1
|
Liu N, Liang X, Chen Y, Xie L. Recent trends in treatment strategies for Alzheimer 's disease and the challenges: A topical advancement. Ageing Res Rev 2024; 94:102199. [PMID: 38232903 DOI: 10.1016/j.arr.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
Alzheimer's Disease (AD) is an irreversible and progressive neurological disease that has affected at least 50 million people around the globe. Considering the severity of the disease and the continuous increase in the number of patients, the development of new effective drugs or intervention strategies for AD has become urgent. AD is caused by a combination of genetic, environmental, and lifestyle factors, but its exact cause has not yet been clarified. Given the current challenges being faced in the clinical treatment of AD, such as complex AD pathological network and insufficient early diagnosis, herein, we have focused on the three core pathological features of AD, including amyloid-β (Aβ) aggregation, tau phosphorylation and tangles, and activation of inflammatory factors. In this review, we have briefly underscored the primary evidence supporting each pathology and discuss AD pathological network among Aβ, tau, and inflammation. We have also comprehensively summarized the most instructive drugs and their treatment strategies against Aβ, tau, or neuroinflammation used in basic research and clinical trials. Finally, we have discussed and outlined the pros and cons of each pathological approach and looked forward to potential personalized diagnosis and treatment strategies that are beneficial to AD patients.
Collapse
Affiliation(s)
- Ni Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yu Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Vashisth K, Sharma S, Ghosh S, Babu MA, Ghosh S, Iqbal D, Kamal M, Almutary AG, Jha SK, Ojha S, Bhaskar R, Jha NK, Sinha JK. Immunotherapy in Alzheimer's Disease: Current Status and Future Directions. J Alzheimers Dis 2024; 101:S23-S39. [PMID: 39422934 DOI: 10.3233/jad-230603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder characterized by memory loss, cognitive decline, and behavioral changes. Immunotherapy aims to harness the immune system to target the underlying pathology of AD and has shown promise as a disease-modifying treatment for AD. By focusing on the underlying disease pathogenesis and encouraging the removal of abnormal protein aggregates in the brain, immunotherapy shows promise as a potential treatment for AD. The development of immunotherapy for AD began with early attempts to use antibodies to target beta-amyloid. The amyloid hypothesis which suggests that the accumulation of beta-amyloid in the brain triggers the pathological cascade that leads to AD has been a driving force behind the development of immunotherapy for AD. However, recent clinical trials of monoclonal antibodies targeting amyloid-β have shown mixed results, highlighting the need for further research into alternative immunotherapy approaches. Additionally, the safety and efficacy of immunotherapy for AD remain an area of active investigation. Some immunotherapeutic approaches have shown promise, while others have been associated with significant side effects, including inflammation of the brain. Sleep has a significant impact on various physiological processes, including the immune system, and has been linked to the pathogenesis of AD. Thus, improving sleep quality and duration may benefit the immune system and potentially enhance the effectiveness of immunotherapeutic approaches for AD. In this review, we discussed the promises of immunotherapy as a disease-modifying treatment for AD as well as possible methods to improve the efficacy and safety of immunotherapy to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
| | - Shivani Sharma
- Department of Pharmaceutics, R.K.S.D. College of Pharmacy, Kaithal, Haryana, India
| | - Shampa Ghosh
- GloNeuro, Noida, India
- ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Korea
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | |
Collapse
|
3
|
Ng PY, Zhang C, Li H, Baker DJ. Senescence Targeting Methods Impact Alzheimer's Disease Features in 3xTg Mice. J Alzheimers Dis 2024; 97:1751-1763. [PMID: 38306030 PMCID: PMC10939718 DOI: 10.3233/jad-230465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Cellular senescence has been associated with neurodegenerative disease and clearance of senescent cells using genetic or pharmaceutical strategies (senolytics) has demonstrated beneficial effects in mouse models investigating individual disease etiologies of Alzheimer's disease (AD). However, it has remained unclear if senescent cell clearance in a mouse model exhibiting both plaque and tau pathologies modifies the disease state (3xTg). Objective To investigate the effects of senescent cell clearance in the 3xTg mouse model. Methods 3xTg mice were treated with senolytics (ABT263 (navitoclax; NAVI), a combination of dasatinib and quercetin (D+Q)), or subjected to transgene-mediated removal of p16-expressing cells (via INK-ATTAC). Results Senolytic treatments consistently reduced microgliosis and ameliorated both amyloid and tau pathology in 3xTg mice. Using RNA sequencing, we found evidence that synaptic dysfunction and neuroinflammation were attenuated with treatment. These beneficial effects were not observed with short-term senolytic treatment in mice with more advanced disease. Conclusions Overall, our results further corroborate the beneficial effects senescent cell clearance could have on AD and highlight the importance of early intervention for the treatment of this debilitating disease.
Collapse
Affiliation(s)
- Pei Y. Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Darren J. Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research at Mayo Clinic, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- The Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Li X, Chen X, Gao X. Copper and cuproptosis: new therapeutic approaches for Alzheimer's disease. Front Aging Neurosci 2023; 15:1300405. [PMID: 38178962 PMCID: PMC10766373 DOI: 10.3389/fnagi.2023.1300405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Copper (Cu) plays a crucial role as a trace element in various physiological processes in humans. Nonetheless, free copper ions accumulate in the brain over time, resulting in a range of pathological changes. Compelling evidence indicates that excessive free copper deposition contributes to cognitive decline in individuals with Alzheimer's disease (AD). Free copper levels in the serum and brain of AD patients are notably elevated, leading to reduced antioxidant defenses and mitochondrial dysfunction. Moreover, free copper accumulation triggers a specific form of cell death, namely copper-dependent cell death (cuproptosis). This article aimed to review the correlation between copper dysregulation and the pathogenesis of AD, along with the primary pathways regulating copper homoeostasis and copper-induced death in AD. Additionally, the efficacy and safety of natural and synthetic agents, including copper chelators, lipid peroxidation inhibitors, and antioxidants, were examined. These treatments can restore copper equilibrium and prevent copper-induced cell death in AD cases. Another aim of this review was to highlight the significance of copper dysregulation and promote the development of pharmaceutical interventions to address it.
Collapse
Affiliation(s)
- Xiao Li
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinwang Chen
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiyan Gao
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Trouche SG, Boutajangout A, Asuni A, Fontés P, Sigurdsson EM, Verdier JM, Mestre-Francés N. Amyloid-β targeting immunisation in aged non-human primate (Microcebus murinus). Brain Behav Immun 2023; 109:63-77. [PMID: 36592872 PMCID: PMC10023341 DOI: 10.1016/j.bbi.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Non-human primates have an important translational value given their close phylogenetic relationship to humans. Studies in these animals remain essential for evaluating efficacy and safety of new therapeutic approaches, particularly in aging primates that display Alzheimer's disease (AD) -like pathology. With the objective to improve amyloid-β (Aβ) targeting immunotherapy, we investigated the safety and efficacy of an active immunisation with an Aβ derivative, K6Aβ1-30-NH2, in old non-human primates. Thirty-two aged (4-10 year-old) mouse lemurs were enrolled in the study, and received up to four subcutaneous injections of the vaccine in alum adjuvant or adjuvant alone. Even though antibody titres to Aβ were not high, pathological examination of the mouse lemur brains showed a significant reduction in intraneuronal Aβ that was associated with reduced microgliosis, and the vaccination did not lead to microhemorrhages. Moreover, a subtle cognitive improvement was observed in the vaccinated primates, which was probably linked to Aβ clearance. This Aβ derivative vaccine appeared to be safe as a prophylactic measure based on the brain analyses and because it did not appear to have detrimental effects on the general health of these old animals.
Collapse
Affiliation(s)
- Stéphanie G Trouche
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| | - Allal Boutajangout
- Departments of Neurology, and Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States.
| | - Ayodeji Asuni
- Department of Psychiatry, New York University Grossman School of Medicine, New York, United States.
| | | | - Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, United States.
| | - Jean-Michel Verdier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| | - Nadine Mestre-Francés
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| |
Collapse
|
6
|
Song C, Zhang T, Zhang Y. Conformational Essentials Responsible for Neurotoxicity of Aβ42 Aggregates Revealed by Antibodies against Oligomeric Aβ42. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196751. [PMID: 36235284 PMCID: PMC9570743 DOI: 10.3390/molecules27196751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Soluble aggregation of amyloid β-peptide 1-42 (Aβ42) and deposition of Aβ42 aggregates are the initial pathological hallmarks of Alzheimer's disease (AD). The bipolar nature of Aβ42 molecule results in its ability to assemble into distinct oligomers and higher aggregates, which may drive some of the phenotypic heterogeneity observed in AD. Agents targeting Aβ42 or its aggregates, such as anti-Aβ42 antibodies, can inhibit the aggregation of Aβ42 and toxicity of Aβ42 aggregates to neural cells to a certain extent. However, the epitope specificity of an antibody affects its binding affinity for different Aβ42 species. Different antibodies target different sites on Aβ42 and thus elicit different neuroprotective or cytoprotective effects. In the present review, we summarize significant information reflected by anti-Aβ42 antibodies in different immunotherapies and propose an overview of the structure (conformation)-toxicity relationship of Aβ42 aggregates. This review aimed to provide a reference for the directional design of antibodies against the most pathogenic conformation of Aβ42 aggregates.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
- School of Life Science, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
7
|
Gallego Villarejo L, Bachmann L, Marks D, Brachthäuser M, Geidies A, Müller T. Role of Intracellular Amyloid β as Pathway Modulator, Biomarker, and Therapy Target. Int J Mol Sci 2022; 23:ijms23094656. [PMID: 35563046 PMCID: PMC9103247 DOI: 10.3390/ijms23094656] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The β- and γ-secretase-driven cleavage of the amyloid precursor protein (APP) gives rise to the amyloid β peptide, which is believed to be the main driver of neurodegeneration in Alzheimer’s disease (AD). As it is prominently detectable in extracellular plaques in post-mortem AD brain samples, research in recent decades focused on the pathological role of extracellular amyloid β aggregation, widely neglecting the potential meaning of very early generation of amyloid β inside the cell. In the last few years, the importance of intracellular amyloid β (iAβ) as a strong player in neurodegeneration has been indicated by a rising number of studies. In this review, iAβ is highlighted as a crucial APP cleavage fragment, able to manipulate intracellular pathways and foster neurodegeneration. We demonstrate its relevance as a pathological marker and shed light on initial studies aiming to modulate iAβ through pharmacological treatment, which has been shown to have beneficial effects on cognitive properties in animal models. Finally, we display the relevance of viral infections on iAβ generation and point out future directions urgently needed to manifest the potential relevance of iAβ in Alzheimer’s disease.
Collapse
Affiliation(s)
- Lucia Gallego Villarejo
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Lisa Bachmann
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - David Marks
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Maite Brachthäuser
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Alexander Geidies
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Thorsten Müller
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Correspondence:
| |
Collapse
|
8
|
Shi M, Chu F, Zhu F, Zhu J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer's Disease: A Focus on Aducanumab and Lecanemab. Front Aging Neurosci 2022; 14:870517. [PMID: 35493943 PMCID: PMC9039457 DOI: 10.3389/fnagi.2022.870517] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of age-related dementia in the world, and its main pathological features consist of amyloid-β (Aβ) plaque deposits and neurofibrillary tangles formed by hyperphosphorylated tau protein. So far, only a few AD treatments approved have been applied in the clinic, but the effects of these drugs are limited only for partial symptomatic relief to patients with AD and are unable to alter AD progression. Later, all efforts for AD treatments with targeting the pathogenic factors were unsuccessful over the past decades, which suggested that the pathogenesis of AD is complex. Recently, disease-modifying therapies (DMTs) that can change the underlying pathophysiology of AD, with anti-Aβ monoclonal antibodies (mabs) (e.g., aducanumab, bapineuzumab, gantenerumab, solanezumab, and lecanemab) have been developed successively and conducted in clinical trials based on the theory that a systemic failure of cell-mediated Aβ clearance contributes to AD occurrence and progression. In the review, we summarized recent studies on the therapeutic effects and clinical trial results of these mabs in patients with AD. Specifically, we focused on the discussion of the impact of aducanumab and lecanemab on AD pathology and clinical profiles. The review provides a possible evidence for applying immunotherapy with anti-Aβ mabs in AD and analyzes lessons learned from these clinical trials in order to further study the therapeutic and adverse effects of these anti-Aβ mabs on AD.
Collapse
Affiliation(s)
- Mingchao Shi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
9
|
Ma C, Hong F, Yang S. Amyloidosis in Alzheimer's Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules 2022; 27:1210. [PMID: 35209007 PMCID: PMC8876037 DOI: 10.3390/molecules27041210] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
The amyloid hypothesis of Alzheimer's disease has long been the predominant theory, suggesting that Alzheimer's disease is caused by the accumulation of amyloid beta protein (Aβ) in the brain, leading to neuronal toxicity in the central nervous system (CNS). Because of breakthroughs in molecular medicine, the amyloid pathway is thought to be central to the pathophysiology of Alzheimer's disease (AD). Currently, it is believed that altered biochemistry of the Aβ cycle remains a central biological feature of AD and is a promising target for treatment. This review provides an overview of the process of amyloid formation, explaining the transition from amyloid precursor protein to amyloid beta protein. Moreover, we also reveal the relationship between autophagy, cerebral blood flow, ACHE, expression of LRP1, and amyloidosis. In addition, we discuss the detailed pathogenesis of amyloidosis, including oxidative damage, tau protein, NFTs, and neuronal damage. Finally, we list some ways to treat AD in terms of decreasing the accumulation of Aβ in the brain.
Collapse
Affiliation(s)
- Chen Ma
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330006, China;
- Queen Marry College, School of Medicine, Nanchang University, Nanchang 330036, China
| | - Fenfang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330006, China;
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Nanchang 344099, China
| |
Collapse
|
10
|
Kaku H, Ludlow AV, Gutknecht MF, Rothstein TL. Fas Apoptosis Inhibitory Molecule Blocks and Dissolves Pathological Amyloid-β Species. Front Mol Neurosci 2022; 14:750578. [PMID: 34970117 PMCID: PMC8712662 DOI: 10.3389/fnmol.2021.750578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
A number of neurodegenerative diseases are associated with the accumulation of misfolded proteins, including Alzheimer’s disease (AD). In AD, misfolded proteins such as tau and amyloid-β (Aβ) form pathological insoluble deposits. It is hypothesized that molecules capable of dissolving such protein aggregates might reverse disease progression and improve the lives of afflicted AD patients. Here we report new functions of the highly conserved mammalian protein, Fas Apoptosis Inhibitory Molecule (FAIM). We found that FAIM-deficient Neuro 2A cells accumulate Aβ oligomers/fibrils. We further found that recombinant human FAIM prevents the generation of pathologic Aβ oligomers and fibrils in a cell-free system, suggesting that FAIM functions without any additional cellular components. More importantly, recombinant human FAIM disaggregates and solubilizes established Aβ fibrils. Our results identify a previously unknown, completely novel candidate for understanding and treating irremediable, irreversible, and unrelenting neurodegenerative diseases.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Center for Immunobiology, Kalamazoo, MI, United States.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | | | | | - Thomas L Rothstein
- Center for Immunobiology, Kalamazoo, MI, United States.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
11
|
Montoliu-Gaya L, Villegas S. Production of Therapeutic Single-Chain Variable Fragments (ScFv) in Pichia pastoris. Methods Mol Biol 2022; 2313:151-167. [PMID: 34478136 DOI: 10.1007/978-1-0716-1450-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interest in the use of monoclonal antibodies as therapeutic molecules has raised in the recent years. Due to their high affinity and specificity towards other biological molecules, antibodies are being widely used to treat a broad range of human diseases such as cancer, rheumatism, and cardiovascular diseases. Currently, the production of IgG-like antibodies is mainly obtained from stable or transient mammalian expression systems that allow proper folding and posttranslational modifications. Despite the technological advances of the last decade, the use of these systems still has a rather high production cost and long processing times. For these reasons, researchers are increasingly interested in alternative antibody production methods as well as alternative antibody formats. Bacterial systems, such as Escherichia coli, are extensively being used for recombinant protein production because their easy manipulation and cheap costs. However, the presence of lipopolysaccharides (LPS) traces in the already fractionated recombinant protein makes these systems not good candidates for the preparation of therapeutic molecules. Yeast systems, such as Pichia pastoris, present the convenient easy manipulation of microbial systems but show some key advantages of eukaryotic expression systems, like improved folding machinery and absence of LPS. They are especially suitable for the production of antibody fragments, which do not need human-like glycosylation, avoiding the high costs of mammalian systems. Here, the protocol for the expression and purification of a single-chain antibody fragment (scFv) in P. pastoris is provided, in deep detail for lab manipulation and briefly for a 5L-bioreactor production.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sandra Villegas
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular. Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Sun ZT, Ma C, Li GJ, Zheng XY, Hao YT, Yang Y, Wang X. Application of Antibody Fragments Against Aβ With Emphasis on Combined Application With Nanoparticles in Alzheimer's Disease. Front Pharmacol 2021; 12:654611. [PMID: 33967797 PMCID: PMC8100690 DOI: 10.3389/fphar.2021.654611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and accumulating evidences suggest a key role of amyloid-β (Aβ) peptide in the pathogenesis of AD. According to the amyloid cascade hypothesis, the imbalance of producing and clearing Aβ is the beginning of neurodegeneration and dementia. Consequently, immunotherapy becomes popular through using antibodies against Aβ. However, many studies of monoclonal antibodies were stopped because adverse effects appeared or there were no evident benefits observed. Some antibody fragments have many advantages over monoclonal antibodies, such as small sizes, lack of the crystallizable fraction (Fc) and so on. There are three main antibody fragments, including single chain variable fragments (scFvs), Fab fragments and single-domain antibody fragments. Nanoparticles can facilitate the entry of drug molecules across the blood-brain barrier, making them become excellent carriers. Various kinds of nanoparticles have been applied in the treatment of AD. The combination of nanoparticles and antibody fragments against amyloid-β can be used in the diagnosis and treatment of Alzheimer’s disease. In this review, we summarize the progress of antibody fragments against amyloid-β in AD, focusing on the combined application with nanoparticles in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhi-Ting Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Chi Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Guang-Jian Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yi-Tong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Dennison JL, Ricciardi NR, Lohse I, Volmar CH, Wahlestedt C. Sexual Dimorphism in the 3xTg-AD Mouse Model and Its Impact on Pre-Clinical Research. J Alzheimers Dis 2021; 80:41-52. [PMID: 33459720 PMCID: PMC8075398 DOI: 10.3233/jad-201014] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Female sex is a leading risk factor for developing Alzheimer’s disease (AD). Sexual dimorphism in AD is gaining attention as clinical data show that women are not only more likely to develop AD but also to experience worse pathology and faster cognitive decline. Pre-clinical AD research in animal models often neglects to address sexual dimorphism in evaluation of behavioral or molecular characteristics and outcomes. This can compromise its translation to a clinical setting. The triple-transgenic AD mouse model (3xTg-AD) is a commonly used but unique AD model because it exhibits both amyloid and tau pathology, essential features of the human AD phenotype. Mounting evidence has revealed important sexually dimorphic characteristics of this animal model that have yet to be reviewed and thus, are often overlooked in studies using the 3xTg-AD model. In this review we conduct a thorough analysis of reports of sexual dimorphism in the 3xTg-AD model including findings of molecular, behavioral, and longevity-related sex differences in original research articles through August 2020. Importantly, we find results to be inconsistent, and that strain source and differing methodologies are major contributors to lack of consensus regarding traits of each sex. We first touch on the nature of sexual dimorphism in clinical AD, followed by a brief summary of sexual dimorphism in other major AD murine models before discussing the 3xTg-AD model in depth. We conclude by offering four suggestions to help unify pre-clinical mouse model AD research inspired by the NIH expectations for considering sex as a biological variable.
Collapse
Affiliation(s)
- Jessica L Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie R Ricciardi
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ines Lohse
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claude-Henry Volmar
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Cognitive Impairment in the 3xTg-AD Mouse Model of Alzheimer's Disease is Affected by Aβ-ImmunoTherapy and Cognitive Stimulation. Pharmaceutics 2020; 12:pharmaceutics12100944. [PMID: 33023109 PMCID: PMC7601886 DOI: 10.3390/pharmaceutics12100944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical symptoms of Alzheimer’s Disease (AD) include behavioral alterations and cognitive impairment. These functional phenotypes early occur in triple-transgenic (3xTg-AD) mice. Specifically, behavioral alterations are first detected when mice are at around 2.5 months old and cognitive impairment in between 3- and 5-month-old mice. In this work, the effect of chronic Aβ-immunotherapy on behavioral and cognitive abilities was tested by monthly administering the antibody fragment scFv-h3D6 to 3xTg-AD female mice from 5 to 9 months of age. An untreated group was used as a reference, as well as to attain some information on the effect of training during the longitudinal study. Behavioral and psychological symptoms of dementia (BPSD)-like symptoms were already evident in 5-month-old mice, in the form of neophobia and anxious-like behavior. The exploratory activity decreased over the longitudinal study, not only for 3xTgAD mice but also for the corresponding non-transgenic mice (NTg). Learning abilities of 3xTg-AD mice were not seriously compromised but an impairment in long-term spatial memory was evident at 5 months of age. Interestingly, scFv-h3D6-treatment affected the cognitive impairment displayed by 5-month-old 3xTg-AD mice. It is worth noting that training also reduced cognitive impairment of 3xTg-AD mice over the longitudinal study, suggesting that to properly quantify the isolated therapeutic potential of any drug on cognition using this model it is convenient to perform a prompt, age-matched study rather than a longitudinal study. In addition, a combination of both training and Aβ-immunotherapy could constitute a possible approach to treat Alzheimer’s disease.
Collapse
|
15
|
Roda AR, Montoliu-Gaya L, Serra-Mir G, Villegas S. Both Amyloid-β Peptide and Tau Protein Are Affected by an Anti-Amyloid-β Antibody Fragment in Elderly 3xTg-AD Mice. Int J Mol Sci 2020; 21:E6630. [PMID: 32927795 PMCID: PMC7554787 DOI: 10.3390/ijms21186630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. According to the amyloid hypothesis, the early accumulation of the Aβ-peptide triggers tau phosphorylation, synaptic dysfunction, and eventually neuronal death leading to cognitive impairment, as well as behavioral and psychological symptoms of dementia. ScFv-h3D6 is a single-chain variable fragment that has already shown its ability to diminish the amyloid burden in 5-month-old 3xTg-AD mice. However, tau pathology is not evident at this early stage of the disease in this mouse model. In this study, the effects of scFv-h3D6 on Aβ and tau pathologies have been assessed in 22-month-old 3xTg-AD mice. Briefly, 3xTg-AD female mice were treated for 2 weeks with scFv-h3D6 and compared with 3xTg-AD and non-transgenic (NTg) mice treated with PBS. The treatment with scFv-h3D6 was unequivocally effective in reducing the area of Aβ staining. Furthermore, a tendency for a reduction in tau levels was also observed after treatment that points to the interplay between Aβ and tau pathologies. The pro-inflammatory state observed in the 3xTg-AD mice did not progress after scFv-h3D6 treatment. In addition, the treatment did not alter the levels of apolipoprotein E or apolipoprotein J. Thus, a 2-week treatment with scFv-h3D6 was able to reduce AD-like pathology in elderly 3xTg-AD female mice.
Collapse
Affiliation(s)
- Alejandro R. Roda
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.R.R.); (L.M.-G.); (G.S.-M.)
| | - Laia Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.R.R.); (L.M.-G.); (G.S.-M.)
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden
| | - Gabriel Serra-Mir
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.R.R.); (L.M.-G.); (G.S.-M.)
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.R.R.); (L.M.-G.); (G.S.-M.)
| |
Collapse
|
16
|
Güell-Bosch J, Lope-Piedrafita S, Esquerda-Canals G, Montoliu-Gaya L, Villegas S. Progression of Alzheimer's disease and effect of scFv-h3D6 immunotherapy in the 3xTg-AD mouse model: An in vivo longitudinal study using Magnetic Resonance Imaging and Spectroscopy. NMR IN BIOMEDICINE 2020; 33:e4263. [PMID: 32067292 DOI: 10.1002/nbm.4263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is an incurable disease that affects most of the 47 million people estimated as living with dementia worldwide. The main histopathological hallmarks of AD are extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. In recent years, Aβ-immunotherapy has been revealed as a potential tool in AD treatment. One strategy consists of using single-chain variable fragments (scFvs), which avoids the fragment crystallizable (Fc) effects that are supposed to trigger a microglial response, leading to microhemorrhages and vasogenic edemas, as evidenced in clinical trials with bapineuzumab. The scFv-h3D6 generated by our research group derives from this monoclonal antibody, which targets the N-terminal of the Aβ peptide and recognizes monomers, oligomers and fibrils. In this study, 3xTg-AD mice were intraperitoneally and monthly treated with 100 μg of scFv-h3D6 (a dose of ~3.3 mg/kg) or PBS, from 5 to 12 months of age (-mo), the age at which the mice were sacrificed and samples collected for histological and biochemical analyses. During treatments, four monitoring sessions using magnetic resonance imaging and spectroscopy (MRI/MRS) were performed at 5, 7, 9, and 12 months of age. MRI/MRS techniques are widely used in both human and mouse research, allowing to draw an in vivo picture of concrete aspects of the pathology in a non-invasive manner and allowing to monitor its development across time. Compared with the genetic background, 3xTg-AD mice presented a smaller volume in almost all cerebral regions and ages examined, an increase in both the intra and extracellular Aβ1-42 at 12-mo, and an inflammation process at this age, in both the hippocampus (IL-6 and mIns) and cortex (IL-6). In addition, treatment with scFv-h3D6 partially recovered the values in brain volume, and Aβ, IL-6, and mIns concentrations, among others, encouraging further studies with this antibody fragment.
Collapse
Affiliation(s)
- J Güell-Bosch
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - S Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - G Esquerda-Canals
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - L Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - S Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
17
|
Muntsant A, Giménez-Llort L. Impact of Social Isolation on the Behavioral, Functional Profiles, and Hippocampal Atrophy Asymmetry in Dementia in Times of Coronavirus Pandemic (COVID-19): A Translational Neuroscience Approach. Front Psychiatry 2020; 11:572583. [PMID: 33329110 PMCID: PMC7732415 DOI: 10.3389/fpsyt.2020.572583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of COVID-19 on the elderly is devastating, and nursing homes are struggling to provide the best care to the most fragile. The urgency and severity of the pandemic forces the use of segregation in restricted areas and confinement in individual rooms as desperate strategies to avoid the spread of disease and the worst-case scenario of becoming a deadly trap. The conceptualization of the post-COVID-19 era implies strong efforts to redesign all living conditions, care/rehabilitation interventions, and management of loneliness forced by social distance measures. Recently, a study of gender differences in COVID-19 found that men are more likely to suffer more severe effects of the disease and are over twice as likely to die. It is well-known that dementia is associated with increased mortality, and males have worse survival and deranged neuro-immuno-endocrine systems than females. The present study examines the impact of long-term isolation in male 3xTg-AD mice modeling advanced stages of Alzheimer's disease (AD) and as compared to age-matched counterparts with normal aging. We used a battery of ethological and unconditioned tests resembling several areas in nursing homes. The main findings refer to an exacerbated (two-fold increase) hyperactivity and emergence of bizarre behaviors in isolated 3xTg-AD mice, worrisome results since agitation is a challenge in the clinical management of dementia and an important cause of caregiver burden. This increase was consistently shown in gross (activity in most of the tests) and fine (thermoregulatory nesting) motor functions. Isolated animals also exhibited re-structured anxiety-like patterns and coping-with-stress strategies. Bodyweight and kidney weight loss were found in AD-phenotypes and increased by isolation. Spleen weight loss was isolation dependent. Hippocampal tau pathology was not modified, but asymmetric atrophy of the hippocampus, recently described in human patients with dementia and modeled here for the first time in an animal model of AD, was found to increase with isolation. Overall, the results show awareness of the impact of isolation in elderly patients with dementia, offering some guidance from translational neuroscience in these times of coronavirus and post-COVID-19 pandemic. They also highlight the relevance of personalized-based interventions tailored to the heterogeneous and complex clinical profile of the individuals with dementia and to consider the implications on caregiver burden.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|