1
|
Liu L, Sun S, Kang W, Wu S, Lin L. A review of neuroimaging-based data-driven approach for Alzheimer's disease heterogeneity analysis. Rev Neurosci 2024; 35:121-139. [PMID: 37419866 DOI: 10.1515/revneuro-2023-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/18/2023] [Indexed: 07/09/2023]
Abstract
Alzheimer's disease (AD) is a complex form of dementia and due to its high phenotypic variability, its diagnosis and monitoring can be quite challenging. Biomarkers play a crucial role in AD diagnosis and monitoring, but interpreting these biomarkers can be problematic due to their spatial and temporal heterogeneity. Therefore, researchers are increasingly turning to imaging-based biomarkers that employ data-driven computational approaches to examine the heterogeneity of AD. In this comprehensive review article, we aim to provide health professionals with a comprehensive view of past applications of data-driven computational approaches in studying AD heterogeneity and planning future research directions. We first define and offer basic insights into different categories of heterogeneity analysis, including spatial heterogeneity, temporal heterogeneity, and spatial-temporal heterogeneity. Then, we scrutinize 22 articles relating to spatial heterogeneity, 14 articles relating to temporal heterogeneity, and five articles relating to spatial-temporal heterogeneity, highlighting the strengths and limitations of these strategies. Furthermore, we discuss the importance of understanding spatial heterogeneity in AD subtypes and their clinical manifestations, biomarkers for abnormal orderings and AD stages, the recent advancements in spatial-temporal heterogeneity analysis for AD, and the emerging role of omics data integration in advancing personalized diagnosis and treatment for AD patients. By emphasizing the significance of understanding AD heterogeneity, we hope to stimulate further research in this field to facilitate the development of personalized interventions for AD patients.
Collapse
Affiliation(s)
- Lingyu Liu
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Shen Sun
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Wenjie Kang
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Shuicai Wu
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Lan Lin
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Lefort-Besnard J, Naveau M, Delcroix N, Decker LM, Cignetti F. Grey matter volume and CSF biomarkers predict neuropsychological subtypes of MCI. Neurobiol Aging 2023; 131:196-208. [PMID: 37689017 DOI: 10.1016/j.neurobiolaging.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/11/2023]
Abstract
There is increasing evidence of different subtypes of individuals with mild cognitive impairment (MCI). An important line of research is whether neuropsychologically-defined subtypes have distinct patterns of neurodegeneration and cerebrospinal fluid (CSF) biomarker composition. In our study, we demonstrated that MCI participants of the ADNI database (N = 640) can be discriminated into 3 coherent neuropsychological subgroups. Our clustering approach revealed amnestic MCI, mixed MCI, and cluster-derived normal subgroups. Furthermore, classification modeling revealed that specific predictive features can be used to differentiate amnestic and mixed MCI from cognitively normal (CN) controls: CSF Aβ142 concentration for the former and CSF Aβ1-42 concentration, tau concentration as well as grey matter atrophy (especially in the temporal and occipital lobes) for the latter. In contrast, participants from the cluster-derived normal subgroup exhibited an identical profile to CN controls in terms of cognitive performance, brain structure, and CSF biomarker levels. Our comprehensive data analytics strategy provides further evidence that multimodal neuropsychological subtyping is both clinically and neurobiologically meaningful.
Collapse
Affiliation(s)
| | - Mikael Naveau
- Normandie Univ, UNICAEN, CNRS, CEA, INSERM, GIP Cyceron, Caen, France
| | - Nicolas Delcroix
- Normandie Univ, UNICAEN, CNRS, CEA, INSERM, GIP Cyceron, Caen, France
| | - Leslie Marion Decker
- Normandie Univ, UNICAEN, INSERM, COMETE, Caen, France; Normandie Univ, UNICAEN, CIREVE, Caen, France.
| | - Fabien Cignetti
- Univ. Grenoble Alpes, CNRS, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France.
| |
Collapse
|
3
|
Keenan TDL, Oden NL, Agrón E, Clemons TE, Henning A, Wong WT, Chew EY. Reply. Ophthalmol Retina 2022; 6:334-335. [PMID: 35393078 DOI: 10.1016/j.oret.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | | | - Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Wai T Wong
- Janssen Research and Development LLC, Raritan, New Jersey
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Kim CK, Lee YR, Ong L, Gold M, Kalali A, Sarkar J. Alzheimer's Disease: Key Insights from Two Decades of Clinical Trial Failures. J Alzheimers Dis 2022; 87:83-100. [PMID: 35342092 PMCID: PMC9198803 DOI: 10.3233/jad-215699] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the acknowledged lack of success in Alzheimer’s disease (AD) drug development over the past two decades, the objective of this review was to derive key insights from the myriad failures to inform future drug development. A systematic and exhaustive review was performed on all failed AD compounds for dementia (interventional phase II and III clinical trials from ClinicalTrials.gov) from 2004 to the present. Starting with the initial ∼2,700 AD clinical trials, ∼550 trials met our initial criteria, from which 98 unique phase II and III compounds with various mechanisms of action met our criteria of a failed compound. The two recent reported phase III successes of aducanumab and oligomannate are very encouraging; however, we are awaiting real-world validation of their effectiveness. These two successes against the 98 failures gives a 2.0% phase II and III success rate since 2003, when the previous novel compound was approved. Potential contributing methodological factors for the clinical trial failures were categorized into 1) insufficient evidence to initiate the pivotal trials, and 2) pivotal trial design shortcomings. Our evaluation found that rational drug development principles were not always followed for AD therapeutics development, and the question remains whether some of the failed compounds may have shown efficacy if the principles were better adhered to. Several recommendations are made for future AD therapeutic development. The whole database of the 98 failed compounds is presented in the Supplementary Material.
Collapse
Affiliation(s)
| | | | | | - Michael Gold
- Neuroscience Development, AbbVie, North Chicago, IL, USA
| | | | | |
Collapse
|
5
|
Thomas KR, Bangen KJ, Weigand AJ, Ortiz G, Walker KS, Salmon DP, Bondi MW, Edmonds EC. Cognitive Heterogeneity and Risk of Progression in Data-Driven Subtle Cognitive Decline Phenotypes. J Alzheimers Dis 2022; 90:323-331. [PMID: 36120785 PMCID: PMC9661321 DOI: 10.3233/jad-220684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is increasing recognition of cognitive and pathological heterogeneity in early-stage Alzheimer's disease and other dementias. Data-driven approaches have demonstrated cognitive heterogeneity in those with mild cognitive impairment (MCI), but few studies have examined this heterogeneity and its association with progression to MCI/dementia in cognitively unimpaired (CU) older adults. OBJECTIVE We identified cluster-derived subgroups of CU participants based on comprehensive neuropsychological data and compared baseline characteristics and rates of progression to MCI/dementia or a Dementia Rating Scale (DRS) of ≤129 across subgroups. METHODS Hierarchical cluster analysis was conducted on individual baseline neuropsychological test scores from 365 CU participants in the UCSD Shiley-Marcos Alzheimer's Disease Research Center longitudinal cohort. Cox regressions examined the risk of progression to consensus diagnosis of MCI or dementia, or to DRS score ≤129, by cluster group. RESULTS Cluster analysis identified 5 groups: All-Average (n = 139), Low-Visuospatial (n = 46), Low-Executive (n = 51), Low-Memory/Language (n = 83), and Low-All Domains (n = 46). Subgroups had unique demographic and clinical characteristics. Rates of progression to MCI/dementia or to DRS ≤129 were faster for all subgroups (Low-All Domains progressed the fastest > Low Memory/Language≥Low-Visuospatial and Low-Executive) relative to the All-Average subgroup. CONCLUSION Faster progression in the Low-Visuospatial, Low-Executive, and Low-Memory/Language groups compared to the All-Average group suggests that there are multiple pathways and/or unique subtle cognitive decline profiles that ultimately lead to a diagnosis of MCI/dementia. Use of comprehensive neuropsychological test batteries that assess several domains may be a key first step toward an individualized approach to early detection and fewer missed opportunities for early intervention.
Collapse
Affiliation(s)
- Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Gema Ortiz
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Kayla S. Walker
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - David P. Salmon
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Emily C. Edmonds
- Banner Alzheimer’s Institute, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Duara R, Barker W. Heterogeneity in Alzheimer's Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022; 19:8-25. [PMID: 35084721 PMCID: PMC9130395 DOI: 10.1007/s13311-022-01185-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
The clinical presentation and the pathological processes underlying Alzheimer's disease (AD) can be very heterogeneous in severity, location, and composition including the amount and distribution of AB deposition and spread of neurofibrillary tangles in different brain regions resulting in atypical clinical patterns and the existence of distinct AD variants. Heterogeneity in AD may be related to demographic factors (such as age, sex, educational and socioeconomic level) and genetic factors, which influence underlying pathology, the cognitive and behavioral phenotype, rate of progression, the occurrence of neuropsychiatric features, and the presence of comorbidities (e.g., vascular disease, neuroinflammation). Heterogeneity is also manifest in the individual resilience to the development of neuropathology (brain reserve) and the ability to compensate for its cognitive and functional impact (cognitive and functional reserve). The variability in specific cognitive profiles and types of functional impairment may be associated with different progression rates, and standard measures assessing progression may not be equivalent for individual cognitive and functional profiles. Other factors, which may govern the presence, rate, and type of progression of AD, include the individuals' general medical health, the presence of specific systemic conditions, and lifestyle factors, including physical exercise, cognitive and social stimulation, amount of leisure activities, environmental stressors, such as toxins and pollution, and the effects of medications used to treat medical and behavioral conditions. These factors that affect progression are important to consider while designing a clinical trial to ensure, as far as possible, well-balanced treatment and control groups.
Collapse
Affiliation(s)
- Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
7
|
Devlin KN, Brennan L, Saad L, Giovannetti T, Hamilton RH, Wolk DA, Xie SX, Mechanic-Hamilton D. Diagnosing Mild Cognitive Impairment Among Racially Diverse Older Adults: Comparison of Consensus, Actuarial, and Statistical Methods. J Alzheimers Dis 2021; 85:627-644. [PMID: 34864658 DOI: 10.3233/jad-210455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Actuarial and statistical methods have been proposed as alternatives to conventional methods of diagnosing mild cognitive impairment (MCI), with the aim of enhancing diagnostic and prognostic validity, but have not been compared in racially diverse samples. OBJECTIVE We compared the agreement of consensus, actuarial, and statistical MCI diagnostic methods, and their relationship to race and prognostic indicators among diverse older adults. METHODS Participants (N = 354; M age = 71; 68% White, 29% Black) were diagnosed with MCI or normal cognition (NC) according to clinical consensus, actuarial neuropsychological criteria (Jak/Bondi), and latent class analysis (LCA). We examined associations with race/ethnicity, longitudinal cognitive and functional change, and incident dementia. RESULTS MCI rates by consensus, actuarial criteria, and LCA were 44%, 53%, and 41%, respectively. LCA identified three MCI subtypes (memory; memory/language; memory/executive) and two NC classes (low normal; high normal). Diagnostic agreement was substantial, but agreement of the actuarial method with consensus and LCA was weaker than the agreement between consensus and LCA. Among cases classified as MCI by actuarial criteria only, Black participants were over-represented, and outcomes were generally similar to those of NC participants. Consensus diagnoses best predicted longitudinal outcomes overall, whereas actuarial diagnoses best predicted longitudinal functional change among Black participants. CONCLUSION Consensus diagnoses optimize specificity in predicting dementia, but among Black older adults, actuarial diagnoses may be more sensitive to early signs of decline. Results highlight the need for cross-cultural validity in MCI diagnosis and should be explored in community- and population-based samples.
Collapse
Affiliation(s)
- Kathryn N Devlin
- Department of Psychology, Drexel University, Philadelphia, PA, USA
| | - Laura Brennan
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Laura Saad
- Department of Psychology, Rutgers University, New Brunswick, NJ, USA
| | | | - Roy H Hamilton
- Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn Mechanic-Hamilton
- Alzheimer's Disease Research Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Chen APF, Clouston SAP, Kritikos M, Richmond L, Meliker J, Mann F, Santiago-Michels S, Pellecchia AC, Carr MA, Kuan PF, Bromet EJ, Luft BJ. A deep learning approach for monitoring parietal-dominant Alzheimer's disease in World Trade Center responders at midlife. Brain Commun 2021; 3:fcab145. [PMID: 34396105 PMCID: PMC8361422 DOI: 10.1093/braincomms/fcab145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Abstract
Little is known about the characteristics and causes of early-onset cognitive impairment. Responders to the 2001 New York World Trade Center disaster represent an ageing population that was recently shown to have an excess prevalence of cognitive impairment. Neuroimaging and molecular data demonstrate that a subgroup of affected responders may have a unique form of parietal-dominant Alzheimer's Disease. Recent neuropsychological testing and artificial intelligence approaches have emerged as methods that can be used to identify and monitor subtypes of cognitive impairment. We utilized data from World Trade Center responders participating in a health monitoring program and applied a deep learning approach to evaluate neuropsychological and neuroimaging data to generate a cortical atrophy risk score. We examined risk factors associated with the prevalence and incidence of high risk for brain atrophy in responders who are now at midlife. Training was conducted in a randomly selected two-thirds sample (N = 99) enrolled using of the results of a structural neuroimaging study. Testing accuracy was estimated for each training cycle in the remaining third subsample. After training was completed, the scoring methodology that was generated was applied to longitudinal data from 1441 World Trade Center responders. The artificial neural network provided accurate classifications of these responders in both the testing (Area Under the Receiver Operating Curve, 0.91) and validation samples (Area Under the Receiver Operating Curve, 0.87). At baseline and follow-up, responders identified as having a high risk of atrophy (n = 378) showed poorer cognitive functioning, most notably in domains that included memory, throughput, and variability as compared to their counterparts at low risk for atrophy (n = 1063). Factors associated with atrophy risk included older age [adjusted hazard ratio, 1.045 (95% confidence interval = 1.027-1.065)], increased duration of exposure at the WTC site [adjusted hazard ratio, 2.815 (1.781-4.449)], and a higher prevalence of post-traumatic stress disorder [aHR, 2.072 (1.408-3.050)]. High atrophy risk was associated with an increased risk of all-cause mortality [adjusted risk ratio, 3.19 (1.13-9.00)]. In sum, the high atrophy risk group displayed higher levels of previously identified risk factors and characteristics of cognitive impairment, including advanced age, symptoms of post-traumatic stress disorder, and prolonged duration of exposure to particulate matter. Thus, this study suggests that a high risk of brain atrophy may be accurately monitored using cognitive data.
Collapse
Affiliation(s)
- Allen P F Chen
- Medical Scientist Training Program, Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Sean A P Clouston
- Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
- Program in Public Health, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
| | - Minos Kritikos
- Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
- Program in Public Health, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
| | - Lauren Richmond
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jaymie Meliker
- Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
- Program in Public Health, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
| | - Frank Mann
- Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
- Program in Public Health, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
| | - Stephanie Santiago-Michels
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11725, USA
| | - Alison C Pellecchia
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11725, USA
| | - Melissa A Carr
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11725, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin J Luft
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11725, USA
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Keenan TD. The Hitchhiker’s Guide to Cluster Analysis: Multi Pertransibunt et Augebitur Scientia. ACTA ACUST UNITED AC 2020; 4:1125-1128. [DOI: 10.1016/j.oret.2020.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 02/01/2023]
|
10
|
Blanken AE, Jang JY, Ho JK, Edmonds EC, Han SD, Bangen KJ, Nation DA. Distilling Heterogeneity of Mild Cognitive Impairment in the National Alzheimer Coordinating Center Database Using Latent Profile Analysis. JAMA Netw Open 2020; 3:e200413. [PMID: 32142126 PMCID: PMC7060488 DOI: 10.1001/jamanetworkopen.2020.0413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/13/2020] [Indexed: 02/02/2023] Open
Affiliation(s)
- Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles
| | - Jung Yun Jang
- Department of Psychology, University of Southern California, Los Angeles
| | - Jean K. Ho
- Department of Psychology, University of Southern California, Los Angeles
| | - Emily C. Edmonds
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California, San Diego
| | - S. Duke Han
- Department of Psychology, University of Southern California, Los Angeles
- Department of Family Medicine, University of Southern California, Los Angeles
| | - Katherine J. Bangen
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California, San Diego
| | - Daniel A. Nation
- Department of Psychological Science, University of California, Irvine
- Institute for Memory Disorders and Neurological Impairments, University of California, Irvine
| |
Collapse
|