abstract
Aging is characterized by changes in the structure and quality of sleep. When the alterations in sleep become substantial, they can generate or accelerate cognitive decline, even in the absence of overt pathology. In fact, impaired sleep represents one of the earliest symptoms of Alzheimer’s disease (AD). This systematic review aimed to analyze the studies on sleep quality in aging, also considering mild cognitive impairment (MCI) and AD. The review process was conducted according to the PRISMA statement. A total of 71 studies were included, and the whole sample had a mean age that ranged from 58.3 to 93.7 years (62.8–93.7 healthy participants and 61.8–86.7 pathological populations). Of these selected studies, 33 adopt subjective measurements, 31 adopt objective measures, and 10 studies used both. Pathological aging showed a worse impoverishment of sleep than older adults, in both subjective and objective measurements. The most common aspect compromised in AD and MCI were REM sleep, sleep efficiency, sleep latency, and sleep duration. These results underline that sleep alterations are associated with cognitive impairment. In conclusion, the frequency and severity of sleep disturbance appear to follow the evolution of cognitive impairment. The overall results of objective measures seem more consistent than those highlighted by subjective measurements.
Collapse
Affiliation(s)
- Maria Casagrande
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00185 Roma, Italy;
- Correspondence: (M.C.); (I.C.)
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00185 Roma, Italy;
- Body and Action Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy;
| | - Francesca Favieri
- Body and Action Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy;
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Ilaria Corbo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
- Correspondence: (M.C.); (I.C.)
| |
Collapse
|
8
|
Sisakhti M, Shafaghi L, Batouli SAH. The Volumetric Changes of the Pineal Gland with Age: An Atlas-based Structural Analysis. Exp Aging Res 2022; 48:474-504. [DOI: 10.1080/0361073x.2022.2033593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Minoo Sisakhti
- Department of Cognitive Psychology, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Computational Cognition, Humanlab Technologies, Vancouver, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Liu YS, Wang YM, Zha DJ. Brain Functional and Structural Changes in Alzheimer's Disease With Sleep Disorders: A Systematic Review. Front Psychiatry 2021; 12:772068. [PMID: 34790139 PMCID: PMC8591034 DOI: 10.3389/fpsyt.2021.772068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Sleep disorders (SLD) are supposed to be associated with increased risk and development of Alzheimer's disease (AD), and patients with AD are more likely to show SLD. However, neurobiological performance of patients with both AD and SLD in previous studies is inconsistent, and identifying specific patterns of the brain functional network and structural characteristics in this kind of comorbidity is warranted for understanding how AD and SLD symptoms interact with each other as well as finding effective clinical intervention. Thus, the aims of this systematic review were to summarize the relevant findings and their limitations and provide future research directions. Methods: A systematic search on brain functional and structural changes in patients with both AD and SLD was conducted from PubMed, Web of Science, and EMBASE databases. Results: Nine original articles published between 2009 and 2021 were included with a total of 328 patients with comorbid AD and SLD, 367 patients with only AD, and 294 healthy controls. One single-photon emission computed tomography study and one multislice spiral computed tomography perfusion imaging study investigated changes of cerebral blood flow; four structural magnetic resonance imaging (MRI) studies investigated brain structural changes, two of them used whole brain analysis, and another two used regions of interest; two resting-state functional MRI studies investigated brain functional changes, and one 2-deoxy-2-(18F)fluoro-d-glucose positron emission tomography (18F-FDG-PET) investigated 18F-FDG-PET uptake in patients with comorbid AD and SLD. Findings were inconsistent, ranging from default mode network to sensorimotor cortex, hippocampus, brain stem, and pineal gland, which may be due to different imaging techniques, measurements of sleep disorder and subtypes of AD and SLD. Conclusions: Our review provides a systematic summary and promising implication of specific neuroimaging dysfunction underlying co-occurrence of AD and SLD. However, limited and inconsistent findings still restrict its neurobiological explanation. Further studies should use unified standards and comprehensive brain indices to investigate the pathophysiological basis of interaction between AD and SLD symptoms in the development of the disease spectrums.
Collapse
Affiliation(s)
- Yong-Shou Liu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yong-Ming Wang
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ding-Jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
10
|
Matsuoka T, Oya N, Yokota H, Akazawa K, Yamada K, Narumoto J. Pineal volume reduction in patients with mild cognitive impairment who converted to Alzheimer's disease. Psychiatry Clin Neurosci 2020; 74:587-593. [PMID: 32609399 DOI: 10.1111/pcn.13103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
AIM Pineal parenchymal volume (PPV) reduction is one of the predisposing factors for Alzheimer's disease (AD). Therefore, PPV could be used as a predictor of developing AD in clinical settings. We investigated whether PPV in patients with mild cognitive impairment (MCI) was correlated with conversion of these patients to AD. METHODS A total of 237 patients with MCI underwent brain magnetic resonance imaging. A two-sample t-test was used to compare PPV at baseline in MCI patients who converted to AD (MCI-C) with those who did not convert (MCI-NC). Logistic regression analysis with forced entry was used to identify predictors of AD, with variables of PPV, age, sex, education, APOE-ε4 alleles, Mini Mental State Examination score, and total intracranial volume at baseline. Two-way repeated-measures analysis of variance was conducted to compare PPV at baseline and at the last examination in the MCI-C and MCI-NC groups. RESULTS PPV in the MCI-C group was significantly lower than that in the MCI-NC group. In logistic regression analysis, two independent predictors of AD were identified: Mini Mental State Examination and PPV. Two-way repeated-measures analysis of variance revealed a significant group effect, but no time effect. CONCLUSION The pineal volume is a predictor of AD conversion, and pineal volume reduction in AD starts early when patients are still in the MCI stage. Thus, pineal volume reduction might be useful as a predictor of developing AD in clinical settings.
Collapse
Affiliation(s)
- Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nozomu Oya
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Yokota
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Akazawa
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | |
Collapse
|
11
|
Matsuoka T, Ismail Z, Narumoto J. Prevalence of Mild Behavioral Impairment and Risk of Dementia in a Psychiatric Outpatient Clinic. J Alzheimers Dis 2020; 70:505-513. [PMID: 31177229 PMCID: PMC6700628 DOI: 10.3233/jad-190278] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Mild behavioral impairment (MBI) has been proposed as risk factor for dementia, and for some, an early manifestation of dementia. Objective: We examined the prevalence of MBI in the psychiatric outpatient clinic, and compared the incidence of dementia in MBI with that in other psychiatric diseases. Methods: Retrospective chart review was conducted in 2,853 consecutive outpatients over the age of 50. MBI was diagnosed according to the International Society to Advance Alzheimer’s Research and Treatment research diagnostic criteria. The incidence rate of dementia was examined in the patients who were followed up for at least 1 month. Kaplan-Meier survival analyses and Cox proportional hazards regression models were performed to compare the time to onset of dementia between MBI and other psychiatric diseases. Results: The prevalence of MBI was 3.5% and the incidence of dementia was 30.7 cases per 1000 person-years. The hazard ratio (HR) for dementia was higher for MBI than other psychiatric diseases (HR: 8.07, 95% confidence interval: 4.34–15.03, p < 0.001). In MCI patients, the cumulative survival in MCI with affective dysregulation tended to be lower than that in MCI without (p = 0.090). Conclusions: Psychiatric outpatients often meet MBI criteria. MBI, especially the affective dysregulation domain, increases the risk of dementia in this psychiatric outpatient population. Since late-onset psychiatric and behavioral symptoms may be prodromal symptoms of dementia in some, careful observation is needed, and psychiatric clinicians should keep prodromal dementia on their differential diagnosis when assessing those with new onset psychiatric symptomatology in older adults.
Collapse
Affiliation(s)
- Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Hotchkiss Brain Institute and O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Wei Y. Comparative transcriptome analysis of the hippocampus from sleep-deprived and Alzheimer's disease mice. Genet Mol Biol 2020; 43:e20190052. [PMID: 32338274 PMCID: PMC7249779 DOI: 10.1590/1678-4685-gmb-2019-0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
We did a comparative analysis of the gene expression profiles of the hippocampus from sleep deprivation and Alzheimer’s disease (AD) mice. Differentially expressed genes (DEGs) were identified by comparing the transcriptome profiles of the hippocampus of sleep deprivation or AD mouse models to matched controls. The common DEGs between sleep deprivation and AD were identified by the overlapping analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that a total of 16 common DEGs showed similar change patterns in both sleep deprivation mice and AD mice. Sgk1, Ly6a, Atp6v0e, Hspb8, Htra1, Pdk4, Pfkfb3, Golm1, and Plin3 were up-regulated in the two disorders, whereas, Marcksl1, Fgd1, Scarb1, Mvd, Klhl13, Elovl2, and Vps29 were down-regulated. Acetyl-CoA metabolic process and lipid biosynthetic process were significantly enriched by those DEGs. The highly expressed DEGs and the two GO terms were associated with neuropathological changes according to the previous studies. As expected, sleep deprivation may contribute the AD development through these common DEGs.
Collapse
Affiliation(s)
- Yi Wei
- Nanjing Forest Police College, Nanjing 210023, China
| |
Collapse
|
13
|
Chen X, Hou X, Luo X, Zhou S, Liu X, Liu B, Chen J. Altered Intra- and Inter-regional Functional Connectivity of the Anterior Cingulate Gyrus in Patients With Tremor-Dominant Parkinson's Disease Complicated With Sleep Disorder. Front Aging Neurosci 2019; 11:319. [PMID: 31824298 PMCID: PMC6881235 DOI: 10.3389/fnagi.2019.00319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate changes in brain function at the regional and whole-brain levels in patients with tremor-dominant Parkinson's disease (TDPD) complicated by sleep disorder (SD) by regional homogeneity (ReHo) and functional connectivity (FC) analysis of whole-brain resting-state functional magnetic resonance images. Materials and Methods: ReHo and seed-based FC analyses were conducted among 32 patients with TDPD and SD (TDPD-SD), 24 with TDPD and no SD (TDPD-NSD), and 23 healthy controls (HCs) to assess spontaneous brain activity and network-level brain function. Correlation analyses were used to examine the associations between brain activity and the clinical data. Results: Anterior cingulate gyrus (ACC) ReHo values differed significantly among the groups. ACC ReHo values were increased in TDPD-SD vs. HC and TDPD-SD vs. TDPD-NSD. ACC ReHo values were reduced in TDPD-NSD vs. HC. TDPD-SD ReHo values were positively correlated with Pittsburgh Sleep Quality Index (PSQI) scores (r = 0.41, p = 0.020) but negatively correlated with Parkinson's Disease Sleep Scale (PDSS) scores (r = -0.38, p = 0.030). FC analysis using ACC as a mask showed that FC of the left olfactory cortex (L-OC), right straight gyrus (R-SG), right superior parietal gyrus (R-SPG), and right precuneus differed significantly among the groups. FC values between R-SG and ACC were significantly lower in TDPD-SD than in TDPD-NSD, while the FC of L-OC and R-OC with ACC was significantly lower in TDPD-SD than in HC. FC between ACC and L-OC, R-SPG, and the right precuneus was lower in TDPD-NSD than in HC. There was no correlation between the FC values and other clinical data in any of the groups. Conclusion: Localized abnormal activity in TDPD-SD was chiefly triggered by ACC. The change in the ReHo of ACC is closely related to the severity of TDPD-associated SD, revealing the role of this region as a regulator of the sleep mechanism in TDPD. Significant abnormal FC was found between R-SG and ACC in TDPD-SD but was not shown to correlate with clinical data.
Collapse
Affiliation(s)
- Xinjie Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Sifan Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Liu
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Bo Liu
- Department of Radiology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jun Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, ZHUHAI Branch of Guangdong Hospital of Traditional Chinese Medicine, Zhuhai, China
| |
Collapse
|
14
|
You JC, Jones E, Cross DE, Lyon AC, Kang H, Newberg AB, Lippa CF. Association of β-Amyloid Burden With Sleep Dysfunction and Cognitive Impairment in Elderly Individuals With Cognitive Disorders. JAMA Netw Open 2019; 2:e1913383. [PMID: 31617927 PMCID: PMC6806437 DOI: 10.1001/jamanetworkopen.2019.13383] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Evidence shows that sleep dysfunction and β-amyloid (Aβ) deposition work synergistically to impair brain function in individuals with normal cognition, increasing the risk of developing dementia later in life. However, whether Aβ continues to play an integral role in sleep dysfunction after the onset of cognitive decline in individuals with dementia is unclear. OBJECTIVE To determine whether Aβ deposition in the brain is associated with subjective measures of sleep quality and cognition in elderly individuals with cognitive disorders. DESIGN, SETTING, AND PARTICIPANTS A nested survey study was conducted at the Cognitive Disorders and Comprehensive Alzheimer Disease Center of Thomas Jefferson University Hospital in Philadelphia, Pennsylvania. Participants included patients aged 65 years and older with cognitive disorders verified by neuropsychological testing. Eligible participants were identified from a referral center-based sample of patients who underwent fluorine 18-labeled florbetaben positron emission tomography imaging at Thomas Jefferson University Hospital as part of the multicenter Imaging Dementia-Evidence for Amyloid Scanning study. Data collection and analysis occurred between November 2018 and March 2019. MAIN OUTCOMES AND MEASURES Sleep quality was measured via responses to sleep questionnaires, Aβ deposition was measured via fluorine 18-labeled florbetaben positron emission tomography, and cognition was measured via Mini-Mental State Examination (MMSE) performance. RESULTS Of the 67 eligible participants, 52 (77.6%) gave informed consent to participate in the study. Of the 52 enrolled participants (mean [SD] age, 76.6 [7.4] years), 27 (51.9%) were women. Daytime sleepiness was associated with Aβ deposition in the brainstem (B = 0.0063; 95% CI, 0.001 to 0.012; P = .02), but not MMSE performance (B = -0.01; 95% CI, -0.39 to 0.37; P = .96). The number of nocturnal awakenings was associated with Aβ deposition in the precuneus (B = 0.11; 95% CI, 0.06 to 0.17; P < .001) and poor MMSE performance (B = -2.13; 95% CI, -3.13 to -1.13; P < .001). Mediation analysis demonstrated an indirect association between Aβ deposition and poor MMSE performance that relied on nocturnal awakenings as an intermediary (B = -3.99; 95% CI, -7.88 to -0.83; P = .01). CONCLUSIONS AND RELEVANCE Nighttime sleep disruption may mediate the association between Aβ and cognitive impairment, suggesting that there is an underlying sleep-dependent mechanism that links Aβ burden in the brain to cognitive decline. Further elucidation of this mechanism may improve understanding of disease processes associated with Aβ accumulation.
Collapse
Affiliation(s)
- Jason C. You
- Cognitive Disorders and Comprehensive Alzheimer’s Disease Center, Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, Pennsylvania
| | - Erica Jones
- Cognitive Disorders and Comprehensive Alzheimer’s Disease Center, Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Devon E. Cross
- Cognitive Disorders and Comprehensive Alzheimer’s Disease Center, Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Abigail C. Lyon
- Cognitive Disorders and Comprehensive Alzheimer’s Disease Center, Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Hyunseung Kang
- Department of Statistics, University of Wisconsin-Madison, Madison
| | - Andrew B. Newberg
- Marcus Institute for Integrative Health, Department of Integrative Medicine, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Carol F. Lippa
- Cognitive Disorders and Comprehensive Alzheimer’s Disease Center, Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|