1
|
Quezada M, Ponce C, Berríos‐Cárcamo P, Santapau D, Gallardo J, De Gregorio C, Quintanilla ME, Morales P, Ezquer M, Herrera‐Marschitz M, Israel Y, Andrés‐Herrera P, Hipólito L, Ezquer F. Amelioration of morphine withdrawal syndrome by systemic and intranasal administration of mesenchymal stem cell-derived secretome in preclinical models of morphine dependence. CNS Neurosci Ther 2024; 30:e14517. [PMID: 37927136 PMCID: PMC11017443 DOI: 10.1111/cns.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Morphine is an opiate commonly used in the treatment of moderate to severe pain. However, prolonged administration can lead to physical dependence and strong withdrawal symptoms upon cessation of morphine use. These symptoms can include anxiety, irritability, increased heart rate, and muscle cramps, which strongly promote morphine use relapse. The morphine-induced increases in neuroinflammation, brain oxidative stress, and alteration of glutamate levels in the hippocampus and nucleus accumbens have been associated with morphine dependence and a higher severity of withdrawal symptoms. Due to its rich content in potent anti-inflammatory and antioxidant factors, secretome derived from human mesenchymal stem cells (hMSCs) is proposed as a preclinical therapeutic tool for the treatment of this complex neurological condition associated with neuroinflammation and brain oxidative stress. METHODS Two animal models of morphine dependence were used to evaluate the therapeutic efficacy of hMSC-derived secretome in reducing morphine withdrawal signs. In the first model, rats were implanted subcutaneously with mini-pumps which released morphine at a concentration of 10 mg/kg/day for seven days. Three days after pump implantation, animals were treated with a simultaneous intravenous and intranasal administration of hMSC-derived secretome or vehicle, and withdrawal signs were precipitated on day seven by i.p. naloxone administration. In this model, brain alterations associated with withdrawal were also analyzed before withdrawal precipitation. In the second animal model, rats voluntarily consuming morphine for three weeks were intravenously and intranasally treated with hMSC-derived secretome or vehicle, and withdrawal signs were induced by morphine deprivation. RESULTS In both animal models secretome administration induced a significant reduction of withdrawal signs, as shown by a reduction in a combined withdrawal score. Secretome administration also promoted a reduction in morphine-induced neuroinflammation in the hippocampus and nucleus accumbens, while no changes were observed in extracellular glutamate levels in the nucleus accumbens. CONCLUSION Data presented from two animal models of morphine dependence suggest that administration of secretome derived from hMSCs reduces the development of opioid withdrawal signs, which correlates with a reduction in neuroinflammation in the hippocampus and nucleus accumbens.
Collapse
Affiliation(s)
- Mauricio Quezada
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Carolina Ponce
- Department of Neuroscience, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Pablo Berríos‐Cárcamo
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Daniela Santapau
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Javiera Gallardo
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Cristian De Gregorio
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Paola Morales
- Department of Neuroscience, Faculty of MedicineUniversidad de ChileSantiagoChile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Marcelo Ezquer
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
| | - Mario Herrera‐Marschitz
- Department of Neuroscience, Faculty of MedicineUniversidad de ChileSantiagoChile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of MedicineUniversidad de ChileSantiagoChile
| | - Paula Andrés‐Herrera
- Department of Pharmacy and Pharmaceutical Technology and ParasitologyUniversity of ValenciaValenciaSpain
- University Institute of Biotechnology and Biomedicine (BIOTECMED)University of ValenciaValenciaSpain
| | - Lucia Hipólito
- Department of Pharmacy and Pharmaceutical Technology and ParasitologyUniversity of ValenciaValenciaSpain
- University Institute of Biotechnology and Biomedicine (BIOTECMED)University of ValenciaValenciaSpain
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of MedicineClínica Alemana‐Universidad del DesarrolloSantiagoChile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use DisordersSantiagoChile
| |
Collapse
|
2
|
Effects of Docosahexaenoic Acid and Its Peroxidation Product on Amyloid-β Peptide-Stimulated Microglia. Mol Neurobiol 2019; 57:1085-1098. [PMID: 31677009 DOI: 10.1007/s12035-019-01805-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Growing evidence suggests that docosahexaenoic acid (DHA) exerts neuroprotective effects, although the mechanism(s) underlying these beneficial effects are not fully understood. Here we demonstrate that DHA, but not arachidonic acid (ARA), suppressed oligomeric amyloid-β peptide (oAβ)-induced reactive oxygen species (ROS) production in primary mouse microglia and immortalized mouse microglia (BV2). Similarly, DHA but not ARA suppressed oAβ-induced increases in phosphorylated cytosolic phospholipase A2 (p-cPLA2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) in BV2 cells. LC-MS/MS assay indicated the ability for DHA to cause an increase in 4-hydroxyhexenal (4-HHE) and suppress oAβ-induced increase in 4-hydroxynonenal (4-HNE). Although oAβ did not alter the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, exogenous DHA, ARA as well as low concentrations of 4-HHE and 4-HNE upregulated this pathway and increased production of heme oxygenase-1 (HO-1) in microglial cells. These results suggest that DHA modulates ARA metabolism in oAβ-stimulated microglia through suppressing oxidative and inflammatory pathways and upregulating the antioxidative stress pathway involving Nrf2/HO-1. Understanding the mechanism(s) underlying the beneficial effects of DHA on microglia should shed light into nutraceutical therapy for the prevention and treatment of Alzheimer's disease (AD).
Collapse
|
3
|
Quintanilla ME, Ezquer F, Morales P, Santapau D, Berríos-Cárcamo P, Ezquer M, Herrera-Marschitz M, Israel Y. Intranasal mesenchymal stem cell secretome administration markedly inhibits alcohol and nicotine self-administration and blocks relapse-intake: mechanism and translational options. Stem Cell Res Ther 2019; 10:205. [PMID: 31286996 PMCID: PMC6615104 DOI: 10.1186/s13287-019-1304-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic consumption of most drugs of abuse leads to brain oxidative stress and neuroinflammation, which inhibit the glutamate transporter GLT-1, proposed to perpetuate drug intake. The present study aimed at inhibiting chronic ethanol and nicotine self-administration and relapse by the non-invasive intranasal administration of antioxidant and anti-inflammatory secretome generated by adipose tissue-derived activated mesenchymal stem cells. The anti-addiction mechanism of stem cell secretome is also addressed. METHODS Rats bred for their alcohol preference ingested alcohol chronically or were trained to self-administer nicotine. Secretome of human adipose tissue-derived activated mesenchymal stem cells was administered intranasally to animals, both (i) chronically consuming alcohol or nicotine and (ii) during a protracted deprivation before a drug re-access leading to relapse intake. RESULTS The intranasal administration of secretome derived from activated mesenchymal stem cells inhibited chronic self-administration of ethanol or nicotine by 85% and 75%, respectively. Secretome administration further inhibited by 85-90% the relapse "binge" intake that occurs after a protracted drug deprivation followed by a 60-min drug re-access. Secretome administration fully abolished the oxidative stress induced by chronic ethanol or nicotine self-administration, shown by the normalization of the hippocampal oxidized/reduced glutathione ratio, and the neuroinflammation determined by astrocyte and microglial immunofluorescence. Knockdown of the glutamate transporter GLT-1 by the intracerebral administration of an antisense oligonucleotide fully abolished the inhibitory effect of the secretome on ethanol and nicotine intake. CONCLUSIONS The non-invasive intranasal administration of secretome generated by human adipose tissue-derived activated mesenchymal stem cells markedly inhibits alcohol and nicotine self-administration, an effect mediated by the glutamate GLT-1 transporter. Translational implications are envisioned.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, 7710162, Santiago, RM, Chile.
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, 7710162, Santiago, RM, Chile
| | - Pablo Berríos-Cárcamo
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, 7710162, Santiago, RM, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, 7710162, Santiago, RM, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Santiago, Chile
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Sottero B, Leonarduzzi G, Testa G, Gargiulo S, Poli G, Biasi F. Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700047] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| |
Collapse
|
5
|
Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 2017; 95:2430-2447. [PMID: 28467650 DOI: 10.1002/jnr.24075] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+ . Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Crystal Acosta
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada
| | - Hope D Anderson
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada.,College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Christopher M Anderson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
How can we target oxidative stress in the treatment of neurodegenerative diseases? Future Med Chem 2016; 8:835-9. [PMID: 27173453 DOI: 10.4155/fmc-2016-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
8
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|