1
|
Numakawa T, Kajihara R. An Interaction between Brain-Derived Neurotrophic Factor and Stress-Related Glucocorticoids in the Pathophysiology of Alzheimer's Disease. Int J Mol Sci 2024; 25:1596. [PMID: 38338875 PMCID: PMC10855648 DOI: 10.3390/ijms25031596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression. Importantly, a growing body of evidence suggests a close relationship between BDNF/TrkB-mediated signaling and the GCs/GR system in the CNS. Here, we introduce the current studies on the interaction between the neurotrophic system and stress in CNS neurons and discuss their involvement in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
2
|
Matuskova V, Veverova K, Jester DJ, Matoska V, Ismail Z, Sheardova K, Horakova H, Cerman J, Laczó J, Andel R, Hort J, Vyhnalek M. Mild behavioral impairment in early Alzheimer's disease and its association with APOE and BDNF risk genetic polymorphisms. Alzheimers Res Ther 2024; 16:21. [PMID: 38279143 PMCID: PMC10811933 DOI: 10.1186/s13195-024-01386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Mild behavioral impairment (MBI) has been commonly reported in early Alzheimer's disease (AD) but rarely using biomarker-defined samples. It is also unclear whether genetic polymorphisms influence MBI in such individuals. We thus aimed to examine the association between the cognitive status of participants (amnestic mild cognitive impairment (aMCI-AD) vs cognitively normal (CN) older adults) and MBI severity. Within aMCI-AD, we further examined the association between APOE and BDNF risk genetic polymorphisms and MBI severity. METHODS We included 62 aMCI-AD participants and 50 CN older adults from the Czech Brain Aging Study. The participants underwent neurological, comprehensive neuropsychological examination, APOE and BDNF genotyping, and magnetic resonance imaging. MBI was diagnosed with the Mild Behavioral Impairment Checklist (MBI-C), and the diagnosis was based on the MBI-C total score ≥ 7. Additionally, self-report instruments for anxiety (the Beck Anxiety Inventory) and depressive symptoms (the Geriatric Depression Scale-15) were administered. The participants were stratified based on the presence of at least one risk allele in genes for APOE (i.e., e4 carriers and non-carriers) and BDNF (i.e., Met carriers and non-carriers). We used linear regressions to examine the associations. RESULTS MBI was present in 48.4% of the aMCI-AD individuals. Compared to the CN, aMCI-AD was associated with more affective, apathy, and impulse dyscontrol but not social inappropriateness or psychotic symptoms. Furthermore, aMCI-AD was related to more depressive but not anxiety symptoms on self-report measures. Within the aMCI-AD, there were no associations between APOE e4 and BDNF Met and MBI-C severity. However, a positive association between Met carriership and self-reported anxiety appeared. CONCLUSIONS MBI is frequent in aMCI-AD and related to more severe affective, apathy, and impulse dyscontrol symptoms. APOE and BDNF polymorphisms were not associated with MBI severity separately; however, their combined effect warrants further investigation.
Collapse
Affiliation(s)
- Veronika Matuskova
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Katerina Veverova
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Dylan J Jester
- Women's Operational Military Exposure Network (WOMEN), VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Zahinoor Ismail
- Departments of Psychiatry and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Katerina Sheardova
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Hana Horakova
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Clinical Psychology, Motol University Hospital, Prague, Czech Republic
| | - Jiri Cerman
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Laczó
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Ross Andel
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Center for Innovation in Healthy and Resilient Aging, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Jakub Hort
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Vyhnalek
- Department of Neurology, Memory Clinic, Charles University, Second Faculty of Medicine and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic.
| |
Collapse
|
3
|
Pan X, Coban Akdemir ZH, Gao R, Jiang X, Sheynkman GM, Wu E, Huang JH, Sahni N, Yi SS. AD-Syn-Net: systematic identification of Alzheimer's disease-associated mutation and co-mutation vulnerabilities via deep learning. Brief Bioinform 2023; 24:bbad030. [PMID: 36752347 PMCID: PMC10025433 DOI: 10.1093/bib/bbad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most challenging neurodegenerative diseases because of its complicated and progressive mechanisms, and multiple risk factors. Increasing research evidence demonstrates that genetics may be a key factor responsible for the occurrence of the disease. Although previous reports identified quite a few AD-associated genes, they were mostly limited owing to patient sample size and selection bias. There is a lack of comprehensive research aimed to identify AD-associated risk mutations systematically. To address this challenge, we hereby construct a large-scale AD mutation and co-mutation framework ('AD-Syn-Net'), and propose deep learning models named Deep-SMCI and Deep-CMCI configured with fully connected layers that are capable of predicting cognitive impairment of subjects effectively based on genetic mutation and co-mutation profiles. Next, we apply the customized frameworks to data sets to evaluate the importance scores of the mutations and identified mutation effectors and co-mutation combination vulnerabilities contributing to cognitive impairment. Furthermore, we evaluate the influence of mutation pairs on the network architecture to dissect the genetic organization of AD and identify novel co-mutations that could be responsible for dementia, laying a solid foundation for proposing future targeted therapy for AD precision medicine. Our deep learning model codes are available open access here: https://github.com/Pan-Bio/AD-mutation-effectors.
Collapse
Affiliation(s)
- Xingxin Pan
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zeynep H Coban Akdemir
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ruixuan Gao
- Departments of Chemistry and Biological Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Erxi Wu
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, TX 77843, USA
| | - Jason H Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer's disease. Sci Rep 2022; 12:10994. [PMID: 35768560 PMCID: PMC9243110 DOI: 10.1038/s41598-022-15299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The risk of Alzheimer’s disease (AD) has a strong genetic component, also in the case of late-onset AD (LOAD). Attempts to sequence whole genome in large populations of subjects have identified only a few mutations common to most of the patients with AD. Targeting smaller well-characterized groups of subjects where specific genetic variations in selected genes could be related to precisely defined psychological traits typical of dementia is needed to better understand the heritability of AD. More than one thousand participants, categorized according to cognitive deficits, were assessed using 14 psychometric tests evaluating performance in five cognitive domains (attention/working memory, memory, language, executive functions, visuospatial functions). CD36 was selected as a gene previously shown to be implicated in the etiology of AD. A total of 174 polymorphisms were tested for associations with cognition-related traits and other AD-relevant data using the next generation sequencing. Several associations between single nucleotide polymorphisms (SNP’s) and the cognitive deficits have been found (rs12667404 with language performance, rs3211827 and rs41272372 with executive functions, rs137984792 with visuospatial performance). The most prominent association was found between a group of genotypes in six genetically linked and the age at which the AD patients presented with, or developed, a full-blown dementia. The identified alleles appear to be associated with a delay in the onset of LOAD. In silico studies suggested that the SNP’s alter the expression of CD36 thus potentially affecting CD36-related neuroinflammation and other molecular and cellular mechanisms known to be involved in the neuronal loss leading to AD. The main outcome of the study is an identification of a set of six new mutations apparently conferring a distinct protection against AD and delaying the onset by about 8 years. Additional mutations in CD36 associated with certain traits characteristic of the cognitive decline in AD have also been found.
Collapse
|
5
|
Lerch O, Laczó M, Vyhnálek M, Nedelská Z, Hort J, Laczó J. APOEɛ4 Allele Moderates the Association Between Basal Forebrain Nuclei Volumes and Allocentric Navigation in Older Adults Without Dementia. J Alzheimers Dis 2022; 86:155-171. [PMID: 35034896 DOI: 10.3233/jad-215034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholinergic deficit and medial temporal lobe (MTL) atrophy are hallmarks of Alzheimer's disease (AD) leading to early allocentric spatial navigation (aSN) impairment. APOEɛ4 allele (E4) is a major genetic risk factor for late-onset AD and contributes to cholinergic dysfunction. Basal forebrain (BF) nuclei, the major source of acetylcholine, project into multiple brain regions and, along with MTL and prefrontal cortex (PFC), are involved in aSN processing. OBJECTIVE We aimed to determine different contributions of individual BF nuclei atrophy to aSN in E4 positive and E4 negative older adults without dementia and assess whether they operate on aSN through MTL and PFC or independently from these structures. METHODS 120 participants (60 E4 positive, 60 E4 negative) from the Czech Brain Aging Study underwent structural MRI and aSN testing in real-space arena setting. Hippocampal and BF nuclei volumes and entorhinal cortex and PFC thickness were obtained. Associations between brain regions involved in aSN were assessed using MANOVA and complex model of mutual relationships was built using structural equation modelling (SEM). RESULTS Path analysis based on SEM modeling revealed that BF Ch1-2, Ch4p, and Ch4ai nuclei volumes were indirectly associated with aSN performance through MTL (pch1 - 2 = 0.039; pch4p = 0.042) and PFC (pch4ai = 0.044). In the E4 negative group, aSN was indirectly associated with Ch1-2 nuclei volumes (p = 0.015), while in the E4 positive group, there was indirect effect of Ch4p nucleus (p = 0.035). CONCLUSION Our findings suggest that in older adults without dementia, BF nuclei affect aSN processing indirectly, through MTL and PFC, and that APOE E4 moderates these associations.
Collapse
Affiliation(s)
- Ondřej Lerch
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Martina Laczó
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Martin Vyhnálek
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zuzana Nedelská
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
6
|
Kazantseva AV, Enikeeva RF, Davydova YD, Mustafin RN, Takhirova ZR, Malykh SB, Lobaskova MM, Tikhomirova TN, Khusnutdinova EK. The role of the KIBRA and APOE genes in developing spatial abilities in humans. Vavilovskii Zhurnal Genet Selektsii 2022; 25:839-846. [PMID: 35088019 PMCID: PMC8761577 DOI: 10.18699/vj21.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
In the contemporary high-tech society, spatial abilities predict individual life and professional success, especially in the STEM (Science, Technology, Engineering, and Mathematics) disciplines. According to neurobiological hypotheses, individual differences in cognitive abilities may be attributed to the functioning of genes involved in the regulation of neurogenesis and synaptic plasticity. In addition, genome-wide association studies identified rs17070145 located in the KIBRA gene, which was associated with individual differences in episodic memory. Considering a significant role of genetic and environmental components in cognitive functioning, the present study aimed to estimate the main effect of NGF (rs6330), NRXN1 (rs1045881, rs4971648), KIBRA (rs17070145), NRG1 (rs6994992), BDNF (rs6265), GRIN2B (rs3764030), APOE (rs7412, rs429358), and SNAP25 (rs363050) gene polymorphisms and to assess the effect of gene-environment interactions on individual differences in spatial ability in individuals without cognitive decline aged 18–25 years (N = 1011, 80 % women). Spatial abilities were measured using a battery of cognitive tests including the assessment of “3D shape rotation” (mental rotation). Multiple regression analysis, which was carried out in the total sample controlling for sex, ethnicity and the presence of the “risk” APOE ε4 allele, demonstrated the association of the rs17070145 Т-allele in the KIBRA gene with enhanced spatial ability (β = 1.32; pFDR = 0.037) compared to carriers of the rs17070145 CC-genotype. The analysis of gene-environment interactions revealed that nicotine smoking (β = 3.74; p = 0.010) and urban/rural residency in childhood (β = –6.94; p = 0.0002) modulated the association of KIBRA rs17070145 and АРОЕ (rs7412, rs429358) gene variants with individual differences in mental rotation, respectively. The data obtained confirm the effect of the KIBRA rs17070145 Т-allele on improved cognitive functioning and for the first time evidence the association of the mentioned genetic variant with spatial abilities in humans. A “protective” effect of the APOE ε2 allele on enhanced cognitive functioning is observed only under certain conditions related to childhood rearing.
Collapse
Affiliation(s)
- A. V. Kazantseva
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa State Petroleum Technological University, Department of molecular technologies
| | - R. F. Enikeeva
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
| | - Yu. D. Davydova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
| | - R. N. Mustafin
- Bashkir State Medical University, Department of medical genetics and fundamental medicine
| | - Z. R. Takhirova
- Bashkir State University, Department of genetics and fundamental medicine
| | - S. B. Malykh
- Psychological Institute of the Russian Academy of Education; Lomonosov Moscow State University, Department of psychology
| | | | - T. N. Tikhomirova
- Psychological Institute of the Russian Academy of Education; Lomonosov Moscow State University, Department of psychology
| | - E. K. Khusnutdinova
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Lomonosov Moscow State University, Department of psychology
| |
Collapse
|