1
|
Chen H, Deng C, Meng Z, Zhu M, Yang R, Yuan J, Meng S. Combined Catalpol and Tetramethylpyrazine Promote Axonal Plasticity in Alzheimer's Disease by Inducing Astrocytes to Secrete Exosomes Carrying CDK5 mRNA and Regulating STAT3 Phosphorylation. Mol Neurobiol 2024; 61:10770-10791. [PMID: 38789892 DOI: 10.1007/s12035-024-04251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a common progressive degenerative disease of the central nervous system in aging populations. This study aimed to investigate the effects of combined catalpol and tetramethylpyrazine (CT) in promoting axonal plasticity in AD and the potential underlying mechanism. Astrocytes were treated with different concentrations of compatible CT. Exosomes were collected and subjected to sequencing analysis, which was followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes. Amyloid precursor protein/presenilin 1 (APP/PS1) double-transfected male mice were used as the in vivo AD models. Astrocyte-derived exosomes that were transfected with cyclin-dependent kinase 5 (CDK5) or CT treatment were injected into the tail vein of mice. The levels of CDK5, synaptic plasticity marker protein neurofilament 200 (NF200), and growth-associated protein 43 (GAP-43) in the hippocampus of mice were compared in each group. Immunofluorescence staining was used to detect the localization of STAT3 and to visualize synaptic morphology via β-tubulin-III (TUBB3). Astrocyte-derived exosomes transfected with siCDK5 or treated with CT were co-cultured with HT-22 cells, which were untransfected or silenced for signal transducer and activator of transcription 3 (STAT3). Amyloid β-protein (Aβ)1-42 was induced in the in vitro AD models. The viability, apoptosis, and expression levels of NF200 and GAP-43 proteins in the hippocampal neurons of each group were compared. In total, 166 differentially expressed genes in CT-induced astrocyte-derived exosomes were included in the KEGG analysis, and they were found to be enriched in 12 pathways, mainly in axon guidance. CT treatment significantly increased the level of CDK5 mRNA in astrocyte-derived exosomes-these exosomes restored CDK5 mRNA and protein levels in the hippocampus of the in vivo AD model mice and the in vitro AD model; promoted p-STAT3 (Ser727), NF200 and GAP-43 proteins; and promoted the regeneration and extension of neuronal synapses. Silencing of CDK5 blocked both neuronal protection as well as induction of axonal plasticity in AD by CT-treated exosomes in vitro and in vivo. Moreover, silencing of STAT3 blocked both neuronal protection as well as induction of axonal plasticity in AD caused by CDK5 overexpression or CT-treated astrocyte-induced exosomes. CT promotes axonal plasticity in AD by inducing astrocytes to secrete exosomes carrying CDK5 mRNA and regulating STAT3 (Ser727) phosphorylation.
Collapse
Affiliation(s)
- Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Zeyu Meng
- Second Clinical Medicine College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengting Zhu
- Graduate School of Jiangxi, University of Traditional Chinese Medicine, Nanchang, China
| | - Ruoyu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yuan
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Liu Z, Hu B, Tang J, Liu X, Cheng B, Jia C, Zhang L. Frontiers and hotspots evolution between air pollution and Alzheimer's disease: A bibliometric analysis from 2013 to 2023. J Alzheimers Dis 2024; 102:257-274. [PMID: 39573870 DOI: 10.1177/13872877241289381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In recent years, the study of air pollution has received increasing attention from researchers, but a summary of Alzheimer's disease (AD) and air pollution is missed. Through combing the documents in the core dataset of Web of Science, this study analyzes current research based on specific keywords. CiteSpace and VOSviewer perform statistical analysis of measurement metrics to visualize a network of relevant content elements. The research devotes discussion to the relationship between air pollution and AD. Keyword hotspots include AD, children, oxidative stress, and system inflammation. Overall, 304 documents on air pollution and AD from 2013 to 2023 were retrieved from Web of Science. One hundred twenty-two journals published relevant articles, and the number of articles has increased gradually since the past decade. Research and development in AD and air pollution are progressing rapidly, but there is still a need for more connections with multidisciplinary technologies to explore cutting-edge hotspots.
Collapse
Affiliation(s)
- Zhirong Liu
- Department of General Surgery, The Affiliated Hospital of Chengdu Medical College, Chengdu Second People's Hospital, Chengdu, China
| | - BingShuang Hu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ju Tang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - XinLian Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - BaoJing Cheng
- President Office, Chengdu Medical College, Chengdu, China
| | - Cui Jia
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Verma H, Kaur S, Kaur S, Gangwar P, Dhiman M, Mantha AK. Role of Cytoskeletal Elements in Regulation of Synaptic Functions: Implications Toward Alzheimer's Disease and Phytochemicals-Based Interventions. Mol Neurobiol 2024; 61:8320-8343. [PMID: 38491338 DOI: 10.1007/s12035-024-04053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD), a multifactorial disease, is characterized by the accumulation of neurofibrillary tangles (NFTs) and amyloid beta (Aβ) plaques. AD is triggered via several factors like alteration in cytoskeletal proteins, a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2), amyloid precursor protein (APP), and post-translational modifications (PTMs) in the cytoskeletal elements. Owing to the major structural and functional role of cytoskeletal elements, like the organization of axon initial segmentation, dendritic spines, synaptic regulation, and delivery of cargo at the synapse; modulation of these elements plays an important role in AD pathogenesis; like Tau is a microtubule-associated protein that stabilizes the microtubules, and it also causes inhibition of nucleo-cytoplasmic transportation by disrupting the integrity of nuclear pore complex. One of the major cytoskeletal elements, actin and its dynamics, regulate the dendritic spine structure and functions; impairments have been documented towards learning and memory defects. The second major constituent of these cytoskeletal elements, microtubules, are necessary for the delivery of the cargo, like ion channels and receptors at the synaptic membranes, whereas actin-binding protein, i.e., Cofilin's activation form rod-like structures, is involved in the formation of paired helical filaments (PHFs) observed in AD. Also, the glial cells rely on their cytoskeleton to maintain synaptic functionality. Thus, making cytoskeletal elements and their regulation in synaptic structure and function as an important aspect to be focused for better management and targeting AD pathology. This review advocates exploring phytochemicals and Ayurvedic plant extracts against AD by elucidating their neuroprotective mechanisms involving cytoskeletal modulation and enhancing synaptic plasticity. However, challenges include their limited bioavailability due to the poor solubility and the limited potential to cross the blood-brain barrier (BBB), emphasizing the need for targeted strategies to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
4
|
Mota IFL, de Lima LS, Santana BDM, Gobbo GDAM, Bicca JVML, Azevedo JRM, Veras LG, Taveira RDAA, Pinheiro GB, Mortari MR. Alzheimer's Disease: Innovative Therapeutic Approaches Based on Peptides and Nanoparticles. Neuroscientist 2023; 29:78-96. [PMID: 34018874 DOI: 10.1177/10738584211016409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in the world and its etiology is not yet fully understood. The pathology of AD is primarily characterized by intracellular neurofibrillary tangles and extracellular amyloid-β plaques. Unfortunately, few treatment options are available, and most treat symptoms, as is the case of acetylcholinesterase inhibitors (IAChE) and N-methyl-d-aspartate receptor antagonists. For more than 20 years pharmaceutical research has targeted the "amyloid cascade hypothesis," but this has not produced meaningful results, leading researchers to focus now on other characteristics of the disease and on multitarget approaches. This review aims to evaluate some new treatments that are being developed and studied. Among these are new treatments based on peptides, which have high selectivity and low toxicity; however, these compounds have a short half-life and encounter challenges when crossing the blood-brain barrier. The present review discusses up-and-coming peptides tested as treatments and explores some nanotechnological strategies to overcome the downsides. These compounds are promising, as they not only act on the symptoms but also aim to prevent progressive neuronal loss.
Collapse
Affiliation(s)
- Isabela F L Mota
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Larissa S de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Bruna de M Santana
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Giovanna de A M Gobbo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - João V M L Bicca
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Juliana R M Azevedo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Letícia G Veras
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Rodrigo de A A Taveira
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Gabriela B Pinheiro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
5
|
Chauhan S, Behl T, Sehgal A, Singh S, Sharma N, Gupta S, Albratty M, Najmi A, Meraya AM, Alhazmi HA. Understanding the Intricate Role of Exosomes in Pathogenesis of Alzheimer's Disease. Neurotox Res 2022; 40:1758-1773. [PMID: 36564606 DOI: 10.1007/s12640-022-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease causes loss of memory and deterioration of mental abilities is utmost predominant neurodegenerative disease accounting 70-80% cases of dementia. The appearance of plaques of amyloid-β and neurofibrillary tangles in the brain post-mortems of Alzheimer's patients established them as key participants in the etiology of Alzheimer's disease. Exosomes exist as extracellular vesicles of nano-size which are present throughout the body. Exosomes are known to spread toxic hyperphosphorylated tau and amyloid-β between the cells and are linked to the loss of neurons by inducing apoptosis. Exosomes have progressed from cell trashcans to multifunctional organelles which are involved in various functions like internalisation and transmission of macromolecules such as lipids, proteins, and nucleic acids. This review covers current findings on relationship of exosomes in biogenesis and angiogenesis of Alzheimer's disease and functions of exosomes in the etiology of AD. Furthermore, the roles of exosomes in development, diagnosis, treatment, and its importance as therapeutic targets and biomarkers for Alzheimer's disease have also been highlighted.
Collapse
Affiliation(s)
- Simran Chauhan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Uttarakhand, Dehradun, 248007, India.
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Sadhar, Ludhiana, Punjab, Gurusar, 141104, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India.
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Jazan Uniersity, Jazan, 45124, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jzan University, Jazan, 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jzan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
6
|
Fei X, Wang S, Li J, Zeng Q, Gao Y, Hu Y. Bibliometric analysis of research on Alzheimer’s disease and non-coding RNAs: Opportunities and challenges. Front Aging Neurosci 2022; 14:1037068. [PMID: 36329875 PMCID: PMC9623309 DOI: 10.3389/fnagi.2022.1037068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-coding RNAs (ncRNA) are a kind of RNA that does not encode protein, which play an important role in Alzheimer’s disease (AD). However, there is a lack of bibliometric analysis and visualization analysis of the research related to AD and ncRNAs. Materials and methods Literature related to AD and ncRNAs in the last decade were searched through the Web of Science Core Collection (WOSCC). The relevant information from all the searched articles was collected. The bibliometric visualization website, CiteSpace, and VOSviewer were used for visualization analysis of countries/regions, institutions, authors, and keywords. Results In total, 1,613 kinds of literature were published in the field. Literature in this field were published in 494 journals. The Journal of Alzheimer’s Disease was the most popular journal. China, Louisiana State University System, and Lukiw WJ were the countries/regions, institutions, and authors with the highest scientific productivity, respectively. The research hotspots in this field focused on the role and mechanism of ncRNAs, especially microRNAs, in AD. The level of research was mainly based on basic research, focusing on animal and cellular levels, and related to proteomics. “Circular RNAs,” “regulation of neuroinflammation,” and “tau protein” were the future research directions. Conclusion Taken together, the field of AD and ncRNAs is developing well. The research hotspots and frontiers in this field can provide a reference for researchers to choose their research direction.
Collapse
Affiliation(s)
- Xinxing Fei
- Department of Psychiatry, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Shiqi Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Jiyang Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiu Zeng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yaqian Gao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Yaqian Gao,
| | - Yue Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Yue Hu,
| |
Collapse
|
7
|
Valiukas Z, Ephraim R, Tangalakis K, Davidson M, Apostolopoulos V, Feehan J. Immunotherapies for Alzheimer’s Disease—A Review. Vaccines (Basel) 2022; 10:vaccines10091527. [PMID: 36146605 PMCID: PMC9503401 DOI: 10.3390/vaccines10091527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that falls under the umbrella of dementia and is characterised by the presence of highly neurotoxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein within the brain. Historically, treatments for AD have consisted of medications that can slow the progression of symptoms but not halt or reverse them. The shortcomings of conventional drugs have led to a growing need for novel, effective approaches to the treatment of AD. In recent years, immunotherapies have been at the forefront of these efforts. Briefly, immunotherapies utilise the immune system of the patient to treat a condition, with common immunotherapies for AD consisting of the use of monoclonal antibodies or vaccines. Most of these treatments target the production and deposition of Aβ due to its neurotoxicity, but treatments specifically targeting tau protein are being researched as well. These treatments have had great variance in their efficacy and safety, leading to a constant need for the research and development of new safe and effective treatments.
Collapse
Affiliation(s)
- Zachary Valiukas
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
| | - Kathy Tangalakis
- First Year College, Victoria University, Melbourne, VIC 3011, Australia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 3011, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
8
|
Hua T, Shi H, Zhu M, Chen C, Su Y, Wen S, Zhang X, Chen J, Huang Q, Wang H. Glioma‑neuronal interactions in tumor progression: Mechanism, therapeutic strategies and perspectives (Review). Int J Oncol 2022; 61:104. [PMID: 35856439 PMCID: PMC9339490 DOI: 10.3892/ijo.2022.5394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence has become available to reveal the synaptic and functional integration of glioma into the brain network, facilitating tumor progression. The novel discovery of glioma-neuronal interactions has fundamentally challenged our understanding of this refractory disease. The present review aimed to provide an overview of how the neuronal activities function through synapses, neurotransmitters, ion channels, gap junctions, tumor microtubes and neuronal molecules to establish communications with glioma, as well as a simplified explanation of the reciprocal effects of crosstalk on neuronal pathophysiology. In addition, the current state of therapeutic avenues targeting critical factors involved in glioma-euronal interactions is discussed and an overview of clinical trial data for further investigation is provided. Finally, newly emerging technologies, including immunomodulation, a neural stem cell-based delivery system, optogenetics techniques and co-culture of neuron organoids and glioma, are proposed, which may pave a way towards gaining deeper insight into both the mechanisms associated with neuron- and glioma-communicating networks and the development of therapeutic strategies to target this currently lethal brain tumor.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Huanxiao Shi
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Mengmei Zhu
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yandong Su
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Shengjia Wen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xu Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
9
|
Liu X, Hu L, Liu F. Mesenchymal stem cell-derived extracellular vesicles for cell-free therapy of ocular diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:102-117. [PMID: 39698446 PMCID: PMC11648472 DOI: 10.20517/evcna.2022.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2024]
Abstract
Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have noticeably attracted clinicians' attention in treating ocular diseases. As the paracrine factor of MSCs and an alternative for cell-free therapies, MSC-EVs can be conveniently dropped over the ocular surface or diffused through the retina upon intravitreal injection, without increasing the risks of cellular rejection and tumor formation. For clinical translation, a standardized and scalable production, as well as reprogramming the MSC-EVs, are highly encouraged. This review aims to assess the potential approaches for EV production and functional modification, in addition to summarizing the worldwide clinical trials initiated for various physiological systems and the specific biochemical effects of MSC-EVs on the therapy of eye diseases. Recent advances in the therapy of ocular diseases based on MSC-EVs are reviewed, and the associated challenges and prospects are discussed as well.
Collapse
Affiliation(s)
- Xiaoling Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Fei Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
10
|
Xia X, Wang Y, Qin Y, Zhao S, Zheng JC. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res Rev 2022; 74:101558. [PMID: 34990846 DOI: 10.1016/j.arr.2021.101558] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Neurotransmission is the electrical impulse-triggered propagation of signals between neurons or between neurons and other cell types such as skeletal muscle cells. Recent studies point out the involvement of exosomes, a type of small bilipid layer-enclosed extracellular vesicles, in regulating neurotransmission. Through horizontally transferring proteins, lipids, and nucleic acids, exosomes can modulate synaptic activities rapidly by controlling neurotransmitter release or progressively by regulating neural plasticity including synapse formation, neurite growth & removal, and axon guidance & elongation. In this review, we summarize the similarities and differences between exosomes and synaptic vesicles in their biogenesis, contents, and release. We also highlight the recent progress made in demonstrating the biological roles of exosome in regulating neurotransmission, and propose a modified model of neurotransmission, in which exosomes act as novel neurotransmitters. Lastly, we provide a comprehensive discussion of the enlightenment of the current knowledge on neurotransmission to the future directions of exosome research.
Collapse
|
11
|
Teixeira FC, Soares MSP, Blödorn EB, Domingues WB, Reichert KP, Zago AM, Carvalho FB, Gutierres JM, Gonçales RA, da Cruz Fernandes M, Campos VF, Chitolina MR, Stefanello FM, Spanevello RM. Investigating the Effect of Inosine on Brain Purinergic Receptors and Neurotrophic and Neuroinflammatory Parameters in an Experimental Model of Alzheimer's Disease. Mol Neurobiol 2021; 59:841-855. [PMID: 34792730 DOI: 10.1007/s12035-021-02627-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology characterized by progressive impairment of memory, associated with neurochemical alterations and limited therapy. The aim of this study was to evaluate the effects of inosine on memory, neuroinflammatory cytokines, neurotrophic factors, expression of purinergic receptors, and morphological changes in the hippocampus and cerebral cortex of the rats with AD induced by streptozotocin (STZ). Male rats were divided into four groups: I, control; II, STZ; III, STZ plus inosine (50 mg/kg); and IV, STZ plus inosine (100 mg/kg). The animals received intracerebroventricular injections of STZ or buffer. Three days after the surgical procedure, animals were treated with inosine (50 mg/kg or 100 mg/kg) for 25 days. Inosine was able to prevent memory deficits and decreased the immunoreactivity of the brain A2A adenosine receptor induced by STZ. Inosine also increased the levels of brain anti-inflammatory cytokines (IL-4 and IL-10) and the expression of brain-derived neurotrophic factor and its receptor. Changes induced by STZ in the molecular layer of the hippocampus were attenuated by treatment with inosine. Inosine also protected against the reduction of immunoreactivity for synaptophysin induced by STZ in CA3 hippocampus region. However, inosine did not prevent the increase in GFAP in animals exposed to STZ. In conclusion, our findings suggest that inosine has therapeutic potential for AD through the modulation of different brain mechanisms involved in neuroprotection.
Collapse
Affiliation(s)
- Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil
| | - Eduardo Bierhaus Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adriana Maria Zago
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano Barbosa Carvalho
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jessie Martins Gutierres
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Maria Rosa Chitolina
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Programa de Pós - Graduação Em Bioquímica E Bioprospecção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
12
|
Esteban de Antonio E, Pérez-Cordón A, Gil S, Orellana A, Cano A, Alegret M, Espinosa A, Alarcón-Martín E, Valero S, Martínez J, de Rojas I, Sotolongo-Grau Ó, Martín E, Vivas A, Gomez-Chiari M, Tejero MÁ, Bernuz M, Tárraga L, Ruiz A, Marquié M, Boada M. BIOFACE: A Prospective Study of Risk Factors, Cognition, and Biomarkers in a Cohort of Individuals with Early-Onset Mild Cognitive Impairment. Study Rationale and Research Protocols. J Alzheimers Dis 2021; 83:1233-1249. [PMID: 34420953 PMCID: PMC8543256 DOI: 10.3233/jad-210254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) diagnosis is based on cerebrospinal fluid (CSF) or neuroimaging biomarkers. Currently, non-invasive and inexpensive blood-based biomarkers are being investigated, such as neuronal-derived plasma exosomes (NPEs). Neuroinflammation and early vascular changes have been described in AD pathogenesis and can be traced in plasma and NPEs. However, they have not been studied in early onset MCI (EOMCI). Objective: To describe the rationale, design, and baseline characteristics of the participants from the BIOFACE cohort, a two-year observational study on EOMCI conducted at Fundació ACE. The study goal is to characterize the different phenotypes from a clinical, neuropsychological, and biomarker point of view and to investigate the CSF and plasma proteomics as well as the role of NPEs as early biomarkers of AD. Methods: Participants underwent extended neurological and neuropsychological batteries, multimodal biomarkers including brain MRI, blood, saliva, CSF, anthropometric, and neuro-ophthalmological examinations. Results: Ninety-seven patients with EOMCI were recruited. 59.8%were women. Mean age at symptom onset was 57 years; mean MMSE was 28. First degree and presenile family history of dementia was present in 60.8%and 15.5%, respectively. Depressive and anxiety disorders along with vascular risk factors were the most frequent comorbidities. 29%of participants were APOE ɛ4 carriers, and 67%showed a CSF normal ATN profile. Conclusion: BIOFACE is a two-year study of clinical, cognition, and biomarkers that will shed light on the physiopathology and the potential utility of plasma and NPEs as non-invasive early diagnostic and prognostic biomarkers in people younger than 65 years.
Collapse
Affiliation(s)
- Ester Esteban de Antonio
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Silvia Gil
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Cano
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Espinosa
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Martínez
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Sotolongo-Grau
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elvira Martín
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Assumpta Vivas
- Departament de Diagnòstic per la Imatge, Clínica Corachan, Barcelona, Spain
| | - Marta Gomez-Chiari
- Departament de Diagnòstic per la Imatge, Clínica Corachan, Barcelona, Spain
| | | | - Mireia Bernuz
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lluis Tárraga
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Catalá de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
13
|
Gutierrez-Millan C, Calvo Díaz C, Lanao JM, Colino CI. Advances in Exosomes-Based Drug Delivery Systems. Macromol Biosci 2020; 21:e2000269. [PMID: 33094544 DOI: 10.1002/mabi.202000269] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Exosomes, a subgroup of extracellular vesicles, are important mediators of long-distance intercellular communication and are involved in a diverse range of biological processes such as the transport of lipids, proteins, and nucleic acids. Researchers, seeing the problems caused by the toxic effects and clearance of synthetic nanoparticles, consider exosomes as an interesting alternative to such nanoparticles in the specific and controlled transport of drugs. In recent years, there have been remarkable advances in the use of exosomes in cancer therapeutics or for treating neurological diseases, among other applications. The objective of this work is to analyze studies focused on exosomes used in drug delivery system, present and future applications in this field of research are discussed based on the results obtained.
Collapse
Affiliation(s)
- Carmen Gutierrez-Millan
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, 37007, Spain
- The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain
| | - Clara Calvo Díaz
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, 37007, Spain
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, 37007, Spain
- The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain
| | - Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, Salamanca, 37007, Spain
- The Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, 37007, Spain
| |
Collapse
|
14
|
Extracellular vesicles and amyotrophic lateral sclerosis: from misfolded protein vehicles to promising clinical biomarkers. Cell Mol Life Sci 2020; 78:561-572. [PMID: 32803397 PMCID: PMC7872995 DOI: 10.1007/s00018-020-03619-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small reservoirs of different molecules and important mediators of cell-to-cell communication. As putative vehicles of misfolded protein propagation between cells, they have drawn substantial attention in the field of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Moreover, exosome-mediated non-coding RNA delivery may play a crucial role in ALS, given the relevance of RNA homeostasis in disease pathogenesis. Since EVs can enter the systemic circulation and are easily detectable in patients’ biological fluids, they have generated broad interest both as diagnostic and prognostic biomarkers and as valuable tools in understanding disease pathogenesis. Here, after a brief introduction on biogenesis and functions of EVs, we aim to investigate their role in neurodegenerative disorders, especially ALS. Specifically, we focus on the main findings supporting EV-mediated protein and RNA transmission in ALS in vitro and in vivo models. Then, we provide an overview of clinical applications of EVs, summarizing the most relevant studies able to detect EVs in blood and cerebrospinal fluid (CSF) of ALS patients, underlying their potential use in aiding diagnosis and prognosis. Finally, we explore the therapeutic applications of EVs in ALS, either as targets or as vehicles of proteins, nucleic acids and molecular drugs.
Collapse
|