1
|
Sproten R, Nohr D, Guseva D. Nutritional strategies modulating the gut microbiome as a preventative and therapeutic approach in normal and pathological age-related cognitive decline: a systematic review of preclinical and clinical findings. Nutr Neurosci 2024; 27:1042-1057. [PMID: 38165747 DOI: 10.1080/1028415x.2023.2296727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
CONTEXT The proportion of the elderly population is on the rise across the globe, and with it the prevalence of age-related neurodegenerative diseases. The gut microbiota, whose composition is highly regulated by dietary intake, has emerged as an exciting research field in neurology due to its pivotal role in modulating brain functions via the gut-brain axis. OBJECTIVES We aimed at conducting a systematic review of preclinical and clinical studies investigating the effects of dietary interventions on cognitive ageing in conjunction with changes in gut microbiota composition and functionality. METHODS PubMed and Scopus were searched using terms related to ageing, cognition, gut microbiota and dietary interventions. Studies were screened, selected based on previously determined inclusion and exclusion criteria, and evaluated for methodological quality using recommended risk of bias assessment tools. RESULTS A total of 32 studies (18 preclinical and 14 clinical) were selected for inclusion. We found that most of the animal studies showed significant positive intervention effects on cognitive behavior, while outcomes on cognition, microbiome features, and health parameters in humans were less pronounced. The effectiveness of dietary interventions depended markedly on the age, gender, degree of cognitive decline and baseline microbiome composition of participants. CONCLUSION To harness the full potential of microbiome-inspired nutrition for cognitive health, one of the main challenges remains to better understand the interplay between host, his microbiome, dietary exposures, whilst also taking into account environmental influences. Future research should aim toward making use of host-specific microbiome data to guide the development of personalized therapies.
Collapse
Affiliation(s)
- Rieke Sproten
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Donatus Nohr
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daria Guseva
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| |
Collapse
|
2
|
Kallapura G, Prakash AS, Sankaran K, Manjappa P, Chaudhary P, Ambhore S, Dhar D. Microbiota based personalized nutrition improves hyperglycaemia and hypertension parameters and reduces inflammation: a prospective, open label, controlled, randomized, comparative, proof of concept study. PeerJ 2024; 12:e17583. [PMID: 38948211 PMCID: PMC11214429 DOI: 10.7717/peerj.17583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Recent studies suggest that gut microbiota composition, abundance and diversity can influence many chronic diseases such as type 2 diabetes. Modulating gut microbiota through targeted nutrition can provide beneficial effects leading to the concept of personalized nutrition for health improvement. In this prospective clinical trial, we evaluated the impact of a microbiome-based targeted personalized diet on hyperglycaemic and hyperlipidaemic individuals. Specifically, BugSpeaks®-a microbiome profile test that profiles microbiota using next generation sequencing and provides personalized nutritional recommendation based on the individual microbiota profile was evaluated. Methods A total of 30 participants with type 2 diabetes and hyperlipidaemia were recruited for this study. The microbiome profile of the 15 participants (test arm) was evaluated using whole genome shotgun metagenomics and personalized nutritional recommendations based on their microbiota profile were provided. The remaining 15 participants (control arm) were provided with diabetic nutritional guidance for 3 months. Clinical and anthropometric parameters such as HbA1c, systolic/diastolic pressure, c-reactive protein levels and microbiota composition were measured and compared during the study. Results The test arm (microbiome-based nutrition) showed a statistically significant decrease in HbA1c level from 8.30 (95% confidence interval (CI), [7.74-8.85]) to 6.67 (95% CI [6.2-7.05]), p < 0.001 after 90 days. The test arm also showed a 5% decline in the systolic pressure whereas the control arm showed a 7% increase. Incidentally, a sub-cohort of the test arm of patients with >130 mm Hg systolic pressure showed a statistically significant decrease of systolic pressure by 14%. Interestingly, CRP level was also found to drop by 19.5%. Alpha diversity measures showed a significant increase in Shannon diversity measure (p < 0.05), after the microbiome-based personalized dietary intervention. The intervention led to a minimum two-fold (Log2 fold change increase in species like Phascolarctobacterium succinatutens, Bifidobacterium angulatum, and Levilactobacillus brevis which might have a beneficial role in the current context and a similar decrease in species like Alistipes finegoldii, and Sutterella faecalis which have been earlier shown to have some negative effects in the host. Overall, the study indicated a net positive impact of the microbiota based personalized dietary regime on the gut microbiome and correlated clinical parameters.
Collapse
|
3
|
Kumar A, Sivamaruthi BS, Dey S, Kumar Y, Malviya R, Prajapati BG, Chaiyasut C. Probiotics as modulators of gut-brain axis for cognitive development. Front Pharmacol 2024; 15:1348297. [PMID: 38444940 PMCID: PMC10912297 DOI: 10.3389/fphar.2024.1348297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Various microbial communities reside in the gastrointestinal tract of humans and play an important role in immunity, digestion, drug metabolism, intestinal integrity, and protection from pathogens. Recent studies have revealed that the gut microbiota (GM) is involved in communication with the brain, through a bidirectional communication network known as the gut-brain axis. This communication involves humoral, immunological, endocrine, and neural pathways. Gut dysbiosis negatively impacts these communication pathways, leading to neurological complications and cognitive deficits. Both pre-clinical and clinical studies have demonstrated that probiotics can restore healthy GM, reduce intestinal pH, and reduce inflammation and pathogenic microbes in the gut. Additionally, probiotics improve cell-to-cell signaling and increase blood-brain-derived neurotrophic factors. Probiotics emerge as a potential approach for preventing and managing neurological complications and cognitive deficits. Despite these promising findings, the safety concerns and possible risks of probiotic usage must be closely monitored and addressed. This review article provides a brief overview of the role and significance of probiotics in cognitive health.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat, Delhi, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Swarnima Dey
- Department of Food Technology, SRM University, Sonipat, Delhi, India
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - Yogesh Kumar
- Department of Food Technology, SRM University, Sonipat, Delhi, India
| | - Rishabha Malviya
- Department of Paramedical and Allied Sciences, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer's disease. Gut Microbes 2023; 15:2271613. [PMID: 37934614 PMCID: PMC10631445 DOI: 10.1080/19490976.2023.2271613] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The advent of high-throughput 'omics' technologies has improved our knowledge of gut microbiome in human health and disease, including Alzheimer's disease (AD), a neurodegenerative disorder. Frequent bidirectional communications and mutual regulation exist between the gastrointestinal tract and the central nervous system through the gut-brain axis. A large body of research has reported a close association between the gut microbiota and AD development, and restoring a healthy gut microbiota may curb or even improve AD symptoms and progression. Thus, modulation of the gut microbiota has become a novel paradigm for clinical management of AD, and emerging effort has focused on developing potential novel strategies for preventing and/or treating the disease. In this review, we provide an overview of the connection and causal relationship between gut dysbiosis and AD, the mechanisms of gut microbiota in driving AD progression, and the successes and challenges of implementing available gut microbiome-targeted therapies (including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation) in preventive and/or therapeutic preclinical and clinical intervention studies of AD. Finally, we discuss the future directions in this field.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Eat for better cognition in older adults at risk for Alzheimer's disease. Nutrition 2023; 109:111969. [PMID: 36801704 DOI: 10.1016/j.nut.2022.111969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/10/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease is a worldwide public health problem. However, the treatment method and treatment effects are limited. The stages of preclinical Alzheimer's disease are thought to be a better intervention period. Thus, in this review, food is given focus and the intervention stage put forward. We summarized the role of diet, nutrient supplementation, and microbioecologics in cognitive decline and found that interventions such as modified Mediterranean-ketogenic diet, nuts, vitamin B, and Bifidobacterium breve A1 are beneficial to cognition protection. Eating, rather than just taking medicine, is suggested to be an effective treatment method for older adults at risk for Alzheimer's disease.
Collapse
|
6
|
Anderson RC. Can probiotics mitigate age-related neuroinflammation leading to improved cognitive outcomes? Front Nutr 2022; 9:1012076. [PMID: 36505245 PMCID: PMC9729724 DOI: 10.3389/fnut.2022.1012076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Changes in brain structure and cognitive function are a natural part of aging; however, in some cases these changes are more severe resulting in mild cognitive impairment (MCI) or Alzheimer's disease (AD). Evidence is mounting to show that neuroinflammation is an underlying risk factor for neurodegenerative disease progression. Age-related neuroinflammation does not appear to occur in isolation and is part of increased systemic inflammation, which may in turn be triggered by changes in the gut associated with aging. These include an increase in gut permeability, which allows immune triggering compounds into the body, and alterations in gut microbiota composition leading to dysbiosis. It therefore follows that, treatments that can maintain healthy gut function may reduce inflammation and protect against, or improve, symptoms of age-associated neurodegeneration. The aim of this mini review was to evaluate whether probiotics could be used for this purpose. The analysis concluded that there is preliminary evidence to suggest that specific probiotics may improve cognitive function, particularly in those with MCI; however, this is not yet convincing and larger, multilocation, studies focus on the effects of probiotics alone are required. In addition, studies that combine assessment of cognition alongside analysis of inflammatory biomarkers and gut function are needed. Immense gains could be made to the quality of life of the aging population should the hypothesis be proven to be correct.
Collapse
|
7
|
Modulation of Gut Microbiota and Neuroprotective Effect of a Yeast-Enriched Beer. Nutrients 2022; 14:nu14122380. [PMID: 35745108 PMCID: PMC9228237 DOI: 10.3390/nu14122380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Beer is the most consumed alcoholic beverage worldwide. It is rich in nutrients, and with its microbial component it could play a role in gut microbiota modulation. Conflicting data are currently available regarding the consequences of alcohol and alcohol-containing beverages on dementia and age-associated disorders including Alzheimer’s disease (AD), a neurodegeneration characterized by protein aggregation, inflammatory processes and alterations of components of the gut–brain axis. The effects of an unfiltered and unpasteurized craft beer on AD molecular hallmarks, levels of gut hormones and composition of micro/mycobiota were dissected using 3xTg-AD mice. In addition, to better assess the role of yeasts, beer was enriched with the same Saccharomyces cerevisiae strain used for brewing. The treatment with the yeast-enriched beer ameliorated cognition and favored the reduction of Aβ(1-42) and pro-inflammatory molecules, also contributing to an increase in the concentration of anti-inflammatory cytokines. A significant improvement in the richness and presence of beneficial taxa in the gut bacterial population of the 3xTg-AD animals was observed. In addition, the fungal order, Sordariomycetes, associated with gut inflammatory conditions, noticeably decreased with beer treatments. These data demonstrate, for the first time, the beneficial effects of a yeast-enriched beer on AD signs, suggesting gut microbiota modulation as a mechanism of action.
Collapse
|
8
|
Meng HYH, Mak CCH, Mak WY, Zuo T, Ko H, Chan FKL. Probiotic supplementation demonstrates therapeutic potential in treating gut dysbiosis and improving neurocognitive function in age-related dementia. Eur J Nutr 2022; 61:1701-1734. [PMID: 35001217 DOI: 10.1007/s00394-021-02760-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Probiotics, as live microorganisms that improve intestinal microbial balance, have been implicated in the modulation of neurodegenerative diseases via the microbiome-gut-brain axis by improving gut dysbiosis. This review examines the association between probiotics and neurocognitive function in age-related dementia. METHODS We searched MEDLINE, Embase, Scopus, Web of Science and Cochrane library for in vivo studies using equivalent combinations of "probiotics" and "dementia" as per PRISMA. From the 52 in vivo studies identified, 5 human and 22 animal studies with comparable quantitative outcomes on neurocognitive/behavioural function were meta-analysed by forest plots, subgroup analysis and meta-regression. The analysis of biomarkers, risk of bias and publication bias were also performed. RESULTS In elderly humans, probiotics correlates with a non-significant difference of neurocognitive function in Mini-Mental State Examination, but with significant improvement only in those diagnosed with Alzheimer's disease. In animals, probiotics significantly improved neurocognitive function as measured by Morris Water Maze, Y-Maze, and Passive Avoidance. Further analysis by subgrouping and meta-regression found that the probiotics-neurodegeneration association is age dependent in humans but is neither dose dependent nor duration dependent in animals or humans. Analysis of biomarkers suggested that the neurocognitive effect of probiotics is associated with an altered gut microbiome profile, downregulated proteinopathic, inflammatory and autophagic pathways, and upregulated anti-oxidative, neurotrophic, and cholinergic pathways. CONCLUSION Overall, we report promising results in animal studies but limited evidence of probiotics leading to neurocognitive improvement in humans. More research into probiotics should be conducted, especially on live biotherapeutic products for targeted treatment of gut dysbiosis and age-related dementia.
Collapse
Affiliation(s)
- Henry Yue Hong Meng
- Faculty of Medicine, The Chinese University of Hong Kong, Central Ave, Hong Kong, People's Republic of China.
| | | | - Wing Yan Mak
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Francis Ka Leung Chan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|