1
|
McGlinchey E, Duran-Aniotz C, Akinyemi R, Arshad F, Zimmer ER, Cho H, Adewale BA, Ibanez A. Biomarkers of neurodegeneration across the Global South. THE LANCET. HEALTHY LONGEVITY 2024; 5:100616. [PMID: 39369726 PMCID: PMC11540104 DOI: 10.1016/s2666-7568(24)00132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 10/08/2024] Open
Abstract
Research on neurodegenerative diseases has predominantly focused on high-income countries in the Global North. This Series paper describes the state of biomarker evidence for neurodegeneration in the Global South, including Latin America, Africa, and countries in south, east, and southeast Asia. Latin America shows growth in fluid biomarker and neuroimaging research, with notable advancements in genetics. Research in Africa focuses on genetics and cognition but there is a paucity of data on fluid and neuroimaging biomarkers. South and east Asia, particularly India and China, has achieved substantial progress in plasma, neuroimaging, and genetic studies. However, all three regions face several challenges in the form of a lack of harmonisation, insufficient funding, and few comparative studies both within the Global South, and between the Global North and Global South. Other barriers include scarce infrastructure, lack of knowledge centralisation, genetic and cultural diversity, sociocultural stigmas, and restricted access to tools such as PET scans. However, the diverse ethnic, genetic, economic, and cultural backgrounds in the Global South present unique opportunities for bidirectional learning, underscoring the need for global collaboration to enhance the understanding of dementia and brain health.
Collapse
Affiliation(s)
- Eimear McGlinchey
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile
| | - Rufus Akinyemi
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria; Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Faheem Arshad
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Eduardo R Zimmer
- Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics (PPGFT) and Biochemistry (PPGBioq), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Hanna Cho
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Boluwatife Adeleye Adewale
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Agustin Ibanez
- Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile.
| |
Collapse
|
2
|
Li Y, Zhang S, Tang C, Yang B, Atrooz F, Ren Z, Mohan C, Salim S, Wu T. Autoimmune and neuropsychiatric phenotypes in a Mecp2 transgenic mouse model on C57BL/6 background. Front Immunol 2024; 15:1370254. [PMID: 38524134 PMCID: PMC10960363 DOI: 10.3389/fimmu.2024.1370254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Systemic Lupus Erythematosus (SLE) impacts the central nervous system (CNS), leading to severe neurological and psychiatric manifestations known as neuropsychiatric lupus (NPSLE). The complexity and heterogeneity of clinical presentations of NPSLE impede direct investigation of disease etiology in patients. The limitations of existing mouse models developed for NPSLE obstruct a comprehensive understanding of this disease. Hence, the identification of a robust mouse model of NPSLE is desirable. Methods C57BL/6 mice transgenic for human MeCP2 (B6.Mecp2Tg1) were phenotyped, including autoantibody profiling through antigen array, analysis of cellularity and activation of splenic immune cells through flow cytometry, and measurement of proteinuria. Behavioral tests were conducted to explore their neuropsychiatric functions. Immunofluorescence analyses were used to reveal altered neurogenesis and brain inflammation. Various signaling molecules implicated in lupus pathogenesis were examined using western blotting. Results B6.Mecp2Tg1 exhibits elevated proteinuria and an overall increase in autoantibodies, particularly in female B6.Mecp2Tg1 mice. An increase in CD3+CD4+ T cells in the transgenic mice was observed, along with activated germinal center cells and activated CD11b+F4/80+ macrophages. Moreover, the transgenic mice displayed reduced locomotor activity, heightened anxiety and depression, and impaired short-term memory. Immunofluorescence analysis revealed IgG deposition and immune cell infiltration in the kidneys and brains of transgenic mice, as well as altered neurogenesis, activated microglia, and compromised blood-brain barrier (BBB). Additionally, protein levels of various key signaling molecules were found to be differentially modulated upon MeCP2 overexpression, including GFAP, BDNF, Albumin, NCoR1, mTOR, and NLRP3. Discussion Collectively, this work demonstrates that B6.Mecp2Tg1 mice exhibit lupus-like phenotypes as well as robust CNS dysfunctions, suggesting its utility as a new animal model for NPSLE.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shu Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Bowen Yang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Fatin Atrooz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Zhifeng Ren
- Department of Physics, University of Houston, Houston, TX, United States
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
3
|
Yan R, Wang W, Yang W, Huang M, Xu W. Mitochondria-Related Candidate Genes and Diagnostic Model to Predict Late-Onset Alzheimer's Disease and Mild Cognitive Impairment. J Alzheimers Dis 2024; 99:S299-S315. [PMID: 37334608 PMCID: PMC11091583 DOI: 10.3233/jad-230314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Background Late-onset Alzheimer's disease (LOAD) is the most common type of dementia, but its pathogenesis remains unclear, and there is a lack of simple and convenient early diagnostic markers to predict the occurrence. Objective Our study aimed to identify diagnostic candidate genes to predict LOAD by machine learning methods. Methods Three publicly available datasets from the Gene Expression Omnibus (GEO) database containing peripheral blood gene expression data for LOAD, mild cognitive impairment (MCI), and controls (CN) were downloaded. Differential expression analysis, the least absolute shrinkage and selection operator (LASSO), and support vector machine recursive feature elimination (SVM-RFE) were used to identify LOAD diagnostic candidate genes. These candidate genes were then validated in the validation group and clinical samples, and a LOAD prediction model was established. Results LASSO and SVM-RFE analyses identified 3 mitochondria-related genes (MRGs) as candidate genes, including NDUFA1, NDUFS5, and NDUFB3. In the verification of 3 MRGs, the AUC values showed that NDUFA1, NDUFS5 had better predictability. We also verified the candidate MRGs in MCI groups, the AUC values showed good performance. We then used NDUFA1, NDUFS5 and age to build a LOAD diagnostic model and AUC was 0.723. Results of qRT-PCR experiments with clinical blood samples showed that the three candidate genes were expressed significantly lower in the LOAD and MCI groups when compared to CN. Conclusion Two mitochondrial-related candidate genes, NDUFA1 and NDUFS5, were identified as diagnostic markers for LOAD and MCI. Combining these two candidate genes with age, a LOAD diagnostic prediction model was successfully constructed.
Collapse
Affiliation(s)
- Ran Yan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Ruijin Hospital, Zhoushan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Gillespie NA, Elman JA, McKenzie RE, Tu XM, Xian H, Reynolds CA, Panizzon MS, Lyons MJ, Eglit GML, Neale MC, Rissman RA, Franz C, Kremen WS. The heritability of blood-based biomarkers related to risk of Alzheimer's disease in a population-based sample of early old-age men. Alzheimers Dement 2024; 20:356-365. [PMID: 37622539 PMCID: PMC10843753 DOI: 10.1002/alz.13407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Despite their increased application, the heritability of Alzheimer's disease (AD)-related blood-based biomarkers remains unexplored. METHODS Plasma amyloid beta 40 (Aβ40), Aβ42, the Aβ42/40 ratio, total tau (t-tau), and neurofilament light (NfL) data came from 1035 men 60 to 73 years of age (μ = 67.0, SD = 2.6). Twin models were used to calculate heritability and the genetic and environmental correlations between them. RESULTS Additive genetics explained 44% to 52% of Aβ42, Aβ40, t-tau, and NfL. The Aβ42/40 ratio was not heritable. Aβ40 and Aβ42 were genetically near identical (rg = 0.94). Both Aβ40 and Aβ42 were genetically correlated with NfL (rg = 0.35 to 0.38), but genetically unrelated to t-tau. DISCUSSION Except for Aβ42/40, plasma biomarkers are heritable. Aβ40 and Aβ42 share mostly the same genetic influences, whereas genetic influences on plasma t-tau and NfL are largely unique in early old-age men. The absence of genetic associations between the Aβs and t-tau is not consistent with the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Nathan A. Gillespie
- Virginia Institute for Psychiatric and Behaviour GeneticsDepartment of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Jeremy A. Elman
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Ruth E. McKenzie
- Department of PsychologyBoston UniversityBostonMassachusettsUSA
- School of Education and Social PolicyMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Xin M. Tu
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Family Medicine and Public HealthUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Hong Xian
- Department of Epidemiology and BiostatisticsSaint. Louis UniversitySt. LouisMissouriUSA
- Research Service, VA St. Louis Healthcare SystemSt. LouisMissouriUSA
| | | | - Matthew S. Panizzon
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Michael J. Lyons
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusettsUSA
| | - Graham M. L. Eglit
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Sam and Rose Stein Institute for Research on AgingUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behaviour GeneticsDepartment of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Robert A. Rissman
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Carol Franz
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - William S. Kremen
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
5
|
Huang YM, Ma YH, Gao PY, Wang ZB, Huang LY, Hou JH, Tan L, Yu JT. Plasma β 2-microglobulin and cerebrospinal fluid biomarkers of Alzheimer's disease pathology in cognitively intact older adults: the CABLE study. Alzheimers Res Ther 2023; 15:69. [PMID: 37005674 PMCID: PMC10067214 DOI: 10.1186/s13195-023-01217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Previous studies have suggested a correlation between elevated levels of β2-microglobulin (B2M) and cognitive impairment. However, the existing evidence is insufficient to establish a conclusive relationship. This study aims to analyze the link of plasma B2M to cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers and cognition. METHODS To track the dynamics of plasma B2M in preclinical AD, 846 cognitively healthy individuals in the Chinese Alzheimer's Biomarker and LifestylE (CABLE) cohort were divided into four groups (suspected non-AD pathology [SNAP], 2, 1, 0) according to the NIA-AA criteria. Multiple linear regression models were employed to examine the plasma B2M's relationship with cognitive and CSF AD biomarkers. Causal mediation analysis was conducted through 10,000 bootstrapped iterations to explore the mediating effect of AD pathology on cognition. RESULTS We found that the levels of plasma B2M were increased in stages 1 (P = 0.0007) and 2 (P < 0.0001), in contrast to stage 0. In total participants, higher levels of B2M were associated with worse cognitive performance (P = 0.006 for MMSE; P = 0.012 for MoCA). Moreover, a higher level of B2M was associated with decreases in Aβ1-42 (P < 0.001) and Aβ1-42/Aβ1-40 (P = 0.015) as well as increases in T-tau/Aβ1-42 (P < 0.001) and P-tau/Aβ1-42 (P < 0.001). The subgroup analysis found B2M correlated with Aβ1-42 in non-APOE ε4 individuals (P < 0.001) but not in APOE ε4 carriers. Additionally, the link between B2M and cognition was partially mediated by Aβ pathology (percentage: 8.6 to 19.3%), whereas tau pathology did not mediate this effect. CONCLUSIONS This study demonstrated the association of plasma B2M with CSF AD biomarkers as well as a possible important role of Aβ pathology in the association between B2M and cognitive impairment, particularly in cognitively normal individuals. The results indicated that B2M could be a potential biomarker for preclinical AD and might have varied functions throughout various stages of preclinical AD progression.
Collapse
Affiliation(s)
- Yi-Ming Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhi-Bo Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jia-Hui Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- National Center for Neurological Diseases in China, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
6
|
Wang YR, Wang MT, Zeng XQ, Liu YH, Wang YJ. Associations of Naturally Occurring Antibodies to Presenilin-1 with Brain Amyloid-β Load and Cognitive Impairment in Alzheimer's Disease. J Alzheimers Dis 2022; 90:1493-1500. [PMID: 36278353 DOI: 10.3233/jad-220775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Imbalance between the production and clearance of amyloid-β (Aβ) promotes the development of Alzheimer's disease (AD). Presenilin-1 (PS1) is the catalytic subunit of γ-secretase, which is involved in the process of Aβ production. The profiles of autoantibodies are dysregulated in AD patients. OBJECTIVE This study aims to investigate the relative levels and clinical relevance of naturally occurring antibodies to PS1 (NAbs-PS1) in AD. METHODS A total of 55 subjects with AD (including both dementia and mild cognitive impairment due to AD), 28 subjects with cognitive impairment (including both dementia and mild cognitive impairment) not due to AD (non-AD CI), and 70 cognitively normal (CN) subjects were recruited. One-site ELISA was utilized to determine the relative levels of NAbs-PS1 in plasma. RESULTS AD subjects had lower plasma levels of NAbs-PS1 than CN and non-AD CI subjects. Plasma NAbs-PS1 were negatively associated with the brain Aβ load, as reflected by PET-PiB SUVR, and were positively associated with cognitive functions of participants. Plasma NAbs-PS1 discriminated AD patients from CN with an area under the curve (AUC) of 0.730, a sensitivity of 69.09%, and a specificity of 67.14%, and they discriminated AD patients from non-AD CI subjects with an AUC of 0.750, a specificity of 70.91%, and a sensitivity of 71.43%. CONCLUSION This study found an aberrant immunological phenotype in AD patients. Further investigations are needed to determine the pathophysiological functions of NAbs-PS1 in AD.
Collapse
Affiliation(s)
- Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Meng-Ting Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Aging and Brain Disease, Chongqing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Fan DY, Jian JM, Huang S, Li WW, Shen YY, Wang Z, Zeng GH, Yi X, Jin WS, Liu YH, Zeng F, Bu XL, Chen LY, Mao QX, Xu ZQ, Yu JT, Wang J, Wang YJ. Establishment of combined diagnostic models of Alzheimer's disease in a Chinese cohort: the Chongqing Ageing & Dementia Study (CADS). Transl Psychiatry 2022; 12:252. [PMID: 35710549 PMCID: PMC9203516 DOI: 10.1038/s41398-022-02016-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers are essential for the accurate diagnosis of Alzheimer's disease (AD), yet their measurement levels vary widely across centers and regions, leaving no uniform cutoff values to date. Diagnostic cutoff values of CSF biomarkers for AD are lacking for the Chinese population. As a member of the Alzheimer's Association Quality Control program for CSF biomarkers, we aimed to establish diagnostic models based on CSF biomarkers and risk factors for AD in a Chinese cohort. A total of 64 AD dementia patients and 105 age- and sex-matched cognitively normal (CN) controls from the Chongqing Ageing & Dementia Study cohort were included. CSF Aβ42, P-tau181, and T-tau levels were measured by ELISA. Combined biomarker models and integrative models with demographic characteristics were established by logistic regression. The cutoff values to distinguish AD from CN were 933 pg/mL for Aβ42, 48.7 pg/mL for P-tau181 and 313 pg/mL for T-tau. The AN model, including Aβ42 and T-tau, had a higher diagnostic accuracy of 89.9%. Integrating age and APOE ε4 status to AN model (the ANA'E model) increased the diagnostic accuracy to 90.5% and improved the model performance. This study established cutoff values of CSF biomarkers and optimal combined models for AD diagnosis in a Chinese cohort.
Collapse
Affiliation(s)
- Dong-Yu Fan
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China ,grid.410570.70000 0004 1760 6682Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Jie-Ming Jian
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China ,grid.263452.40000 0004 1798 4018First Clinical Medical College, Shanxi Medical University, Taiyuan, China ,grid.263452.40000 0004 1798 4018Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Wei-Wei Li
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China ,Department of Neurology, Western Theater General Hospital, Chengdu, China
| | - Ying-Ying Shen
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Zhen Wang
- grid.410570.70000 0004 1760 6682Department of Critical Care Medicine, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Gui-Hua Zeng
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xu Yi
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Wang-Sheng Jin
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Hui Liu
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Fan Zeng
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xian-Le Bu
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Li-Yong Chen
- grid.410570.70000 0004 1760 6682Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qing-Xiang Mao
- grid.410570.70000 0004 1760 6682Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Qiang Xu
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jin-Tai Yu
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China. .,State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Cheng Y, Ren JR, Jian JM, He CY, Xu MY, Zeng GH, Tan CR, Shen YY, Jin WS, Chen DW, Li HY, Yi X, Zhang Y, Bu XL, Wang YJ. Associations of plasma angiostatin and amyloid-β and tau levels in Alzheimer's disease. Transl Psychiatry 2022; 12:194. [PMID: 35538065 PMCID: PMC9091258 DOI: 10.1038/s41398-022-01962-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Angiostatin, an endogenous angiogenesis inhibitor generated by the proteolytic cleavage of plasminogen, was recently reported to contribute to the development of Alzheimer's disease (AD). However, whether there are pathological changes in angiostatin levels in individuals with AD dementia is unclear, and whether plasma angiostatin has a relationship with major AD pathological processes and cognitive impairment remains unknown. To examine plasma angiostatin levels in patients with AD dementia and investigate the associations of angiostatin with blood and cerebrospinal fluid (CSF) AD biomarkers, we conducted a cross-sectional study including 35 cognitively normal control (CN) subjects and 59 PiB-PET-positive AD dementia patients. We found that plasma angiostatin levels were decreased in AD dementia patients compared to CN subjects. Plasma angiostatin levels were negatively correlated with plasma Aβ42 and Aβ40 levels in AD dementia patients and positively correlated with CSF total tau (t-tau) levels and t-tau/Aβ42 in AD dementia patients with APOE-ε4. In addition, plasma angiostatin levels had the potential to distinguish AD from CN. These findings suggest a link between angiostatin and AD pathogenesis and imply that angiostatin might be a potential diagnostic biomarker for AD.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jun-Rong Ren
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie-Ming Jian
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Chen-Yang He
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Man-Yu Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Cheng-Rong Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Ying-Ying Shen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Wang-Sheng Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Dong-Wan Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Hui-Yun Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xu Yi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yuan Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Cheng L, Li W, Chen Y, Lin Y, Wang B, Guo Q, Miao Y. Plasma Aβ as a biomarker for predicting Aβ-PET status in Alzheimer's disease:a systematic review with meta-analysis. J Neurol Neurosurg Psychiatry 2022; 93:513-520. [PMID: 35241627 PMCID: PMC9016262 DOI: 10.1136/jnnp-2021-327864] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/27/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Amyloid-β positron emission tomography (Aβ-PET) scan has been proposed to detect amyloid-β (Aβ) deposition in the brain. However, this approach is costly and not ideal for the early diagnosis of Alzheimer's disease. Blood-based Aβ measurement offers a scalable alternative to the costly or invasive biomarkers. The aim of this study was to statistically validate whether plasma Aβ could predict Aβ-PET status via meta-analysis. METHODS We systematically searched for eligible studies from PubMed, Embase and Cochrane Library, which reported plasma Aβ levels of amyloid-β positron emission tomography-positive (PET (+)) and amyloid-β positron emission tomography-negative (PET (-)) subjects. We generated pooled estimates using random effects meta-analyses. For any study that has significant heterogeneity, metaregression and subgroup analysis were further conducted. Publication bias was appraised by funnel plots and Egger's test. RESULTS 16 studies with 3047 participants were included in the meta-analysis. Among all the enrolled studies, 10 studies reported plasma Aβ40 values, while 9 studies reported plasma Aβ42 values and 13 studies reported Aβ42/Aβ40 ratio. The pooled standardised mean difference (SMD) was 0.76 (95% CI -0.61 to 2.14, p=0.28) in the plasma Aβ40 values group. Plasma Aβ42 values group has a pooled SMD of -0.60 (95% CI -0.80 to -0.41, p<0.0001). In the plasma Aβ42/Aβ40 ratio group, the pooled SMD was -1.44 (95% CI -2.17 to -0.72, p<0.0001). CONCLUSION Plasma Aβ40 values might not distinguish between PET (+) and PET (-) people. However, plasma Aβ42 values and plasma Aβ42/Aβ40 ratio could be served as independent biomarkers for predicting Aβ-PET status.
Collapse
Affiliation(s)
- Lizhen Cheng
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixin Chen
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yijia Lin
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Beiyun Wang
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qihao Guo
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Hardy-Sosa A, León-Arcia K, Llibre-Guerra JJ, Berlanga-Acosta J, Baez SDLC, Guillen-Nieto G, Valdes-Sosa PA. Diagnostic Accuracy of Blood-Based Biomarker Panels: A Systematic Review. Front Aging Neurosci 2022; 14:683689. [PMID: 35360215 PMCID: PMC8963375 DOI: 10.3389/fnagi.2022.683689] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Background Because of high prevalence of Alzheimer's disease (AD) in low- and middle-income countries (LMICs), there is an urgent need for inexpensive and minimally invasive diagnostic tests to detect biomarkers in the earliest and asymptomatic stages of the disease. Blood-based biomarkers are predicted to have the most impact for use as a screening tool and predict the onset of AD, especially in LMICs. Furthermore, it has been suggested that panels of markers may perform better than single protein candidates. Methods Medline/Pubmed was searched to identify current relevant studies published from January 2016 to December 2020. We included all full-text articles examining blood-based biomarkers as a set of protein markers or panels to aid in AD's early diagnosis, prognosis, and characterization. Results Seventy-six articles met the inclusion criteria for systematic review. Majority of the studies reported plasma and serum as the main source for biomarker determination in blood. Protein-based biomarker panels were reported to aid in AD diagnosis and prognosis with better accuracy than individual biomarkers. Conventional (amyloid-beta and tau) and neuroinflammatory biomarkers, such as amyloid beta-42, amyloid beta-40, total tau, phosphorylated tau-181, and other tau isoforms, were the most represented. We found the combination of amyloid beta-42/amyloid beta-40 ratio and APOEε4 status to be most represented with high accuracy for predicting amyloid beta-positron emission tomography status. Conclusion Assessment of Alzheimer's disease biomarkers in blood as a non-invasive and cost-effective alternative will potentially contribute to early diagnosis and improvement of therapeutic interventions. Given the heterogeneous nature of AD, combination of markers seems to perform better in the diagnosis and prognosis of the disease than individual biomarkers.
Collapse
Affiliation(s)
- Anette Hardy-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | | | | - Saiyet de la C. Baez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Neurociencias de Cuba, La Habana, Cuba
| |
Collapse
|
11
|
An efficient combination of quadruple biomarkers in binary classification using ensemble machine learning technique for early onset of Alzheimer disease. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07076-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Álvarez-Sánchez L, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Novel Ultrasensitive Detection Technologies for the Identification of Early and Minimally Invasive Alzheimer's Disease Blood Biomarkers. J Alzheimers Dis 2022; 86:1337-1369. [PMID: 35213367 DOI: 10.3233/jad-215093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Single molecule array (SIMOA) and other ultrasensitive detection technologies have allowed the determination of blood-based biomarkers of Alzheimer's disease (AD) for diagnosis and monitoring, thereby opening up a promising field of research. OBJECTIVE To review the published bibliography on plasma biomarkers in AD using new ultrasensitive techniques. METHODS A systematic review of the PubMed database was carried out to identify reports on the use of blood-based ultrasensitive technology to identify biomarkers for AD. RESULTS Based on this search, 86 works were included and classified according to the biomarker determined. First, plasma amyloid-β showed satisfactory accuracy as an AD biomarker in patients with a high risk of developing dementia. Second, plasma t-Tau displayed good sensitivity in detecting different neurodegenerative diseases. Third, plasma p-Tau was highly specific for AD. Fourth, plasma NfL was highly sensitive for distinguishing between patients with neurodegenerative diseases and healthy controls. In general, the simultaneous determination of several biomarkers facilitated greater accuracy in diagnosing AD (Aβ42/Aβ40, p-Tau181/217). CONCLUSION The recent development of ultrasensitive technology allows the determination of blood-based biomarkers with high sensitivity, thus facilitating the early detection of AD through the analysis of easily obtained biological samples. In short, as a result of this knowledge, pre-symptomatic and early AD diagnosis may be possible, and the recruitment process for future clinical trials could be more precise. However, further studies are necessary to standardize levels of blood-based biomarkers in the general population and thus achieve reproducible results among different laboratories.
Collapse
Affiliation(s)
| | - Carmen Peña-Bautista
- Alzheimer Disease Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
13
|
Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer's disease: towards clinical implementation. Lancet Neurol 2021; 21:66-77. [PMID: 34838239 DOI: 10.1016/s1474-4422(21)00361-6] [Citation(s) in RCA: 399] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality. Convincing data generated with new high-sensitivity assays have emerged with remarkable consistency across different cohorts, but also independent of the precise analytical method used. Concentrations in blood of amyloid and phosphorylated tau proteins associate with the corresponding concentrations in CSF and with amyloid-PET or tau-PET scans. Moreover, other blood-based biomarkers of neurodegeneration, such as neurofilament light chain and glial fibrillary acidic protein, appear to provide information on disease progression and potential for monitoring treatment effects. Now the question emerges of when and how we can bring these biomarkers to clinical practice. This step would pave the way for blood-based biomarkers to support the diagnosis of, and development of treatments for, Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Elisabeth H Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sölvegatan, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Special Administrative Region, China
| | - Wiesje M van der Flier
- Alzheimer Center, Department of Neurology, and Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, and Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
14
|
Jiao B, Liu H, Guo L, Liao X, Zhou Y, Weng L, Xiao X, Zhou L, Wang X, Jiang Y, Yang Q, Zhu Y, Zhou L, Zhang W, Wang J, Yan X, Tang B, Shen L. Performance of Plasma Amyloid β, Total Tau, and Neurofilament Light Chain in the Identification of Probable Alzheimer's Disease in South China. Front Aging Neurosci 2021; 13:749649. [PMID: 34776933 PMCID: PMC8579066 DOI: 10.3389/fnagi.2021.749649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common type of dementia and has no effective treatment to date. It is essential to develop a minimally invasive blood-based biomarker as a tool for screening the general population, but the efficacy remains controversial. This cross-sectional study aimed to evaluate the ability of plasma biomarkers, including amyloid β (Aβ), total tau (t-tau), and neurofilament light chain (NfL), to detect probable AD in the South Chinese population. Methods: A total of 277 patients with a clinical diagnosis of probable AD and 153 healthy controls with normal cognitive function (CN) were enrolled in this study. The levels of plasma Aβ42, Aβ40, t-tau, and NfL were detected using ultra-sensitive immune-based assays (SIMOA). Lumbar puncture was conducted in 89 patients with AD to detect Aβ42, Aβ40, t-tau, and phosphorylated (p)-tau levels in the cerebrospinal fluid (CSF) and to evaluate the consistency between plasma and CSF biomarkers through correlation analysis. Finally, the diagnostic value of plasma biomarkers was further assessed by constructing a receiver operating characteristic (ROC) curve. Results: After adjusting for age, sex, and the apolipoprotein E (APOE) alleles, compared to the CN group, the plasma t-tau, and NfL were significantly increased in the AD group (p < 0.01, Bonferroni correction). Correlation analysis showed that only the plasma t-tau level was positively correlated with the CSF t-tau levels (r = 0.319, p = 0.003). The diagnostic model combining plasma t-tau and NfL levels, and age, sex, and APOE alleles, showed the best performance for the identification of probable AD [area under the curve (AUC) = 0.89, sensitivity = 82.31%, specificity = 83.66%]. Conclusion: Blood biomarkers can effectively distinguish patients with probable AD from controls and may be a non-invasive and efficient method for AD pre-screening.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
15
|
Singh K, Cheung BM, Xu A. Ultrasensitive detection of blood biomarkers of Alzheimer's and Parkinson's diseases: a systematic review. Biomark Med 2021; 15:1693-1708. [PMID: 34743546 DOI: 10.2217/bmm-2021-0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: Neurodegenerative disorders are a global health burden with costly and invasive diagnoses relying on brain imaging technology or CSF-based biomarkers. Therefore, considerable efforts to identify blood-biomarkers for Alzheimer's (AD) and Parkinson's diseases (PD) are ongoing. Objectives: This review evaluates the blood biomarkers for AD and PD for their diagnostic value. Methods: This study systematically reviewed articles published between July 1984 and February 2021. Among 1266 papers, we selected 42 studies for a systematic review and 23 studies for meta-analysis. Results & conclusion: Our analysis highlights P-tau181, T-tau and Nfl as promising blood biomarkers for AD diagnosis. Nfl levels were consistently raised in 16 AD and three PD cohorts. P-tau181 and T-tau were also significantly increased in 12 and eight AD cohorts, respectively.
Collapse
Affiliation(s)
- Kailash Singh
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Bernard My Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.,Department of Pharmacy & Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Peng Q, Zhang Z. The fluid biomarkers of Alzheimer’s disease. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder. However, it still has no available disease‐modifying therapies. Its pathology cascade begins decades before symptomatic presentation. For these reasons, highly sensitive and highly specific fluid biomarkers should be developed for the early diagnosis of AD. In this study, the well‐established and emerging fluid biomarkers of AD are summarized, and recent advances on their role in early diagnosis and progression monitoring as well as their correlations with AD pathology are highlighted. Future prospects and related research directions are also discussed.
Collapse
Affiliation(s)
- Qinyu Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
17
|
Highly specific and ultrasensitive plasma test detects Abeta(1-42) and Abeta(1-40) in Alzheimer's disease. Sci Rep 2021; 11:9736. [PMID: 33958661 PMCID: PMC8102604 DOI: 10.1038/s41598-021-89004-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma biomarkers that reflect specific amyloid beta (Abeta) proteoforms provide an insight in the treatment effects of Alzheimer’s disease (AD) therapies. Our aim was to develop and validate ready-to-use Simoa ‘Amyblood’ assays that measure full length Abeta1-42 and Abeta1-40 and compare their performance with two commercial assays. Linearity, intra- and inter-assay %CV were compared between Amyblood, Quanterix Simoa triplex, and Euroimmun ELISA. Sensitivity and selectivity were assessed for Amyblood and the Quanterix triplex. Clinical performance was assessed in CSF biomarker confirmed AD (n = 43, 68 ± 6 years) and controls (n = 42, 62 ± 5 years). Prototype and Amyblood showed similar calibrator curves and differentiation (20 AD vs 20 controls, p < 0.001). Amyblood, Quanterix triplex, and ELISA showed similar linearity (96%-122%) and intra-assay %CVs (≤ 3.1%). A minor non-specific signal was measured with Amyblood of + 2.4 pg/mL Abeta1-42 when incubated with 60 pg/mL Abeta1-40. A substantial non-specific signal of + 24.7 pg/mL Abetax-42 was obtained when 40 pg/mL Abeta3-42 was measured with the Quanterix triplex. Selectivity for Abeta1-42 at physiological Abeta1-42 and Abeta1-40 concentrations was 125% for Amyblood and 163% for Quanterix. Amyblood and Quanterix ratios (p < 0.001) and ELISA Abeta1-42 concentration (p = 0.025) could differentiate AD from controls. We successfully developed and upscaled a prototype to the Amyblood assays with similar technical and clinical performance as the Quanterix triplex and ELISA, but better specificity and selectivity than the Quanterix triplex assay. These results suggest leverage of this specific assay for monitoring treatment response in trials.
Collapse
|
18
|
Ding X, Zhang S, Jiang L, Wang L, Li T, Lei P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:10. [PMID: 33712071 PMCID: PMC7953695 DOI: 10.1186/s40035-021-00234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
A lack of convenient and reliable biomarkers for diagnosis and prognosis is a common challenge for neurodegenerative diseases such as Alzheimer's disease (AD). Recent advancement in ultrasensitive protein assays has allowed the quantification of tau and phosphorylated tau proteins in peripheral plasma. Here we identified 66 eligible studies reporting quantification of plasma tau and phosphorylated tau 181 (ptau181) using four ultrasensitive methods. Meta-analysis of these studies confirmed that the AD patients had significantly higher plasma tau and ptau181 levels compared with controls, and that the plasma tau and ptau181 could predict AD with high-accuracy area under curve of the Receiver Operating Characteristic. Therefore, plasma tau and plasma ptau181 can be considered as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Verberk IMW, Thijssen E, Koelewijn J, Mauroo K, Vanbrabant J, de Wilde A, Zwan MD, Verfaillie SCJ, Ossenkoppele R, Barkhof F, van Berckel BNM, Scheltens P, van der Flier WM, Stoops E, Vanderstichele HM, Teunissen CE. Combination of plasma amyloid beta (1-42/1-40) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. ALZHEIMERS RESEARCH & THERAPY 2020; 12:118. [PMID: 32988409 PMCID: PMC7523295 DOI: 10.1186/s13195-020-00682-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Blood-based biomarkers for Alzheimer's disease (AD) might facilitate identification of participants for clinical trials targeting amyloid beta (Abeta) accumulation, and aid in AD diagnostics. We examined the potential of plasma markers Abeta(1-42/1-40), glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) to identify cerebral amyloidosis and/or disease severity. METHODS We included individuals with a positive (n = 176: 63 ± 7 years, 87 (49%) females) or negative (n = 76: 61 ± 9 years, 27 (36%) females) amyloid PET status, with syndrome diagnosis subjective cognitive decline (18 PET+, 25 PET-), mild cognitive impairment (26 PET+, 24 PET-), or AD-dementia (132 PET+). Plasma Abeta(1-42/1-40), GFAP, and NfL were measured by Simoa. We applied two-way ANOVA adjusted for age and sex to investigate the associations of the plasma markers with amyloid PET status and syndrome diagnosis; logistic regression analysis with Wald's backward selection to identify an optimal panel that identifies amyloid PET positivity; age, sex, and education-adjusted linear regression analysis to investigate associations between the plasma markers and neuropsychological test performance; and Spearman's correlation analysis to investigate associations between the plasma markers and medial temporal lobe atrophy (MTA). RESULTS Abeta(1-42/1-40) and GFAP independently associated with amyloid PET status (p = 0.009 and p < 0.001 respectively), and GFAP and NfL independently associated with syndrome diagnosis (p = 0.001 and p = 0.048 respectively). The optimal panel identifying a positive amyloid status included Abeta(1-42/1-40) and GFAP, alongside age and APOE (AUC = 88% (95% CI 83-93%), 82% sensitivity, 86% specificity), while excluding NfL and sex. GFAP and NfL robustly associated with cognitive performance on global cognition and all major cognitive domains (GFAP: range standardized β (sβ) = - 0.40 to - 0.26; NfL: range sβ = - 0.35 to - 0.18; all: p < 0.002), whereas Abeta(1-42/1-40) associated with global cognition, memory, attention, and executive functioning (range sβ = 0.22 - 0.11; all: p < 0.05) but not language. GFAP and NfL showed moderate positive correlations with MTA (both: Spearman's rho> 0.33, p < 0.001). Abeta(1-42/1-40) showed a moderate negative correlation with MTA (Spearman's rho = - 0.24, p = 0.001). DISCUSSION AND CONCLUSIONS Combination of plasma Abeta(1-42/1-40) and GFAP provides a valuable tool for the identification of amyloid PET status. Furthermore, plasma GFAP and NfL associate with various disease severity measures suggesting potential for disease monitoring.
Collapse
Affiliation(s)
- Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Elisabeth Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jannet Koelewijn
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | - Arno de Wilde
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marissa D Zwan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander C J Verfaillie
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, London, UK
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Xu Y, Shen YY, Zhang XP, Gui L, Cai M, Peng GP, Pan XD, Zhang J, Gan D, Li B, Cheng HP, Deng J, Li WW, Zeng GH, Shi AY, Zhou ZH, Luo BY, Chen XC, Wang YJ. Diagnostic potential of urinary monocyte chemoattractant protein-1 for Alzheimer's disease and amnestic mild cognitive impairment. Eur J Neurol 2020; 27:1429-1435. [PMID: 32282975 DOI: 10.1111/ene.14254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE The chemokine monocyte chemoattractant protein-1 (MCP-1) is involved in the pathogenesis of Alzheimer's disease (AD). This study aimed to investigate whether urinary MCP-1 can distinguish patients with AD, patients with amnestic mild cognitive impairment (aMCI) and cognitively normal (CN) subjects. METHODS A total of 754 participants, including 97 patients with AD, 50 patients with aMCI and 84 age- and sex-matched CN controls as well as a cohort of 523 CN subjects of different ages, were enrolled from five hospitals located in different areas of China. Urinary MCP-1 levels were determined using enzyme-linked immunosorbent assays. The correlations between urinary MCP-1 levels and cognition test scores or age were analysed. The optimal diagnostic sensitivity and specificity were determined using receiver operating characteristic curve analysis. RESULTS In the cohort of CN subjects of different ages, urinary MCP-1 levels increased with ageing and were correlated with age. The urinary MCP-1 levels were higher in females than in males. In the cohort composed of patients with AD, aMCI and age- and sex-matched CN controls, urinary MCP-1 levels were significantly higher in patients with AD and aMCI than in CN controls. There were no differences in urine MCP-1 levels between the AD group and the aMCI group. The urinary MCP-1 levels were correlated with the Mini-Mental State Examination scores and age, and were able to differentiate patients with AD and aMCI from CN subjects. CONCLUSIONS Urinary MCP-1 is a potential biomarker for the diagnosis of AD and aMCI.
Collapse
Affiliation(s)
- Y Xu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,Department of Geriatrics, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Y-Y Shen
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - X-P Zhang
- Department of General Practice, Chengdu Second People's Hospital, Chengdu, China
| | - L Gui
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - M Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - G-P Peng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - X-D Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Institute of Geriatrics, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - J Zhang
- Department of Geriatrics, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - D Gan
- Department of Geriatrics, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - B Li
- Department of Health Management, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - H-P Cheng
- Department of Health Management, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - J Deng
- Department of Health Management, Daping Hospital, Third Military Medical University, Chongqing, China
| | - W-W Li
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - G-H Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - A-Y Shi
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Z-H Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - B-Y Luo
- Department of Neurology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - X-C Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Institute of Geriatrics, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Y-J Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Li WW, Wang Z, Fan DY, Shen YY, Chen DW, Li HY, Li L, Yang H, Liu YH, Bu XL, Jin WS, Zeng F, Xu ZQ, Yu JT, Chen LY, Wang YJ. Association of Polygenic Risk Score with Age at Onset and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease in a Chinese Cohort. Neurosci Bull 2020; 36:696-704. [PMID: 32072450 DOI: 10.1007/s12264-020-00469-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
To evaluate whether the polygenic profile modifies the development of sporadic Alzheimer's disease (sAD) and pathological biomarkers in cerebrospinal fluid (CSF), 462 sAD patients and 463 age-matched cognitively normal (CN) controls were genotyped for 35 single-nucleotide polymorphisms (SNPs) that are significantly associated with sAD. Then, the alleles found to be associated with sAD were used to build polygenic risk score (PRS) models to represent the genetic risk. Receiver operating characteristic (ROC) analyses and the Cox proportional hazards model were used to evaluate the predictive value of PRS for the sAD risk and age at onset. We measured the CSF levels of Aβ42, Aβ42/Aβ40, total tau (T-tau), and phosphorylated tau (P-tau) in a subgroup (60 sAD and 200 CN participants), and analyzed their relationships with the PRSs. We found that 14 SNPs, including SNPs in the APOE, BIN1, CD33, EPHA1, SORL1, and TOMM40 genes, were associated with sAD risk in our cohort. The PRS models built with these SNPs showed potential for discriminating sAD patients from CN controls, and were able to predict the incidence rate of sAD and age at onset. Furthermore, the PRSs were correlated with the CSF levels of Aβ42, Aβ42/Aβ40, T-tau, and P-tau. Our study suggests that PRS models hold promise for assessing the genetic risk and development of AD. As genetic risk profiles vary among populations, large-scale genome-wide sequencing studies are urgently needed to identify the genetic risk loci of sAD in Chinese populations to build accurate PRS models for clinical practice.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhen Wang
- Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Dong-Yu Fan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ying-Ying Shen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Dong-Wan Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hui-Yun Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ling Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Heng Yang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wang-Sheng Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Fan Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhi-Qiang Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li-Yong Chen
- Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Chongqing Key Laboratory of Aging and Diseases, Chongqing, 400042, China. .,Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
22
|
Yu ZY, Li WW, Yang HM, Mañucat-Tan NB, Wang J, Wang YR, Sun BL, Hu ZC, Zhang LL, Tan L, Deng J, Liu YH. Naturally Occurring Antibodies to Tau Exists in Human Blood and Are Not Changed in Alzheimer's Disease. Neurotox Res 2020; 37:1029-1035. [PMID: 32026360 DOI: 10.1007/s12640-020-00161-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022]
Abstract
Hyperphosphorylated tau is an important pathological agent in Alzheimer's disease (AD). Tau effluxes from the brain to the blood could potentially stimulate the production of naturally occurring antibodies (NAbs). We aimed to investigate whether NAbs to tau (NAbs-tau) was generated in human blood and to figure out the alteration of plasma NAbs-tau level in AD patients. About 192 AD patients and 192 age-matched and non-demented controls (NC) were enrolled in the present study. Immunofluorescence staining and western blot assays were used to confirm the existence of NAbs-tau in human blood. The plasma level of NAbs-tau in NC and AD group was analyzed by ELISA. Immunofluorescence staining and western blot assays confirmed the existence of NAbs-tau in human blood. However, no significant difference in the plasma level of NAbs-tau was observed between NC and AD group. Furthermore, the plasma level of NAbs-tau had no significant correlation with MMSE scores. The present study confirmed that NAbs-tau exists in human blood but does not differ in level between the NC and AD group. Plasma NAbs-tau is not a reliable biomarker for AD.
Collapse
Affiliation(s)
- Zhong-Yuan Yu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Basic Medical College, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Wei Li
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai-Mei Yang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Noralyn B Mañucat-Tan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Jun Wang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ye-Ran Wang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bin-Lu Sun
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zi-Cheng Hu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li-Li Zhang
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Southwest hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juan Deng
- Department of Healthy Management, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China.
| | - Yu-Hui Liu
- Department of Neurology and Clinical Center for Neuroscience, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|