1
|
Huang J, Liu S, Li P, Wei L, Lin G, Lin J, Luo Y, Liu Y, Mao Y, Ruan H, Qin B, Fan P, Lu T, Cai W, Yi H, Mou X, Lu Z, Zhao W, Wu A. Multi-omics analysis of gut-brain axis reveals novel microbial and neurotransmitter signatures in patients with arteriosclerotic cerebral small vessel disease. Pharmacol Res 2024; 208:107385. [PMID: 39245190 DOI: 10.1016/j.phrs.2024.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Arteriosclerotic cerebral small vessel disease (aCSVD) is a major cause of stroke and dementia. Although its underlying pathogenesis remains poorly understood, both inflammaging and gut microbiota dysbiosis have been hypothesized to play significant roles. This study investigated the role of gut microbiota in the pathogenesis of aCSVD through a comparative analysis of the gut microbiome and metabolome between CSVD patients and healthy controls. The results showed that patients with aCSVD exhibited a marked reduction in potentially beneficial bacterial species, such as Faecalibacterium prausnitzli and Roseburia intestinalis, alongside an increase in taxa from Bacteroides and Proteobacteria. Integrated metagenomic and metabolomic analyses revealed that alterations in microbial metabolic pathways, including LPS biosynthesis and phenylalanine-tyrosine metabolism, were associated with the status of aCSVD. Our findings indicated that microbial LPS biosynthesis and phenylalanine-tyrosine metabolism potentially influenced the symptoms and progression of aCSVD via pro-inflammatory effect and modulation of systemic neurotransmitters, respectively. These results imply that gut microbiota characteristics may serve as indicators for early detection of aCSVD and as potential gut-directed therapeutic intervention target.
Collapse
Affiliation(s)
- Jiayuan Huang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Sanxin Liu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Peijie Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Lei Wei
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Gan Lin
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Jiahao Lin
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yuting Luo
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Yixin Liu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yudan Mao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Hengfang Ruan
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Bing Qin
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Ping Fan
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Tingting Lu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Wei Cai
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Haotong Yi
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Zhengqi Lu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China.
| | - Wenjing Zhao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Aimin Wu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
2
|
Wei W, Ma D, Gu L, Li Y, Zhang L, Li L, Zhang L. Epimedium flavonoids improve cerebral white matter lesions by inhibiting neuroinflammation and activating neurotrophic factor signal pathways in spontaneously hypertensive rats. Int Immunopharmacol 2024; 139:112683. [PMID: 39018691 DOI: 10.1016/j.intimp.2024.112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions. We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months. The learning and memorization abilities were tested by new object recognition test. The pathological changes of WM were assessed using magnetic resonance imaging, transmission electron microscopy (TEM), Luxol fast blue and Black Gold staining. Oligodendrocytes (OLs) and myelin basic protein were detected by immunohistochemistry. The ultrastructure of the tight junctions was examined using TEM. Microglia and astrocytes were detected by immunofluorescence. RNA-seq was performed on the corpus callosum of rats. The results revealed that EF could significantly improve the learning and memory impairments in SHR, alleviate the injury and demyelination of WM nerve fibers, promote the differentiation of oligodendrocyte precursor cells (OPCs) into mature OLs, inhibit the activation of microglia and astrocytes, inhibit the expression of p38 MAPK/NF-κB p65/NLRP3 and inflammatory cytokines, and increase the expression of tight-junction related proteins ZO-1, occludin, and claudin-5. RNA-seq analysis showed that the neurotrophin signaling pathway played an important role in the disease. RT-qPCR and WB results showed that EF could regulate the expression of nerve growth factor and brain-derived neurotrophic factor and their downstream related proteins in the neurotrophin signaling pathway, which might explain the potential mechanism of EF's effects on the cognitive impairment and WM damage caused by hypertension.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Lihong Gu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing Engineering Research Center for Nervous System Drugs, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
3
|
Zhang M, Lan X, Gao Y, Zou Y, Li S, Liang Y, Janowski M, Walczak P, Chu C. Activation of NLRP3 inflammasome in a rat model of cerebral small vessel disease. Exp Brain Res 2024; 242:1387-1397. [PMID: 38563979 DOI: 10.1007/s00221-024-06824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Cerebral small vessel disease (CSVD) is increasingly being recognized as a leading contributor to cognitive impairment in the elderly. However, there is a lack of effective preventative or therapeutic options for CSVD. In this exploratory study, we investigated the interplay between neuroinflammation and CSVD pathogenesis as well as the cognitive performance, focusing on NLRP3 signaling as a new therapeutic target. Spontaneously hypertensive stroke-prone (SHRSP) rats served as a CSVD model. We found that SHRSP rats showed decline in learning and memory abilities using morris water maze test. Activated NLRP3 signaling and an increased expression of the downstream pro-inflammatory factors, including IL (interleukin)-6 and tumor necrosis factor α were determined. We also observed a remarkable increase in the production of pyroptosis executive protein gasdermin D, and elevated astrocytic and microglial activation. In addition, we identify several neuropathological hallmarks of CSVD, including blood-brain barrier breakdown, white matter damage, and endothelial dysfunction. These results were in correlation with the activation of NLRP3 inflammasome. Thus, our findings reveal that the NLRP3-mediated inflammatory pathway could play a central role in the pathogenesis of CSVD, presenting a novel target for potential CSVD treatment.
Collapse
Affiliation(s)
- Meiyan Zhang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, 116033, P.R. China
| | - Xiaoyan Lan
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, 116033, P.R. China
| | - Yue Gao
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, 116033, P.R. China
| | - Yu Zou
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, 116033, P.R. China
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, P.R. China
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chengyan Chu
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, Liaoning, 116033, P.R. China.
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Jia R, Solé-Guardia G, Kiliaan AJ. Blood-brain barrier pathology in cerebral small vessel disease. Neural Regen Res 2024; 19:1233-1240. [PMID: 37905869 PMCID: PMC11467932 DOI: 10.4103/1673-5374.385864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly. Although at first it was considered innocuous, small vessel disease is nowadays regarded as one of the major vascular causes of dementia. Radiological signs of small vessel disease include small subcortical infarcts, white matter magnetic resonance imaging hyperintensities, lacunes, enlarged perivascular spaces, cerebral microbleeds, and brain atrophy; however, great heterogeneity in clinical symptoms is observed in small vessel disease patients. The pathophysiology of these lesions has been linked to multiple processes, such as hypoperfusion, defective cerebrovascular reactivity, and blood-brain barrier dysfunction. Notably, studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease. Therefore, the purpose of this review is to provide a new foundation in the study of small vessel disease pathology. First, we discuss the main structural domains and functions of the blood-brain barrier. Secondly, we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease. Finally, we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.
Collapse
Affiliation(s)
- Ruxue Jia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - Gemma Solé-Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Stepanichev MY, Mamedova DI, Gulyaeva NV. Hippocampus under Pressure: Molecular Mechanisms of Development of Cognitive Impairments in SHR Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:711-725. [PMID: 38831507 DOI: 10.1134/s0006297924040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 06/05/2024]
Abstract
Data from clinical trials and animal experiments demonstrate relationship between chronic hypertension and development of cognitive impairments. Here, we review structural and biochemical alterations in the hippocampus of SHR rats with genetic hypertension, which are used as a model of essential hypertension and vascular dementia. In addition to hypertension, dysfunction of the hypothalamic-pituitary-adrenal system observed in SHR rats already at an early age may be a key factor of changes in the hippocampus at the structural and molecular levels. Global changes at the body level, such as hypertension and neurohumoral dysfunction, are associated with the development of vascular pathology and impairment of the blood-brain barrier. Changes in multiple biochemical glucocorticoid-dependent processes in the hippocampus, including dysfunction of steroid hormones receptors, impairments of neurotransmitter systems, BDNF deficiency, oxidative stress, and neuroinflammation are accompanied by the structural alterations, such as cellular signs of neuroinflammation micro- and astrogliosis, impairments of neurogenesis in the subgranular neurogenic zone, and neurodegenerative processes at the level of synapses, axons, and dendrites up to the death of neurons. The consequence of this is dysfunction of hippocampus, a key structure of the limbic system necessary for cognitive functions. Taking into account the available results at various levels starting from the body and brain structure (hippocampus) levels to molecular one, we can confirm translational validity of SHR rats for modeling mechanisms of vascular dementia.
Collapse
Affiliation(s)
- Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Diana I Mamedova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
6
|
Liu JP, Li YY, Yang KZ, Shi SF, Gong Y, Tao Z, Tong Y, Sun J, Yue BN, Li XL, Gao XY, Liu QG, Xu M. Electroacupuncture and manual acupuncture at LR3 and ST36 have attenuating effects on hypertension and subsequent cognitive dysfunction in spontaneously hypertensive rats: A preliminary resting-state functional magnetic resonance imaging study. Front Neurosci 2023; 17:1129688. [PMID: 36968479 PMCID: PMC10033598 DOI: 10.3389/fnins.2023.1129688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Chronic hypertension may have a contributory role toward cognitive impairment. Acupuncture exerts protective effects on cognitive functions while controlling the blood pressure. However, the neural mechanism underlying the dual attenuating effect of acupuncture remains unclear. In this study, we investigated the effects of electroacupuncture (EA) and manual acupuncture (MA) on the functional activity of the brain regions of spontaneously hypertensive rats (SHRs) by through resting-state functional magnetic resonance imaging (rs-fMRI). We also evaluated the differences in these functional activities between the EA and MA groups. Methods We randomly assigned 30 SHRs into the EA, MA, and model (SHR) groups. Wistar Kyoto rats (n = 10) were used as normal control (WKY). The interventions were administered once every alternate day for 12 weeks. The systolic blood pressure of all rats was recorded every 2 weeks until the end of the intervention. After the intervention, rs-fMRI scanning was performed to access the whole brain data of rats randomly selected from each group evenly. The amplitude of low frequency fluctuation (ALFF) analysis, regional homogeneity (ReHo) analysis, and functional connectivity (FC) analysis were also conducted. The Morris water maze (MWM) test was conducted to evaluate the learning and memory of the rats. Hematoxylin-eosin staining and Nissl staining were performed to observe histopathological changes in the key brain regions. Results We demonstrated that, when compared with the SHR group, the EA and MA groups had significantly lower blood pressure and better performance for behavioral test indices, and that the effect of EA was better than that of MA. ALFF and ReHo analyses revealed enhancement of the neuronal activity of some functionally impaired brain areas in the EA and MA groups. The main callback brain regions included the hypothalamus, entorhinal cortex, brain stem, prelimbic cortex, cingulate cortex, corpus callosum, and cerebellum. The FC analysis demonstrated that EA and MA enhanced the functional connectivity between the seeds and brain regions such as the brain stem, entorhinal cortex, hippocampus, prelimbic cortex, and cerebellum. The pathological test of the entorhinal cortex also verified the protective effect of acupuncture on the neuronal functional activity. Discussion Our findings suggested that EA and MA exhibited attenuating effects on hypertension and cognitive dysfunction by enhancing the functional activities in the corresponding brain regions. Moreover, EA activated more callback brain regions and functional connectivity than MA, which may explain why the effect of EA was better than that of MA.
Collapse
Affiliation(s)
- Ji-peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yin-yin Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-zhen Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-feng Shi
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuang Tao
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yi Tong
- Beijing Tong Ren Tang International Natural-Pharm Co., Ltd., Beijing, China
| | - Jiao Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Bing-nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-lu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-yu Gao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qing-guo Liu,
| | - Meng Xu
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Meng Xu,
| |
Collapse
|
7
|
Yang Y, Zhu Q, Wang L, Gao D, Wang Z, Geng Z. Effects of hypertension and aging on brain function in spontaneously hypertensive rats: a longitudinal resting-state functional magnetic resonance imaging study. Cereb Cortex 2022; 33:5493-5500. [PMID: 36408643 PMCID: PMC10152091 DOI: 10.1093/cercor/bhac436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
To investigate the dynamic evolution of brain function under the comorbidities of hypertension and aging. Resting-state functional magnetic resonance imaging scans were longitudinally acquired at 10, 24, and 52 weeks in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats. We computed the mean amplitude of low-frequency fluctuation (mALFF), mean regional homogeneity (mReHo), and functional connectivity (FC). There was no interaction between hypertension and aging on brain function. The main effect of aging reflects primarily the cumulative increase of brain activity, especially the increase of mALFF in amygdala and mReHo in cingulate cortex, accompanied by the decrease of brain activity. The main effect of hypertension reflects primarily decreased brain activity in default modal network, accompanied by increased brain activity. The main effect of aging shows reduced brain FC as early as 24 weeks, and the main effect of hypertension shows higher brain FC in SHRs. The novel discovery is that 1 brain FC network increased linearly with age in SHRs, in addition to the linearly decreasing FC. Hypertension and aging independently contribute to spatiotemporal alterations in brain function in SHRs following ongoing progression and compensation. This study provides new insight into the dynamic characteristics of brain function.
Collapse
Affiliation(s)
- Yingying Yang
- Hebei Medical University Medical Imaging Specialty, Graduate School, , Shijiazhuang 050000 , China
- The First Hospital of Qinhuangdao Department of Imaging, , Qinhuangdao 066000 , China
| | - Qingfeng Zhu
- The Second Hospital of Hebei Medical University Department of Medical Imaging, , Shijiazhuang 050000 , China
| | - Lixin Wang
- The Second Hospital of Hebei Medical University Department of Medical Imaging, , Shijiazhuang 050000 , China
| | - Duo Gao
- The Second Hospital of Hebei Medical University Department of Medical Imaging, , Shijiazhuang 050000 , China
| | - Zhanqiu Wang
- The First Hospital of Qinhuangdao Department of Imaging, , Qinhuangdao 066000 , China
| | - Zuojun Geng
- The Second Hospital of Hebei Medical University Department of Medical Imaging, , Shijiazhuang 050000 , China
| |
Collapse
|
8
|
Ji X, Tian L, Niu S, Yao S, Qu C. Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes. Front Aging Neurosci 2022; 14:963876. [PMID: 36072486 PMCID: PMC9441869 DOI: 10.3389/fnagi.2022.963876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hypertension is a leading risk factor for cerebral small vessel disease (CSVD), a brain microvessels dysfunction accompanied by white matter lesions (WML). Trimethylamine N-oxide (TMAO), a metabolite of intestinal flora, is correlated with cardiovascular and aging diseases. Here, we explored the effect of TMAO on the demyelination of WML. Methods Spontaneous hypertension rats (SHRs) and primary oligodendrocytes were used to explore the effect of TMAO on demyelination in vivo and in vitro. T2-weighted magnetic resonance imaging (MRI) was applied to characterize the white matter hyperintensities (WMH) in rats. TMAO level was evaluated using LC-MS/MS assay. The histopathological changes of corpus callosum were measured by hematoxylin-eosin and luxol fast blue staining. And the related markers were detected by IHC, IF and western blot assay. Mito Tracker Red probe, DCFH-DA assay, flow cytometry based on JC-1 staining and Annexin V-FITC/PI double staining were conducted to evaluate the mitochondrial function, intracellular ROS levels and cell apoptosis. Results SHRs exhibited stronger WMH signals and a higher TMAO level than age-matched normotensive Wistar-kyoto rats (WKY). The corpus callosum region of SHR showed decreased volumes and enhanced demyelination when treated with TMAO. Furthermore, TMAO significantly elevated ROS production and induced NLRP3 inflammasome and impairment of mitochondrial function of oligodendrocytes. More importantly, TMAO enhanced the pyroptosis-related inflammatory death of oligodendrocytes. Conclusion TMAO could cross the blood-brain barrier (BBB) and promote oligodendrocytes pyroptosis via ROS/NLRP3 inflammasome signaling and mitochondrial dysfunction to promote demyelination, revealing a new diagnostic marker for WML under hypertension.
Collapse
Affiliation(s)
- Xiaotan Ji
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Jining No. 1 People’s Hospital, Jining, China
| | - Long Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shenna Niu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shumei Yao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chuanqiang Qu,
| |
Collapse
|
9
|
Gao Y, Li D, Lin J, Thomas AM, Miao J, Chen D, Li S, Chu C. Cerebral small vessel disease: Pathological mechanisms and potential therapeutic targets. Front Aging Neurosci 2022; 14:961661. [PMID: 36034144 PMCID: PMC9412755 DOI: 10.3389/fnagi.2022.961661] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) represents a diverse cluster of cerebrovascular diseases primarily affecting small arteries, capillaries, arterioles and venules. The diagnosis of CSVD relies on the identification of small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, and microbleeds using neuroimaging. CSVD is observed in 25% of strokes worldwide and is the most common pathology of cognitive decline and dementia in the elderly. Still, due to the poor understanding of pathophysiology in CSVD, there is not an effective preventative or therapeutic approach for CSVD. The most widely accepted approach to CSVD treatment is to mitigate vascular risk factors and adopt a healthier lifestyle. Thus, a deeper understanding of pathogenesis may foster more specific therapies. Here, we review the underlying mechanisms of pathological characteristics in CSVD development, with a focus on endothelial dysfunction, blood-brain barrier impairment and white matter change. We also describe inflammation in CSVD, whose role in contributing to CSVD pathology is gaining interest. Finally, we update the current treatments and preventative measures of CSVD, as well as discuss potential targets and novel strategies for CSVD treatment.
Collapse
Affiliation(s)
- Yue Gao
- Department of Neurointervention and Neurological Intensive Care, Dalian Municipal Central Hospital, Dalian, China
| | - Di Li
- Department of Neurointervention and Neurological Intensive Care, Dalian Municipal Central Hospital, Dalian, China
| | - Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Aline M. Thomas
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institution, Baltimore, MD, United States
| | - Jianyu Miao
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Dong Chen
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
- *Correspondence: Chengyan Chu,
| |
Collapse
|
10
|
Han MX, Jiang WY, Jiang Y, Wang LH, Xue R, Zhang GX, Chen JW. Gao-Zi-Yao improves learning and memory function in old spontaneous hypertensive rats. BMC Complement Med Ther 2022; 22:147. [PMID: 35643519 PMCID: PMC9148521 DOI: 10.1186/s12906-022-03630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aims Gao-Zi-Yao has long been a unique way for treating various diseases. The present study is to explore the effect of Gao-Zi-Yao on learning and memory function in old spontaneous hypertensive rats (SHR) and its possible mechanism. Method Male old SHR were received different doses of Gao-Zi-Yao for 4 weeks. Systolic blood pressure (SBP) and heart rate were monitored. Serum levels of nitric oxide (NO), interleukin (IL)-1β, IL-2, and tumor necrotic factor (TNF)-α were measured. Morris water maze was performed to test the learning and memory function of the rats. Number of neurons in hippocampus was counted by Nissl staining. Western blot was applied to detect the expressions of learning and memory function related proteins, N-methyl-d-aspartate receptor 2B (NMDAR 2B), glutamate receptor 1 (GluR1), phosphorylated-calmodulin-dependent protein kinase II (p-CaMK II), and phosphorylated-cAMP responsive element-binding protein (p-CREB) in rat hippocampus. Results Data showed that Gao-Zi-Yao reduced SBP in old SHR, elevated NO level, and suppressed levels of IL-1β, IL-2, TNF-α. The results of Morris water maze experiment showed that Gao-Zi-Yao dose-dependently improved learning and memory function. Number of neurons in the hippocampal dentate gyrus (DG) region of the old SHR was increased by Gao-Zi-Yao treatment. In addition, Gao-Zi-Yao elevated the protein expressions of NMDAR 2B, GluR1, p-CaMK II, and p-CREB in hippocampus. Conclusion Gao-Zi-Yao decreases SBP and improves the learning and memory function of the old SHR by regulation of oxidative stress, inflammatory factors and neuron number in hippocampal DG area and the expression of learning and memory function related proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03630-0.
Collapse
|
11
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. Tamoxifen offers long-term neuroprotection after hippocampal silent infarct in male rats. Horm Behav 2021; 136:105085. [PMID: 34749277 DOI: 10.1016/j.yhbeh.2021.105085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Silent infarcts (SI) are a cerebral small vessel disease characterized by small subcortical infarcts. These occur in the absence of typical ischemia symptoms but are linked to cognitive decline and dementia. While there are no approved treatments for SI, recent results from our laboratory suggest that tamoxifen, a selective estrogen receptor modulator, is a viable candidate. In the present study, we induced SI in the dorsal hippocampal CA1 region of rats and assessed the effects of systemic administration of tamoxifen (5 mg/kg, twice) 21 days after injury on cognitive and pathophysiological measures, including cell loss, apoptosis, gliosis and estrogen receptors (ERs). We found that tamoxifen protected against the SI-induced cognitive dysfunction on the hippocampal-dependent, place recognition task, cell and ER loss, and increased apoptosis and gliosis in the CA1. Exploratory data analyses using a scatterplot matrix and principal component analysis indicated that SI-tamoxifen rats were indistinguishable from sham controls while they differed from SI rats, who were characterized by enhanced cell loss, apoptosis and gliosis, lower ERs, and recognition memory deficit. Supervised machine learning using support vector machine (SVM) determined predictors of progression from the early ischemic state to the dementia-like state. It showed that caspase-3 and ERα in the CA1 and exploration proportion were reliable and accurate predictors of this progression. Importantly, tamoxifen ameliorated SI-induced effects on all three of these variables, providing further evidence for its viability as a candidate treatment for SI and prevention of associated dementia.
Collapse
|
12
|
Finney CA, Shvetcov A, Westbrook RF, Morris MJ, Jones NM. The selective estrogen receptor modulator tamoxifen protects against subtle cognitive decline and early markers of injury 24 h after hippocampal silent infarct in male Sprague-Dawley rats. Horm Behav 2021; 134:105016. [PMID: 34242875 DOI: 10.1016/j.yhbeh.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
Silent infarcts (SI) are subcortical cerebral infarcts occurring in the absence of typical ischemia symptoms and are linked to cognitive decline and dementia development. There are no approved treatments for SI. One potential treatment is tamoxifen, a selective estrogen receptor modulator. It is critical to establish whether treatments effectively target the early consequences of SI to avoid progression to complete injury. We induced SI in the dorsal hippocampal CA1 of rats and assessed whether tamoxifen is protective 24 h later against cognitive deficits and injury responses including gliosis, apoptosis, inflammation and changes in estrogen receptors (ERs). SI led to subtle cognitive impairment on the object place task, an effect ameliorated by tamoxifen administration. SI did not lead to detectable hippocampal cell loss but increased apoptosis, astrogliosis, microgliosis and inflammation. Tamoxifen protected against the effects of SI on all measures except microgliosis. SI increased ERα and decreased ERβ in the hippocampus, which were mitigated by tamoxifen. Exploratory data analyses using scatterplot matrices and principal component analysis indicated that SI rats given tamoxifen were indistinguishable from controls. Further, SI rats were significantly different from all other groups, an effect associated with low levels of ERα and increased apoptosis, gliosis, inflammation, ERβ, and time spent with the unmoved object. The results demonstrate that tamoxifen is protective against the early cellular and cognitive consequences of hippocampal SI 24 h after injury. Tamoxifen mitigates apoptosis, gliosis, and inflammation and normalization of ER levels in the CA1, leading to improved cognitive outcomes after hippocampal SI.
Collapse
|
13
|
Wu ML, Yang XQ, Xue L, Duan W, Du JR. Age-related cognitive decline is associated with microbiota-gut-brain axis disorders and neuroinflammation in mice. Behav Brain Res 2021; 402:113125. [PMID: 33422597 DOI: 10.1016/j.bbr.2021.113125] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
Age-related cognitive decline is associated with chronic low grade neuroinflammation that may result from a complex interplay among many factors, such as bidirectional communication between the central nervous system (CNS) and gut microbiota. The present study used 2-month-old (young group) and 15-month-old (aged group) male C57BL/6 mice to explore the potential association between age-related cognitive decline and the microbiota-gut-brain axis disorder. We observed that aged mice exhibited significant deficits in learning and memory, neuronal and synaptic function compared with young mice. Aged mice also exhibited significant dysbiosis of the gut microbiota. Disruptions of the intestinal barrier and blood-brain barrier were also observed, including increases in intestinal, low-grade systemic and cerebral inflammation. Furthermore, plasma and brain levels of lipopolysaccharide (LPS) were significantly higher in aged mice compared with young mice, with increasing expression of Toll-like receptor 4 (TLR4) and myeloid differential protein-88 (MyD88) and the nuclear translocation of nuclear factor κB (NF-κB) in intestinal and brain tissues. These findings showed that microbiota-gut-brain axis dysfunction that occurs through LPS-induced activation of the TLR4/NF-κB signaling pathway is implicated in age-related neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Mei-Ling Wu
- Departmen Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Xue-Qin Yang
- Departmen Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Li Xue
- Departmen Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Jun-Rong Du
- Departmen Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
14
|
Finney CA, Morris MJ, Westbrook RF, Jones NM. Hippocampal silent infarct leads to subtle cognitive decline that is associated with inflammation and gliosis at twenty-four hours after injury in a rat model. Behav Brain Res 2020; 401:113089. [PMID: 33358919 DOI: 10.1016/j.bbr.2020.113089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Silent infarcts (SI) are subcortical cerebral infarcts that occur in the absence of clinical symptoms commonly associated with ischemia and are linked to dementia development. Little is known about the pathophysiology underlying the cognitive dysfunction associated with SI, and few studies have examined the early cellular responses and neurobiological underpinnings. We induced SI in adult male Sprague-Dawley rats using an infusion of endothelin-1 in the CA1 dorsal hippocampus. Twenty-four hours later, we assessed cognition using the hippocampal-dependent object place recognition task. We also examined whether the resulting cognitive effects were associated with common markers of ischemia, specifically cell and synapse loss, gliosis, and inflammation, using histology and immunohistochemistry. Hippocampal SI led to subtle cognitive impairment on the object place recognition task 24 -hs post-injury. This was characterized by a significant difference in exploration proportion relative to a pre-injury baseline and a positive association between time spent with both the moved and unmoved objects. SI did not result in any detectable cell or synaptophysin loss, but did increase apoptosis, gliosis and inflammation in the CA1. Principal component analysis indicated the main variables associated with hippocampal SI included increased time spent with the unmoved object, gliosis, apoptosis and inflammation as well as decreased exploration proportion and CA1 cells. Our data demonstrate that hippocampal SI can lead to cognitive dysfunction 24 -hs after injury. Further, this appears to be driven by early degenerative processes including apoptosis, gliosis and inflammation, suggesting that these may be targets for early interventions treating hippocampal SI and its cognitive consequences.
Collapse
|
15
|
Gao H, Song R, Li Y, Zhang W, Wan Z, Wang Y, Zhang H, Han S. Effects of Oat Fiber Intervention on Cognitive Behavior in LDLR -/- Mice Modeling Atherosclerosis by Targeting the Microbiome-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14480-14491. [PMID: 33237770 DOI: 10.1021/acs.jafc.0c05677] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is known that cardiovascular disease can result in cognitive impairment. However, whether oat fiber improves cognitive behavior through a cardiovascular-related mechanism remains unclear. The present work was aimed to elucidate the potential of oat fiber on cognitive behavior by targeting the neuroinflammation signal and microbiome-gut-brain axis in a mouse model of atherosclerosis. Male low-density lipoprotein receptor knock-out (LDLR-/-) mice were treated with a high fat/cholesterol diet without or with 0.8% oat fiber for 14 weeks. Behavioral tests indicated that LDLR-/- mice exhibited a significant cognitive impairment; however, oat fiber can improve cognitive behavior by reducing latency to the platform and increasing the number of crossing and swimming distance in the target quadrant. Oat fiber can inhibit Aβ plaque processing in both the cortex and hippocampus via decreasing the relative protein expression of GFAP and IBα1. Notably, oat fiber inhibited the nod-like receptor family pyrin domain-containing 3 inflammasome activation and blocked the toll-like receptor 4 signal pathway in both the cortex and hippocampus, accompanied by a reduction of circulating serum lipopolysaccharide. In addition, oat fiber raised the expressions of short-chain fatty acid (SCFA) receptors and tight junction proteins (zonula occludens-1 and occludin) and improved intestinal microbiota diversity via increasing the contents of gut metabolites SCFAs. In summary, the present study provided experimental evidence that dietary oat fiber retarded the progression of cognitive impairment in a mouse model of atherosclerosis. Mechanistically, the neuroprotective potential was related to oat fiber and its metabolites SCFAs on the diversity and abundance of gut microbiota that produced anti-inflammatory metabolites, leading to repressed neuroinflammation and reduced gut permeability through the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Hui Gao
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Ruijuan Song
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Yuezhen Li
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Weiguo Zhang
- Independent Scientist, Irving, Texas 75039, United States
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Ying Wang
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| | - Hong Zhang
- Department of Food and Nutrition, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009 Jiangsu, P.R. China
| | - Shufen Han
- Department of Nutrition and Food Hygiene, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123 Jiangsu, P.R. China
| |
Collapse
|
16
|
Xue Y, Liu N, Zhang M, Ren X, Tang J, Fu J. Concomitant enlargement of perivascular spaces and decrease in glymphatic transport in an animal model of cerebral small vessel disease. Brain Res Bull 2020; 161:78-83. [PMID: 32353396 DOI: 10.1016/j.brainresbull.2020.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/04/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To observe glymphatic transport and evaluate enlarged perivascular spaces (PVSs) in spontaneously hypertensive rats (SHRs). METHODS SHRs were used as an animal model of cerebral small vessel disease, and Wistar Kyoto (WKY) rats were used as the control group. Histopathology was used to evaluate the enlargement of PVSs. A fluorescent tracer was infused into the cisterna magna of rats, and the proportion of the brain parenchyma area exposed to the fluorescent tracer was later quantified to evaluate the influx and efflux function of the glymphatic system. The global and polarized expression of aquaporin protein 4 (AQP4) was analyzed by immunofluorescence. RESULTS Compared with WKY rats, SHRs exhibited obviously enlarged PVSs and significantly decreased influx and efflux function of the glymphatic system. The results showed a significant decrease in AQP4 polarity in SHRs, but a difference in global AQP4 expression was not observed between SHRs and WKY rats. CONCLUSIONS Impaired glymphatic transport may be involved in the pathogenesis of arteriolosclerotic cerebral small vessel disease, and enlarged PVSs may be a manifestation of the impaired glymphatic system.
Collapse
Affiliation(s)
- Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Na Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Miaoyi Zhang
- Department of Neurology, North of Huashan Hospital, Fudan University, Shanghai, China.
| | - Xue Ren
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|