1
|
Huang B, Zheng W, Mu R, Yang P, Li X, Liu F, Qin X, Zhu X. Disparities in the diagnostic efficacy of radiomics models in predicting various degrees of cognitive impairment in patients with cerebral small vessel disease. BMC Med Imaging 2024; 24:257. [PMID: 39333913 PMCID: PMC11428886 DOI: 10.1186/s12880-024-01431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Aim to validate the diagnostic efficacy of radiomics models for predicting various degrees of cognitive impairment in patients with cerebral small vessel disease (CSVD). METHODS Participants were divided into mild cognitive impairment group (mild-CSVD group) and sever cognitive impairment group (sever-CSVD group) according to Montreal Cognitive Assessment (MoCA) performance, 98 gender-age-education matched subjects served as normal controls. Radiomic features were extracted from the segmented hippocampus using PyRadiomics. The feature preprocessing involved replacing missing values with the mean, applying stratified random sampling to allocate subjects into training (80%) and testing (20%) sets, ensuring balance among the three classes (normal controls, mild-CSVD group, and sever-CSVD group). A feature selection method was applied to identify discriminative radiomic features, with the optimal texture feature chosen for developing diagnostic models. Performance was evaluated in both the training and testing sets using receiver operating characteristic (ROC) curve analysis. RESULTS The radiomics model achieved an accuracy of 0.625, an AUC of 0.593, a sensitivity of 0.828, and a specificity of 0.316 in distinguishing mild-CSVD group from normal controls. When distinguishing mild-CSVD group from sever-CSVD group, the radiomics model reached an accuracy of 0.683, an AUC of 0.660, a sensitivity of 0.167, and a specificity of 0.897. Similarly, in distinguishing sever-CSVD group from normal controls, the radiomics model exhibited an accuracy of 0.781, an AUC of 0.818, a sensitivity of 0.538, and a specificity of 0.947. CONCLUSION Radiomics model based on hippocampal texture had disparities in the diagnostic efficacy of radiomics models in predicting various degrees of cognitive impairment in patients with CSVD.
Collapse
Affiliation(s)
- Bingqin Huang
- Graduate School, Guilin Medical University, Guilin, 541002, China
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Wei Zheng
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Ronghua Mu
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Peng Yang
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Xin Li
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Fuzhen Liu
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Xiaoyan Qin
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541004, China.
| | - Xiqi Zhu
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| |
Collapse
|
2
|
Wu Y, Wang X, Fang Y. Predicting mild cognitive impairment in older adults: A machine learning analysis of the Alzheimer's Disease Neuroimaging Initiative. Geriatr Gerontol Int 2024; 24 Suppl 1:96-101. [PMID: 37734954 DOI: 10.1111/ggi.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
AIM Mild cognitive impairment (MCI) in older adults is potentially devastating, but an accurate prediction model is still lacking. We hypothesized that neuropsychological tests and MRI-related markers could predict the onset of MCI early. METHODS We analyzed data from 306 older adults who were cognitive normal (CN) attending the Alzheimer's Disease Neuroimaging Initiative sequentially (474 pairs of visits) within 3 years. There were 231 pairs of MCI conversion (CN to MCI), and 242 pairs of CN maintenance (CN to CN). Variables on demographic, neuropsychological tests, genetic, and MRI-related markers were collected. Machine learning was used to construct MCI prediction models, comparing the area under the receiver operating characteristic curve (AUC) as the primary metric of performance. Important predictors were ranked for the optimal model. RESULTS The baseline age of the study sample was 74.8 years old. The best-performing model (gradient boosting decision tree) with 13 variables predicted MCI with an AUC of 0.819, and the rank of variable importance showed that intracranial volume, hippocampal volume, and score from task 4 (word recognition) of the Alzheimer's Disease Assessment Scale were important predictors of MCI. CONCLUSIONS With the help of machine learning, fewer neuropsychological tests and MRI-related markers are required to accurately predict MCI within 3 years, thereby facilitating targeted intervention. Geriatr Gerontol Int 2024; 24: 96-101.
Collapse
Affiliation(s)
- Yafei Wu
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
| | - Xing Wang
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
| | - Ya Fang
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Ying TT, Zhuang LY, Xu SH, Zhang SF, Huang LJ, Gao WW, Liu L, Lai QL, Lou Y, Liu XL. Identification of Dementia & Mild Cognitive Impairment in Chinese Elderly Using Machine Learning. Am J Alzheimers Dis Other Demen 2024; 39:15333175241275215. [PMID: 39133478 PMCID: PMC11320688 DOI: 10.1177/15333175241275215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
OBJECTIVE To assess the role of Machine Learning (ML) in identification critical factors of dementia and mild cognitive impairment. METHODS 371 elderly individuals were ultimately included in the ML analysis. Demographic information (including gender, age, parity, visual acuity, auditory function, mobility, and medication history) and 35 features from 10 assessment scales were used for modeling. Five machine learning classifiers were used for evaluation, employing a procedure involving feature extraction, selection, model training, and performance assessment to identify key indicative factors. RESULTS The Random Forest model, after data preprocessing, Information Gain, and Meta-analysis, utilized three training features and four meta-features, achieving an area under the curve of 0.961 and a accuracy of 0.894, showcasing exceptional accuracy for the identification of dementia and mild cognitive impairment. CONCLUSIONS ML serves as a identification tool for dementia and mild cognitive impairment. Using Information Gain and Meta-feature analysis, Clinical Dementia Rating (CDR) and Neuropsychiatric Inventory (NPI) scale information emerged as crucial for training the Random Forest model.
Collapse
Affiliation(s)
- Tong-Tong Ying
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Li-Ying Zhuang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Shan-Hu Xu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Shu-Feng Zhang
- Second Department of Geriatrics, Weifang People’s Hospital, Weifang, China
| | - Li-Jun Huang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Wei-Wei Gao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lu Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yue Lou
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Xiao-Li Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
4
|
Cao E, Ma D, Nayak S, Duong TQ. Deep learning combining FDG-PET and neurocognitive data accurately predicts MCI conversion to Alzheimer's dementia 3-year post MCI diagnosis. Neurobiol Dis 2023; 187:106310. [PMID: 37769746 DOI: 10.1016/j.nbd.2023.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS). METHODS This analysis consisted of 150 normal controls (CN), 257 MCI, and 205 AD subjects from ADNI. FDG-PET and CS were obtained at MCI diagnosis to predict AD conversion within three years of MCI diagnosis using convolutional neural networks. RESULTS Neurocognitive scores predicted better than FDG-PET per se, but the best model was a combination of FDG-PET, age, and neurocognitive data, yielding an AUC of 0.785 ± 0.096 and a balanced accuracy of 0.733 ± 0.098. Saliency maps highlighted putamen, thalamus, inferior frontal gyrus, parietal operculum, precuneus cortices, calcarine cortices, temporal gyrus, and planum temporale to be important for prediction. DISCUSSION Deep learning accurately predicts MCI conversion to AD and provides neural correlates of brain regions associated with AD conversion.
Collapse
Affiliation(s)
- Eric Cao
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, United States
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Medicine, Wake Forest, University School of Medicine, Winston-Salam, NC 27109, United States
| | - Siddharth Nayak
- Department of Radiology, Weill Cornell Medicine, New York, 10065, United States
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, United States.
| |
Collapse
|
5
|
Wu Y, Wang X, Gu C, Zhu J, Fang Y. Investigating predictors of progression from mild cognitive impairment to Alzheimer's disease based on different time intervals. Age Ageing 2023; 52:afad182. [PMID: 37740920 PMCID: PMC10518045 DOI: 10.1093/ageing/afad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is the early stage of AD, and about 10-12% of MCI patients will progress to AD every year. At present, there are no effective markers for the early diagnosis of whether MCI patients will progress to AD. This study aimed to develop machine learning-based models for predicting the progression from MCI to AD within 3 years, to assist in screening and prevention of high-risk populations. METHODS Data were collected from the Alzheimer's Disease Neuroimaging Initiative, a representative sample of cognitive impairment population. Machine learning models were applied to predict the progression from MCI to AD, using demographic, neuropsychological test and MRI-related biomarkers. Data were divided into training (56%), validation (14%) and test sets (30%). AUC (area under ROC curve) was used as the main evaluation metric. Key predictors were ranked utilising their importance. RESULTS The AdaBoost model based on logistic regression achieved the best performance (AUC: 0.98) in 0-6 month prediction. Scores from the Functional Activities Questionnaire, Modified Preclinical Alzheimer Cognitive Composite with Trails test and ADAS11 (Unweighted sum of 11 items from The Alzheimer's Disease Assessment Scale-Cognitive Subscale) were key predictors. CONCLUSION Through machine learning, neuropsychological tests and MRI-related markers could accurately predict the progression from MCI to AD, especially in a short period time. This is of great significance for clinical staff to screen and diagnose AD, and to intervene and treat high-risk MCI patients early.
Collapse
Affiliation(s)
- Yafei Wu
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Xing Wang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Chenming Gu
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Junmin Zhu
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Ya Fang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Yi F, Yang H, Chen D, Qin Y, Han H, Cui J, Bai W, Ma Y, Zhang R, Yu H. XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease. BMC Med Inform Decis Mak 2023; 23:137. [PMID: 37491248 PMCID: PMC10369804 DOI: 10.1186/s12911-023-02238-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Due to the class imbalance issue faced when Alzheimer's disease (AD) develops from normal cognition (NC) to mild cognitive impairment (MCI), present clinical practice is met with challenges regarding the auxiliary diagnosis of AD using machine learning (ML). This leads to low diagnosis performance. We aimed to construct an interpretable framework, extreme gradient boosting-Shapley additive explanations (XGBoost-SHAP), to handle the imbalance among different AD progression statuses at the algorithmic level. We also sought to achieve multiclassification of NC, MCI, and AD. METHODS We obtained patient data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including clinical information, neuropsychological test results, neuroimaging-derived biomarkers, and APOE-ε4 gene statuses. First, three feature selection algorithms were applied, and they were then included in the XGBoost algorithm. Due to the imbalance among the three classes, we changed the sample weight distribution to achieve multiclassification of NC, MCI, and AD. Then, the SHAP method was linked to XGBoost to form an interpretable framework. This framework utilized attribution ideas that quantified the impacts of model predictions into numerical values and analysed them based on their directions and sizes. Subsequently, the top 10 features (optimal subset) were used to simplify the clinical decision-making process, and their performance was compared with that of a random forest (RF), Bagging, AdaBoost, and a naive Bayes (NB) classifier. Finally, the National Alzheimer's Coordinating Center (NACC) dataset was employed to assess the impact path consistency of the features within the optimal subset. RESULTS Compared to the RF, Bagging, AdaBoost, NB and XGBoost (unweighted), the interpretable framework had higher classification performance with accuracy improvements of 0.74%, 0.74%, 1.46%, 13.18%, and 0.83%, respectively. The framework achieved high sensitivity (81.21%/74.85%), specificity (92.18%/89.86%), accuracy (87.57%/80.52%), area under the receiver operating characteristic curve (AUC) (0.91/0.88), positive clinical utility index (0.71/0.56), and negative clinical utility index (0.75/0.68) on the ADNI and NACC datasets, respectively. In the ADNI dataset, the top 10 features were found to have varying associations with the risk of AD onset based on their SHAP values. Specifically, the higher SHAP values of CDRSB, ADAS13, ADAS11, ventricle volume, ADASQ4, and FAQ were associated with higher risks of AD onset. Conversely, the higher SHAP values of LDELTOTAL, mPACCdigit, RAVLT_immediate, and MMSE were associated with lower risks of AD onset. Similar results were found for the NACC dataset. CONCLUSIONS The proposed interpretable framework contributes to achieving excellent performance in imbalanced AD multiclassification tasks and provides scientific guidance (optimal subset) for clinical decision-making, thereby facilitating disease management and offering new research ideas for optimizing AD prevention and treatment programs.
Collapse
Affiliation(s)
- Fuliang Yi
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Hui Yang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Durong Chen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Yao Qin
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Hongjuan Han
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Jing Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Wenlin Bai
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Yifei Ma
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Rong Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001 P.R. China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| |
Collapse
|
7
|
Liu H, Zhang X, Liu H, Chong ST. Using Machine Learning to Predict Cognitive Impairment Among Middle-Aged and Older Chinese: A Longitudinal Study. Int J Public Health 2023; 68:1605322. [PMID: 36798738 PMCID: PMC9926933 DOI: 10.3389/ijph.2023.1605322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Objective: To explore the predictive value of machine learning in cognitive impairment, and identify important factors for cognitive impairment. Methods: A total of 2,326 middle-aged and elderly people completed questionnaire, and physical examination evaluation at baseline, Year 2, and Year 4 follow-ups. A random forest machine learning (ML) model was used to predict the cognitive impairment at Year 2 and Year 4 longitudinally. Based on Year 4 cross-sectional data, the same method was applied to establish a prediction model and verify its longitudinal prediction accuracy for cognitive impairment. Meanwhile, the ability of random forest and traditional logistic regression model to longitudinally predict 2-year and 4-year cognitive impairment was compared. Results: Random forest models showed high accuracy for all outcomes at Year 2, Year 4, and cross-sectional Year 4 [AUC = 0.81, 0.79, 0.80] compared with logistic regression [AUC = 0.61, 0.62, 0.70]. Baseline physical examination (e.g., BMI, Blood pressure), biomarkers (e.g., cholesterol), functioning (e.g., functional limitations), demography (e.g., age), and emotional status (e.g., depression) characteristics were identified as the top ten important predictors of cognitive impairment. Conclusion: ML algorithms could enhance the prediction of cognitive impairment among the middle-aged and older Chinese for 4 years and identify essential risk markers.
Collapse
Affiliation(s)
- Haihong Liu
- Centre for Research in Psychology and Human Well-being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, Malaysia,Department of Psychology, Chengde Medical University, Chengde, China
| | - Xiaolei Zhang
- Department of Biomedical Engineering, Chengde Medical University, Chengde, China,Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Haining Liu
- Department of Psychology, Chengde Medical University, Chengde, China,Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, China,Hebei International Research Center of Medical Engineering, Chengde Medical University, Chengde, China,*Correspondence: Haining Liu, ; Sheau Tsuey Chong,
| | - Sheau Tsuey Chong
- Centre for Research in Psychology and Human Well-being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, Malaysia,Counselling Psychology Programme, Secretariat of Postgraduate Studies, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, Malaysia,*Correspondence: Haining Liu, ; Sheau Tsuey Chong,
| |
Collapse
|
8
|
Prediction of Medical Conditions Using Machine Learning Approaches: Alzheimer’s Case Study. MATHEMATICS 2022. [DOI: 10.3390/math10101767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer’s Disease (AD) is a highly prevalent condition and most of the people suffering from it receive the diagnosis late in the process. The diagnosis is currently established following an evaluation of the protein biomarkers in cerebrospinal fluid (CSF), brain imaging, cognitive tests, and the medical history of the individuals. While diagnostic tools based on CSF collections are invasive, the tools used for acquiring brain scans are expensive. Taking these into account, an early predictive system, based on Artificial Intelligence (AI) approaches, targeting the diagnosis of this condition, as well as the identification of lead biomarkers becomes an important research direction. In this survey, we review the state-of-the-art research on machine learning (ML) techniques used for the detection of AD and Mild Cognitive Impairment (MCI). We attempt to identify the most accurate and efficient diagnostic approaches, which employ ML techniques and therefore, the ones most suitable to be used in practice. Research is still ongoing to determine the best biomarkers for the task of AD classification. At the beginning of this survey, after an introductory part, we enumerate several available resources, which can be used to build ML models targeting the diagnosis and classification of AD, as well as their main characteristics. After that, we discuss the candidate markers which were used to build AI models with the best results in terms of diagnostic accuracy, as well as their limitations.
Collapse
|
9
|
Longitudinal analysis of APOE-ε4 genotype with the logical memory delayed recall score in Alzheimer’s disease. J Genet 2021. [DOI: 10.1007/s12041-021-01309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Ocasio E, Duong TQ. Deep learning prediction of mild cognitive impairment conversion to Alzheimer's disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI. PeerJ Comput Sci 2021; 7:e560. [PMID: 34141888 PMCID: PMC8176545 DOI: 10.7717/peerj-cs.560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND While there is no cure for Alzheimer's disease (AD), early diagnosis and accurate prognosis of AD may enable or encourage lifestyle changes, neurocognitive enrichment, and interventions to slow the rate of cognitive decline. The goal of our study was to develop and evaluate a novel deep learning algorithm to predict mild cognitive impairment (MCI) to AD conversion at three years after diagnosis using longitudinal and whole-brain 3D MRI. METHODS This retrospective study consisted of 320 normal cognition (NC), 554 MCI, and 237 AD patients. Longitudinal data include T1-weighted 3D MRI obtained at initial presentation with diagnosis of MCI and at 12-month follow up. Whole-brain 3D MRI volumes were used without a priori segmentation of regional structural volumes or cortical thicknesses. MRIs of the AD and NC cohort were used to train a deep learning classification model to obtain weights to be applied via transfer learning for prediction of MCI patient conversion to AD at three years post-diagnosis. Two (zero-shot and fine tuning) transfer learning methods were evaluated. Three different convolutional neural network (CNN) architectures (sequential, residual bottleneck, and wide residual) were compared. Data were split into 75% and 25% for training and testing, respectively, with 4-fold cross validation. Prediction accuracy was evaluated using balanced accuracy. Heatmaps were generated. RESULTS The sequential convolutional approach yielded slightly better performance than the residual-based architecture, the zero-shot transfer learning approach yielded better performance than fine tuning, and CNN using longitudinal data performed better than CNN using a single timepoint MRI in predicting MCI conversion to AD. The best CNN model for predicting MCI conversion to AD at three years after diagnosis yielded a balanced accuracy of 0.793. Heatmaps of the prediction model showed regions most relevant to the network including the lateral ventricles, periventricular white matter and cortical gray matter. CONCLUSIONS This is the first convolutional neural network model using longitudinal and whole-brain 3D MRIs without extracting regional brain volumes or cortical thicknesses to predict future MCI to AD conversion at 3 years after diagnosis. This approach could lead to early prediction of patients who are likely to progress to AD and thus may lead to better management of the disease.
Collapse
Affiliation(s)
- Ethan Ocasio
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Tim Q. Duong
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|