1
|
Chen Y, Al-Nusaif M, Li S, Tan X, Yang H, Cai H, Le W. Progress on early diagnosing Alzheimer's disease. Front Med 2024; 18:446-464. [PMID: 38769282 PMCID: PMC11391414 DOI: 10.1007/s11684-023-1047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.
Collapse
Affiliation(s)
- Yixin Chen
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huijia Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| |
Collapse
|
2
|
Tuena C, Pupillo C, Stramba-Badiale C, Stramba-Badiale M, Riva G. Predictive power of gait and gait-related cognitive measures in amnestic mild cognitive impairment: a machine learning analysis. Front Hum Neurosci 2024; 17:1328713. [PMID: 38348371 PMCID: PMC10859484 DOI: 10.3389/fnhum.2023.1328713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Gait disorders and gait-related cognitive tests were recently linked to future Alzheimer's Disease (AD) dementia diagnosis in amnestic Mild Cognitive Impairment (aMCI). This study aimed to evaluate the predictive power of gait disorders and gait-related neuropsychological performances for future AD diagnosis in aMCI through machine learning (ML). Methods A sample of 253 aMCI (stable, converter) individuals were included. We explored the predictive accuracy of four predictors (gait profile plus MMSE, DSST, and TMT-B) previously identified as critical for the conversion from aMCI to AD within a 36-month follow-up. Supervised ML algorithms (Support Vector Machine [SVM], Logistic Regression, and k-Nearest Neighbors) were trained on 70% of the dataset, and feature importance was evaluated for the best algorithm. Results The SVM algorithm achieved the best performance. The optimized training set performance achieved an accuracy of 0.67 (sensitivity = 0.72; specificity = 0.60), improving to 0.70 on the test set (sensitivity = 0.79; specificity = 0.52). Feature importance revealed MMSE as the most important predictor in both training and testing, while gait type was important in the testing phase. Discussion We created a predictive ML model that is capable of identifying aMCI at high risk of AD dementia within 36 months. Our ML model could be used to quickly identify individuals at higher risk of AD, facilitating secondary prevention (e.g., cognitive and/or physical training), and serving as screening for more expansive and invasive tests. Lastly, our results point toward theoretically and practically sound evidence of mind and body interaction in AD.
Collapse
Affiliation(s)
- Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Pupillo
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Stramba-Badiale
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Stramba-Badiale
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
3
|
Venuto CS, Smith G, Herbst K, Zielinski R, Yung NC, Grosset DG, Dorsey ER, Kieburtz K. Predicting Ambulatory Capacity in Parkinson's Disease to Analyze Progression, Biomarkers, and Trial Design. Mov Disord 2023; 38:1774-1785. [PMID: 37363815 PMCID: PMC10615710 DOI: 10.1002/mds.29519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND In Parkinson's disease (PD), gait and balance is impaired, relatively resistant to available treatment and associated with falls and disability. Predictive models of ambulatory progression could enhance understanding of gait/balance disturbances and aid in trial design. OBJECTIVES To predict trajectories of ambulatory abilities from baseline clinical data in early PD, relate trajectories to clinical milestones, compare biomarkers, and evaluate trajectories for enrichment of clinical trials. METHODS Data from two multicenter, longitudinal, observational studies were used for model training (Tracking Parkinson's, n = 1598) and external testing (Parkinson's Progression Markers Initiative, n = 407). Models were trained and validated to predict individuals as having a "Progressive" or "Stable" trajectory based on changes of ambulatory capacity scores from the Movement Disorders Society Unified Parkinson's Disease Rating Scale parts II and III. Survival analyses compared time-to-clinical milestones and trial outcomes between predicted trajectories. RESULTS On external evaluation, a support vector machine model predicted Progressive trajectories using baseline clinical data with an accuracy, weighted-F1 (proportionally weighted harmonic mean of precision and sensitivity), and sensitivity/specificity of 0.735, 0.799, and 0.688/0.739, respectively. Over 4 years, the predicted Progressive trajectory was more likely to experience impaired balance, loss of independence, impaired function and cognition. Baseline dopamine transporter imaging and select biomarkers of neurodegeneration were significantly different between predicted trajectory groups. For an 18-month, randomized (1:1) clinical trial, sample size savings up to 30% were possible when enrollment was enriched for the Progressive trajectory versus no enrichment. CONCLUSIONS It is possible to predict ambulatory abilities from clinical data that are associated with meaningful outcomes in people with early PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Charles S. Venuto
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Greta Smith
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Konnor Herbst
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Robert Zielinski
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Norman C.W. Yung
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
| | - Donald G. Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - E. Ray Dorsey
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Karl Kieburtz
- Center for Health + Technology, University of Rochester, Rochester, NY, USA
- Department of Neurology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
4
|
Sampatakakis SN, Mamalaki E, Ntanasi E, Kalligerou F, Liampas I, Yannakoulia M, Gargalionis AN, Scarmeas N. Objective Physical Function in the Alzheimer's Disease Continuum: Association with Cerebrospinal Fluid Biomarkers in the ALBION Study. Int J Mol Sci 2023; 24:14079. [PMID: 37762384 PMCID: PMC10531412 DOI: 10.3390/ijms241814079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cognitive and physical decline, both indicators of aging, seem to be associated with each other. The aim of the present study was to investigate whether physical function parameters (walking time and handgrip strength) are related to cerebrospinal fluid (CSF) biomarkers (amyloid-beta Aβ42, Tau, PhTau) in individuals in the Alzheimer's disease (AD) continuum. The sample was drawn from the Aiginition Longitudinal Biomarker Investigation of Neurodegeneration study, comprising 163 individuals aged 40-75 years: 112 cognitively normal (CN) and 51 with mild cognitive impairment (MCI). Physical function parameters were measured at baseline, a lumbar puncture was performed the same day and CSF biomarkers were analyzed using automated methods. The association between walking time, handgrip strength and CSF biomarkers was evaluated by linear correlation, followed by multivariate linear regression models adjusted for age, sex, education and APOEe4 genotype. Walking time was inversely related to CSF Aβ42 (lower CSF values correspond to increased brain deposition) in all participants (p < 0.05). Subgroup analysis showed that this association was stronger in individuals with MCI and participants older than 60 years old, a result which remained statistically significant after adjustment for the aforementioned confounding factors. These findings may open new perspectives regarding the role of mobility in the AD continuum.
Collapse
Affiliation(s)
- Stefanos N. Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Eirini Mamalaki
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Faidra Kalligerou
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece;
| | - Mary Yannakoulia
- Department of Nutrition and Diatetics, Harokopio University, 17671 Athens, Greece;
| | - Antonios N. Gargalionis
- Department of Medical Biopathology and Clinical Microbiology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.N.S.); (E.M.); (E.N.); (F.K.)
- The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Longhurst JK, Rider JV, Cummings JL, John SE, Poston B, Landers MR. Cognitive-motor dual-task interference in Alzheimer's disease, Parkinson's disease, and prodromal neurodegeneration: A scoping review. Gait Posture 2023; 105:58-74. [PMID: 37487365 PMCID: PMC10720398 DOI: 10.1016/j.gaitpost.2023.07.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2022] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Cognitive-motor interference (CMI) is a common deficit in Alzheimer's (AD) disease and Parkinson's disease (PD) and may have utility in identification of prodromal neurodegeneration. There is lack of consensus regarding measurement of CMI resulting from dual task paradigms. RESEARCH QUESTION How are individuals with AD, PD, and prodromal neurodegeneration impacted by CMI as measured by dual-task (DT) performance? METHODS A systematic literature search was performed in six datasets using the PRISMA guidelines. Studies were included if they had samples of participants with AD, PD, or prodromal neurodegeneration and reported at least one measure of cognitive-motor DT performance. RESULTS 4741 articles were screened and 95 included as part of this scoping review. Articles were divided into three non-mutually exclusive groups based on diagnoses, with 26 articles in AD, 56 articles in PD, and 29 articles in prodromal neurodegeneration, and results presented accordingly. SIGNIFICANCE Individuals with AD and PD are both impacted by CMI, though the impact is likely different for each disease. We found a robust body of evidence regarding the utility of measures of DT performance in the detection of subtle deficits in prodromal AD and some signals of utility in prodromal PD. There are several key methodological challenges related to DT paradigms for the measurement of CMI in neurodegeneration. Overall, DT paradigms show good potential as a clinical method to probe specific brain regions, networks, and function; however, task selection and effect measurement should be carefully considered.
Collapse
Affiliation(s)
- Jason K Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline St. Suite, 1011 St. Louis, MO, USA.
| | - John V Rider
- School of Occupational Therapy, Touro University Nevada, Henderson, NV, USA; Department of Physical Therapy, University of Nevada, Las Vegas, NV, USA.
| | | | - Samantha E John
- Department of Brain Health, University of Nevada, Las Vegas, NV, USA.
| | - Brach Poston
- Department of Kinesiology and Nutrition, University of Nevada, Las Vegas, NV, USA.
| | - Merrill R Landers
- Department of Physical Therapy, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
6
|
Kim YJ, Park I, Choi HC, Ahn ME, Ryu OH, Jang D, Lee U, Lee SK. Relationship of Neural Correlates of Gait Characteristics and Cognitive Dysfunction in Patients with Mild Cognitive Impairment. J Clin Med 2023; 12:5347. [PMID: 37629389 PMCID: PMC10455461 DOI: 10.3390/jcm12165347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Background: Some patients with mild cognitive impairment (MCI) experience gait disturbances. However, there are few reports on the relationship between gait disturbance and cognitive function in patients with MCI. Therefore, we investigated the neural correlates of gait characteristics related to cognitive dysfunction. Methods: Eighty patients diagnosed with MCI from three dementia centers in Gangwon-do, Korea, were recruited for this study. We defined MCI as a Clinical Dementia Rating global score of 0.5 or higher, with a memory domain score of 0.5 or greater. The patients were classified as having either higher or lower MMSE and the groups were based on their Mini Mental Status Examination z-scores. Multiple logistic regression analysis was performed to examine the association between the gait characteristics and cognitive impairment. Analyses included variables such as age, sex, years of education, number of comorbidities, body mass index, and height. Results: Gait velocity, step count, step length, heel-to-heel base support, swing and stance phase duration, and support time were associated with cognitive function. A decrease in gray matter volume in the right pericalcarine area was associated with gait characteristics related to cognitive dysfunction. An increase in the curvature of gray matter in the right entorhinal, right lateral orbitofrontal, right cuneus, and right and left pars opercularis areas was also associated with gait characteristics related to cognitive dysfunction. Conclusion: Since gait impairment is an important factor in determining activities of daily living in patients with mild cognitive impairment, the evaluation of gait and cognitive functions in patients with mild cognitive impairment is important.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| | - Ingyu Park
- Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea; (I.P.); (D.J.)
| | - Hui-Chul Choi
- Department of Neurology, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Moo-Eob Ahn
- Department of Emergency Medicine, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Ohk-Hyun Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Daehun Jang
- Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea; (I.P.); (D.J.)
| | - Unjoo Lee
- Division of Software, School of Information Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang-Kyu Lee
- Department of Psychiatry, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
7
|
Tangen GG, Sverdrup K, Taraldsen K, Persson K, Engedal K, Bekkhus-Wetterberg P, Knapskog AB. Mobility and associations with levels of cerebrospinal fluid amyloid β and tau in a memory clinic cohort. Front Aging Neurosci 2023; 15:1101306. [PMID: 36820757 PMCID: PMC9939466 DOI: 10.3389/fnagi.2023.1101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Background Mobility impairments, in terms of gait and balance, are common in persons with dementia. To explore this relationship further, we examined the associations between mobility and cerebrospinal fluid (CSF) core biomarkers for Alzheimer's disease (AD). Methods In this cross-sectional study, we included 64 participants [two with subjective cognitive decline (SCD), 13 with mild cognitive impairment (MCI) and 49 with dementia] from a memory clinic. Mobility was examined using gait speed, Mini-Balance Evaluation Systems test (Mini-BESTest), Timed Up and Go (TUG), and TUG dual-task cost (TUG DTC). The CSF biomarkers included were amyloid-β 42 (Aβ42), total-tau (t-tau), and phospho tau (p-tau181). Associations between mobility and biomarkers were analyzed through correlations and multiple linear regression analyses adjusted for (1) age, sex, and comorbidity, and (2) SCD/MCI vs. dementia. Results Aβ42 was significantly correlated with each of the mobility outcomes. In the adjusted multiple regression analyses, Aβ42 was significantly associated with Mini-BESTest and TUG in the fully adjusted model and with TUG DTC in step 1 of the adjusted model (adjusting for age, sex, and comorbidity). T-tau was only associated with TUG DTC in step 1 of the adjusted model. P-tau181 was not associated with any of the mobility outcomes in any of the analyses. Conclusion Better performance on mobility outcomes were associated with higher levels of CSF Aβ42. The association was strongest between Aβ42 and Mini-BESTest, suggesting that dynamic balance might be closely related with AD-specific pathology.
Collapse
Affiliation(s)
- Gro Gujord Tangen
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway,*Correspondence: Gro Gujord Tangen,
| | - Karen Sverdrup
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristin Taraldsen
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway
| | - Karin Persson
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Engedal
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|
8
|
Lindh-Rengifo M, Jonasson SB, Ullén S, Palmqvist S, van Westen D, Stomrud E, Mattsson-Carlgren N, Nilsson MH, Hansson O. Effects of Brain Pathologies on Spatiotemporal Gait Parameters in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2023; 96:161-171. [PMID: 37742636 PMCID: PMC10657715 DOI: 10.3233/jad-221303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Impaired gait can precede dementia. The associations between gait parameters and brain pathologies are therefore of interest. OBJECTIVE To explore how different brain pathologies (i.e., vascular and Alzheimer's) are associated with specific gait parameters from various gait components in persons with mild cognitive impairment (MCI), who have an increased risk of developing dementia. METHODS This cross-sectional study included 96 patients with MCI (mean 72, ±7.5 years; 52% women). Gait was evaluated by using an electronic walkway, GAITRite®. Four gait parameters (step velocity variability; step length; step time; stance time asymmetry) were used as dependent variables in multivariable linear regression analyses. Independent variables included Alzheimer's disease pathologies (amyloid-β and tau) by using PET imaging and white matter hyperintensities (WMH) by using MRI. Covariates included age, sex, comorbidities (and intracranial volume in analyses that includedWMH). RESULTS Increased tau-PET (Braak I-IV region of interest [ROI]) was associated with step velocity variability (standardized regression coefficient, β= 0.383, p < 0.001) and step length (β= 0.336, p < 0.001), which remained significant when using different Braak ROIs (I-II, III-IV, V-VI). The associations remained significant when adjusting for WMH (p < 0.001). When also controlling for gait speed, tau was no longer significantly (p = 0.168) associated with an increased step length. No significant associations between gait and Aβ-PET load or WMH were identified. CONCLUSIONS The results indicate that one should pay specific attention to assess step velocity variability when targeting single task gait in patients with MCI. Future studies should address additional gait variability measures and dual tasking in larger cohorts.
Collapse
Affiliation(s)
- Magnus Lindh-Rengifo
- Department of Health Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Susann Ullén
- Clinical Studies Sweden – Forum South, Skåne University Hospital, Lund, Sweden
| | - Sebastian Palmqvist
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Image and Function, Skåne University Hospital, Lund, Sweden
| | - Erik Stomrud
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Maria H. Nilsson
- Department of Health Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Oskar Hansson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Wisniewski T, Masurkar AV. Gait dysfunction in Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:267-274. [PMID: 37620073 DOI: 10.1016/b978-0-323-98817-9.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of age-associated dementia and will exponentially rise in prevalence in the coming decades, supporting the parallel development of the early stage detection and disease-modifying strategies. While primarily considered as a cognitive disorder, AD also features motor symptoms, primarily gait dysfunction. Such gait abnormalities can be phenotyped across classic clinical syndromes as well as by quantitative kinematic assessments to address subtle dysfunction at preclinical and prodromal stages. As such, certain measures of gait can predict the future cognitive and functional decline. Moreover, cross-sectional and longitudinal studies have associated gait abnormalities with imaging, biofluid, and genetic markers of AD across all stages. This suggests that gait assessment is an important tool in the clinical assessment of patients across the AD spectrum, especially to help identify at-risk individuals.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, NYU School of Medicine, New York, NY, United States; Department of Pathology, NYU School of Medicine, New York, NY, United States; Department of Psychiatry, NYU School of Medicine, New York, NY, United States; Division of Cognitive Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, United States.
| | - Arjun V Masurkar
- Department of Neurology, NYU School of Medicine, New York, NY, United States; Division of Cognitive Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Sui SX, Hendy AM, Teo WP, Moran JT, Nuzum ND, Pasco JA. A Review of the Measurement of the Neurology of Gait in Cognitive Dysfunction or Dementia, Focusing on the Application of fNIRS during Dual-Task Gait Assessment. Brain Sci 2022; 12:brainsci12080968. [PMID: 35892409 PMCID: PMC9331540 DOI: 10.3390/brainsci12080968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/07/2022] Open
Abstract
Poor motor function or physical performance is a predictor of cognitive decline. Additionally, slow gait speed is associated with poor cognitive performance, with gait disturbances being a risk factor for dementia. Parallel declines in muscular and cognitive performance (resulting in cognitive frailty) might be driven primarily by muscle deterioration, but bidirectional pathways involving muscle–brain crosstalk through the central and peripheral nervous systems are likely to exist. Following screening, early-stage parallel declines may be manageable and modifiable through simple interventions. Gait–brain relationships in dementia and the underlying mechanisms are not fully understood; therefore, the current authors critically reviewed the literature on the gait–brain relationship and the underlying mechanisms and the feasibility/accuracy of assessment tools in order to identify research gaps. The authors suggest that dual-task gait is involved in concurrent cognitive and motor activities, reflecting how the brain allocates resources when gait is challenged by an additional task and that poor performance on dual-task gait is a predictor of dementia onset. Thus, tools or protocols that allow the identification of subtle disease- or disorder-related changes in gait are highly desirable to improve diagnosis. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, cost-effective, safe, simple, portable, and non-motion-sensitive neuroimaging technique, widely used in studies of clinical populations such as people suffering from Alzheimer’s disease, depression, and other chronic neurological disorders. If fNIRS can help researchers to better understand gait disturbance, then fNIRS could form the basis of a cost-effective means of identifying people at risk of cognitive dysfunction and dementia. The major research gap identified in this review relates to the role of the central/peripheral nervous system when performing dual tasks.
Collapse
Affiliation(s)
- Sophia X. Sui
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
- Correspondence: ; Tel.: +61-3-4215-3306-53306; Fax: +61-3-4215-3491
| | - Ashlee M. Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3216, Australia; (A.M.H.); (N.D.N.)
| | - Wei-Peng Teo
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 308232, Singapore;
| | - Joshua T. Moran
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
| | - Nathan D. Nuzum
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3216, Australia; (A.M.H.); (N.D.N.)
| | - Julie A. Pasco
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia; (J.T.M.); (J.A.P.)
- Department of Medicine—Western Campus, The University of Melbourne, St Albans, VIC 3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
| |
Collapse
|
11
|
Ramírez F, Gutiérrez M. Dual-Task Gait as a Predictive Tool for Cognitive Impairment in Older Adults: A Systematic Review. Front Aging Neurosci 2021; 13:769462. [PMID: 35002676 PMCID: PMC8740025 DOI: 10.3389/fnagi.2021.769462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
The use of the dual-task model as a cognitive-motor interface has been extensively investigated in cross-sectional studies as a training task in cognitive impairment. However, few existing longitudinal studies prove the usefulness of this tool as a clinical marker of cognitive impairment in older people. What is the evidence in prospective studies about dual-task gait as a predictor of cognitive impairment in older adults? This study aims to review and discuss the current state of knowledge in prospective studies on the use of dual-task gait as a predictive tool for cognitive impairment in older adults. The methodology used was a systematic review, according to the PRISMA criteria for the search, summarize and report. A search in 3 databases (Pubmed, Web of Science, and Scopus) was carried out until April 2021. The search terms used were: "(gait OR walking) AND (cognitive decline) AND (dual-task) AND (follow-up OR longitudinal OR long-term OR prospective OR cohort OR predict)." We included prospective research articles with older people with cognitive evaluation at the beginning and the end of the follow-up and dual-task gait paradigm as initial evaluation associated with the presentation of cognitive impairment prediction using any dual-task gait parameters. After exclusion criteria, 12 studies were reviewed. The results indicate that eight studies consider dual-task gait parameters a useful cognitive-motor tool, finding that some of the evaluated parameters of dual-task gait significantly correlate with cognitive impairment over time. The most promising DT parameters associated with cognitive impairment prediction seem to be gait speed, speed cost, DT time, numbers of words during DT, among others. In sum, this study reviews the variety of dual-task gait parameters and their relevance as a simple tool for early cognitive impairment screening, opening a diagnostic window for the screening of cognitive impairment in older people.
Collapse
Affiliation(s)
- Felipe Ramírez
- Programa Magíster en Kinesiología Gerontológica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Myriam Gutiérrez
- Escuela de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Las Américas, Santiago, Chile
- Centro de Estudio del Movimiento Humano, Escuela de Kinesiología, Facultad de Odontología y Salud, Universidad Diego Portales, Santiago, Chile
- Unidad de Cerebro Saludable, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Frye BM, Craft S, Latimer CS, Keene CD, Montine TJ, Register TC, Orr ME, Kavanagh K, Macauley SL, Shively CA. Aging-related Alzheimer's disease-like neuropathology and functional decline in captive vervet monkeys (Chlorocebus aethiops sabaeus). Am J Primatol 2021; 83:e23260. [PMID: 33818801 PMCID: PMC8626867 DOI: 10.1002/ajp.23260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Age-related neurodegeneration characteristic of late-onset Alzheimer's disease (LOAD) begins in middle age, well before symptoms. Translational models to identify modifiable risk factors are needed to understand etiology and identify therapeutic targets. Here, we outline the evidence supporting the vervet monkey (Chlorocebus aethiops sabaeus) as a model of aging-related AD-like neuropathology and associated phenotypes including cognitive function, physical function, glucose handling, intestinal physiology, and CSF, blood, and neuroimaging biomarkers. This review provides the most comprehensive multisystem description of aging in vervets to date. This review synthesizes a large body of evidence that suggests that aging vervets exhibit a coordinated suite of traits consistent with early AD and provide a powerful, naturally occurring model for LOAD. Notably, relationships are identified between AD-like neuropathology and modifiable risk factors. Gaps in knowledge and key limitations are provided to shape future studies to illuminate mechanisms underlying divergent neurocognitive aging trajectories and to develop interventions that increase resilience to aging-associated chronic disease, particularly, LOAD.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | | | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Kylie Kavanagh
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
| | - Shannon L. Macauley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| |
Collapse
|
13
|
Zhong Q, Ali N, Gao Y, Wu H, Wu X, Sun C, Ma J, Thabane L, Xiao M, Zhou Q, Shen Y, Wang T, Zhu Y. Gait Kinematic and Kinetic Characteristics of Older Adults With Mild Cognitive Impairment and Subjective Cognitive Decline: A Cross-Sectional Study. Front Aging Neurosci 2021; 13:664558. [PMID: 34413762 PMCID: PMC8368728 DOI: 10.3389/fnagi.2021.664558] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/09/2021] [Indexed: 01/14/2023] Open
Abstract
Background Older adults with mild cognitive impairment (MCI) have slower gait speed and poor gait performance under dual-task conditions. However, gait kinematic and kinetic characteristics in older adults with MCI or subjective cognitive decline (SCD) remain unknown. This study was designed to explore the difference in gait kinematics and kinetics during level walking among older people with MCI, SCD, and normal cognition (NC). Methods This cross-sectional study recruited 181 participants from July to December 2019; only 82 met the inclusion criteria and consented to participate and only 79 completed gait analysis. Kinematic and kinetic data were obtained using three-dimensional motion capture system during level walking, and joint movements of the lower limbs in the sagittal plane were analyzed by Visual 3D software. Differences in gait kinematics and kinetics among the groups were analyzed using multivariate analysis of covariance (MANCOVA) with Bonferroni post-hoc analysis. After adjusting for multiple comparisons, the significance level was p < 0.002 for MANCOVA and p < 0.0008 for post-hoc analysis. Results Twenty-two participants were MCI [mean ± standard deviation (SD) age, 71.23 ± 6.65 years], 33 were SCD (age, 72.73 ± 5.25 years), and 24 were NC (age, 71.96 ± 5.30 years). MANCOVA adjusted for age, gender, body mass index (BMI), gait speed, years of education, diabetes mellitus, and Geriatric Depression Scale (GDS) revealed a significant multivariate effect of group in knee peak extension angle (F = 8.77, p < 0.0001) and knee heel strike angle (F = 8.07, p = 0.001) on the right side. Post-hoc comparisons with Bonferroni correction showed a significant increase of 5.91° in knee peak extension angle (p < 0.0001) and a noticeable decrease of 6.21°in knee heel strike angle (p = 0.001) in MCI compared with NC on the right side. However, no significant intergroup difference was found in gait kinetics, including dorsiflexion, plantar flexion, knee flexion, knee extension, hip flexion, and hip extension(p > 0.002). Conclusion An increase of right knee peak extension angle and a decrease of right knee heel strike angle during level walking were found among older adults with MCI compared to those with NC.
Collapse
Affiliation(s)
- Qian Zhong
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Nawab Ali
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Swat Institute of Rehabilitation & Medical Sciences, Swat, Pakistan
| | - Yaxin Gao
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Han Wu
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xixi Wu
- Zhongshan Rehabilitation Branch, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cuiyun Sun
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jinhui Ma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Biostatistics Unit, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China.,Brain Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiumin Zhou
- Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Shen
- Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Calderón-Garcidueñas L, Torres-Solorio AK, Kulesza RJ, Torres-Jardón R, González-González LO, García-Arreola B, Chávez-Franco DA, Luévano-Castro SC, Hernández-Castillo A, Carlos-Hernández E, Solorio-López E, Crespo-Cortés CN, García-Rojas E, Mukherjee PS. Gait and balance disturbances are common in young urbanites and associated with cognitive impairment. Air pollution and the historical development of Alzheimer's disease in the young. ENVIRONMENTAL RESEARCH 2020; 191:110087. [PMID: 32890478 PMCID: PMC7467072 DOI: 10.1016/j.envres.2020.110087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 05/03/2023]
Abstract
To determine whether gait and balance dysfunction are present in young urbanites exposed to fine particular matter PM2.5 ≥ annual USEPA standard, we tested gait and balance with Tinetti and Berg tests in 575 clinically healthy subjects, age 21.0 ± 5.7 y who were residents in Metropolitan Mexico City, Villahermosa and Reynosa. The Montreal Cognitive Assessment was also applied to an independent cohort n:76, age 23.3 ± 9.1 y. In the 575 cohort, 75.4% and 34.4% had abnormal total Tinetti and Berg scores and high risk of falls in 17.2% and 5.7% respectively. BMI impacted negatively Tinetti and Berg performance. Gait dysfunction worsen with age and males performed worse than females. Gait and balance dysfunction were associated with mild cognitive impairment MCI (19.73%) and dementia (55.26%) in 57/76 and 19 cognitively intact subjects had gait and balance dysfunction. Seventy-five percent of urbanites exposed to PM2.5 had gait and balance dysfunction. For MMC residents-with historical documented Alzheimer disease (AD) and CSF abnormalities, these findings suggest Alzheimer Continuum is in progress. Early development of a Motoric Cognitive Risk Syndrome ought to be considered in city dwellers with normal cognition and gait dysfunction. The AD research frame in PM2.5 exposed young urbanites should include gait and balance measurements. Multicity teens and young adult cohorts are warranted for quantitative gait and balance measurements and neuropsychological and brain imaging studies in high vs low PM2.5 exposures. Early identification of gait and balance impairment in young air pollution-exposed urbanites would facilitate multidisciplinary prevention efforts for modifying the course of AD.
Collapse
Affiliation(s)
| | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|