1
|
Desai P, Ng TKS, Krueger KR, Wilson RS, Evans DA, Rajan KB. Perceived Stress, Blood Biomarkers, and Cognitive Functioning in Older Adults. Psychosom Med 2024; 86:507-511. [PMID: 38648023 PMCID: PMC11230840 DOI: 10.1097/psy.0000000000001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
INTRODUCTION There is a substantial gap in knowledge regarding how perceived stress may influence the relationship between serum-measured biomarkers for Alzheimer's disease and cognitive decline. METHODS This study consists of 1118 older adult participants from the Chicago Health and Aging Project (CHAP) (60% Black participants and 63% female participants). Linear mixed effects regression models were conducted to examine the role of perceived stress in the association between three blood biomarkers: total tau (t-tau), glial fibrillary acid protein (GFAP), and neurofilament light chain (NfL) on global cognitive decline. Stratified analysis by stress level was also conducted to evaluate the associations between each blood biomarker and baseline cognitive function and decline. All models adjusted for age, race, sex, education, time, and their interactions with time. RESULTS The interaction of stress, NfL concentration, and time was statistically significant on global cognition ( β = -0.064 [SE = 0.028], p = .023) and on episodic memory ( β = -0.097 [SE = 0.036], p = .007). CONCLUSIONS Greater stress level worsens the association between high NfL concentration and cognitive decline. Stress management interventions may be helpful to reduce the rate of cognitive decline in individuals with high concentrations of NfL.
Collapse
Affiliation(s)
- Pankaja Desai
- From the Rush Institute for Healthy Aging (Desai, Ng, Krueger, Evans, Rajan) and Rush Alzheimer's Disease Center (Wilson), Rush University Medical Center, Chicago, Illinois; and Department of Neurology, University of California at Davis (Rajan), Davis, California
| | | | | | | | | | | |
Collapse
|
2
|
Palpatzis E, Akinci M, Aguilar-Dominguez P, Garcia-Prat M, Blennow K, Zetterberg H, Carboni M, Kollmorgen G, Wild N, Fauria K, Falcon C, Gispert JD, Suárez-Calvet M, Grau-Rivera O, Sánchez-Benavides G, Arenaza-Urquijo EM. Lifetime Stressful Events Associated with Alzheimer's Pathologies, Neuroinflammation and Brain Structure in a Risk Enriched Cohort. Ann Neurol 2024; 95:1058-1068. [PMID: 38466157 DOI: 10.1002/ana.26881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Along with the known effects of stress on brain structure and inflammatory processes, increasing evidence suggest a role of chronic stress in the pathogenesis of Alzheimer's disease (AD). We investigated the association of accumulated stressful life events (SLEs) with AD pathologies, neuroinflammation, and gray matter (GM) volume among cognitively unimpaired (CU) individuals at heightened risk of AD. METHODS This cross-sectional cohort study included 1,290 CU participants (aged 48-77) from the ALFA cohort with SLE, lumbar puncture (n = 393), and/or structural magnetic resonance imaging (n = 1,234) assessments. Using multiple regression analyses, we examined the associations of total SLEs with cerebrospinal fluid (1) phosphorylated (p)-tau181 and Aβ1-42/1-40 ratio, (2) interleukin 6 (IL-6), and (3) GM volumes voxel-wise. Further, we performed stratified and interaction analyses with sex, history of psychiatric disease, and evaluated SLEs during specific life periods. RESULTS Within the whole sample, only childhood and midlife SLEs, but not total SLEs, were associated with AD pathophysiology and neuroinflammation. Among those with a history of psychiatric disease SLEs were associated with higher p-tau181 and IL-6. Participants with history of psychiatric disease and men, showed lower Aβ1-42/1-40 with higher SLEs. Participants with history of psychiatric disease and women showed reduced GM volumes in somatic regions and prefrontal and limbic regions, respectively. INTERPRETATION We did not find evidence supporting the association of total SLEs with AD, neuroinflammation, and atrophy pathways. Instead, the associations appear to be contingent on events occurring during early and midlife, sex and history of psychiatric disease. ANN NEUROL 2024;95:1058-1068.
Collapse
Affiliation(s)
- Eleni Palpatzis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- University of Pompeu Fabra (UPF), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Muge Akinci
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- University of Pompeu Fabra (UPF), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Pablo Aguilar-Dominguez
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- University of Pompeu Fabra (UPF), Barcelona, Spain
| | - Marina Garcia-Prat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eider M Arenaza-Urquijo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
3
|
Jackson-Cowan L, Silverberg JI. Longitudinal course of cognitive impairment in patients with atopic dermatitis. Arch Dermatol Res 2023; 315:1553-1560. [PMID: 36708375 DOI: 10.1007/s00403-023-02536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease. Cognitive dysfunction was recently demonstrated to be increased in adults and children with AD. However, little is known about the longitudinal course of cognitive impairment in AD and its relationship with pruritus. To investigate the longitudinal course and predictors of cognitive impairment in AD a prospective dermatology practice-based study was performed using questionnaires and evaluation by a dermatologist (n = 210). Patients with ≥ 2 visits were included (mean follow-up time: 318 days). Cognitive function was assessed using the Patient-Reported Outcomes Measurement Information System (PROMIS) Cognitive Function 8-item Short-Form. At baseline, 20.85% of patients had PROMIS T scores ≤ 45, indicating cognitive impairment (CI). Among patients with CI at baseline, 34.09% had persistent CI, 47.72% had a fluctuating course, and 18.18% had sustained improvement of cognitive function. In repeated-measures regression models, cognitive function scores declined overtime in patients with worse AD severity [SCORing Atopic Dermatitis (SCORAD): p = 0.01, Atopic Dermatitis Severity Index: p = 0.001], increased itch (p = 0.01), skin pain (p = 0.001), and sleep disturbance (p = 0.001). In multivariable logistic regression models, persistent CI was associated with female gender and depressive symptoms [moderate-to-severe Patient Health Questionnaire-9 score (PHQ9)]. Latent class analysis identified two classes of cognitive dysfunction: normal cognition (77.23%), moderate dysfunction (16.21%) and severe impairment (6.55%). Black/African-American race (p = 0.02), moderate-to-severe SCORAD (p = 0.03), dermatology life quality index (p < 0.0001), PHQ9 (p < 0.0001), itch (p = 0.02) and skin pain (p < 0.0001) were more likely to experience moderate dysfunction or severe cognitive impairment. AD is associated with a heterogeneous longitudinal course of cognitive function in adults, with some patients experiencing persistent CI over time.
Collapse
Affiliation(s)
- Ladonya Jackson-Cowan
- AU/UGA Medical Partnership, The Medical College of Georgia at Augusta University, Athens, GA, USA
| | - Jonathan I Silverberg
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Suite 2B-425, 2150 Pennsylvania Avenue, Washington, DC, 20037, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, USA.
| |
Collapse
|
4
|
Savold J, Cole M, Thorpe RJ. Barriers and solutions to Alzheimer's disease clinical trial participation for Black Americans. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12402. [PMID: 37408664 PMCID: PMC10318422 DOI: 10.1002/trc2.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023]
Abstract
Introduction Black Americans are disproportionately burdened by Alzheimer's disease (AD) relative to other racial groups in the United States and continue to be underrepresented in AD clinical trials. This review explores the primary barriers for participation in clinical trials among Black Americans and provides literature-based recommendations to improve the inclusion of Black Americans in AD clinical trials. Methods We searched electronic databases and gray literature for articles published in the United States through January 1, 2023, ultimately identifying 26 key articles for inclusion. Results Barriers to participation in clinical trials for Black Americans are rooted in social determinants of health, including access to quality education and information, access to health care, economic stability, built environment, and community context. Best practices to improve the inclusion of Black Americans in clinical trials require pharmaceutical companies to adopt a multifaceted approach, investing in innovative strategies for site selection, development of local partnerships, outreach, and education. Discussion While multisectoral action must occur to effectively address the disproportionate burden of AD on Black Americans, the pharmaceutical industry has an important part to play in this space due to their central role in product development and clinical trials.
Collapse
Affiliation(s)
- Jordan Savold
- Johns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Michele Cole
- Global Market Access, Neuroscience Therapeutic AreaJohnson & JohnsonRaritanNew JerseyUSA
| | - Roland J. Thorpe
- Johns Hopkins Alzheimer's Disease Resource Center for Minority Aging ResearchBaltimoreMarylandUSA
- Johns Hopkins Center for Health Disparities SolutionsBaltimoreMarylandUSA
| |
Collapse
|
5
|
Saiyasit N, Butlig EAR, Chaney SD, Traylor MK, Hawley NA, Randall RB, Bobinger HV, Frizell CA, Trimm F, Crook ED, Lin M, Hill BD, Keller JL, Nelson AR. Neurovascular Dysfunction in Diverse Communities With Health Disparities-Contributions to Dementia and Alzheimer's Disease. Front Neurosci 2022; 16:915405. [PMID: 35844216 PMCID: PMC9279126 DOI: 10.3389/fnins.2022.915405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Evan-Angelo R. Butlig
- Department of Neurology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha D. Chaney
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Miranda K. Traylor
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Nanako A. Hawley
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Ryleigh B. Randall
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Hanna V. Bobinger
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Department of Physician Assistant Studies, University of South Alabama, Mobile, AL, United States
| | - Franklin Trimm
- College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Errol D. Crook
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mike Lin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
6
|
Yashin AI, Wu D, Arbeev K, Bagley O, Akushevich I, Duan M, Yashkin A, Ukraintseva S. Interplay between stress-related genes may influence Alzheimer's disease development: The results of genetic interaction analyses of human data. Mech Ageing Dev 2021; 196:111477. [PMID: 33798591 PMCID: PMC8173104 DOI: 10.1016/j.mad.2021.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Emerging evidence from experimental and clinical research suggests that stress-related genes may play key roles in AD development. The fact that genome-wide association studies were not able to detect a contribution of such genes to AD indicates the possibility that these genes may influence AD non-linearly, through interactions of their products. In this paper, we selected two stress-related genes (GCN2/EIF2AK4 and APP) based on recent findings from experimental studies which suggest that the interplay between these genes might influence AD in humans. To test this hypothesis, we evaluated the effects of interactions between SNPs in these two genes on AD occurrence, using the Health and Retirement Study data on white indidividuals. We found several interacting SNP-pairs whose associations with AD remained statistically significant after correction for multiple testing. These findings emphasize the importance of nonlinear mechanisms of polygenic AD regulation that cannot be detected in traditional association studies. To estimate collective effects of multiple interacting SNP-pairs on AD, we constructed a new composite index, called Interaction Polygenic Risk Score, and showed that its association with AD is highly statistically significant. These results open a new avenue in the analyses of mechanisms of complex multigenic AD regulation.
Collapse
Affiliation(s)
| | - Deqing Wu
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | | - Olivia Bagley
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | |
Collapse
|