1
|
Shu C, Zheng C, Luo D, Song J, Jiang Z, Ge L. Acute ischemic stroke prediction and predictive factors analysis using hematological indicators in elderly hypertensives post-transient ischemic attack. Sci Rep 2024; 14:695. [PMID: 38184714 PMCID: PMC10771433 DOI: 10.1038/s41598-024-51402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
Elderly hypertensive patients diagnosed with transient ischemic attack (TIA) are at a heightened risk for developing acute ischemic stroke (AIS). This underscores the critical need for effective risk prediction and identification of predictive factors. In our study, we utilized patient data from peripheral blood tests and clinical profiles within hospital information systems. These patients were followed for a three-year period to document incident AIS. Our cohort of 11,056 individuals was randomly divided into training, validation, and testing sets in a 5:2:3 ratio. We developed an XGBoost model, developed using selected indicators, provides an effective and non-invasive method for predicting the risk of AIS in elderly hypertensive patients diagnosed with TIA. Impressively, this model achieved a balanced accuracy of 0.9022, a recall of 0.8688, and a PR-AUC of 0.9315. Notably, our model effectively encapsulates essential data variations involving mixed nonlinear interactions, providing competitive performance against more complex models that incorporate a wider range of variables. Further, we conducted an in-depth analysis of the importance and sensitivity of each selected indicator and their interactions. This research equips clinicians with the necessary tools for more precise identification of high-risk individuals, thereby paving the way for more effective stroke prevention and management strategies.
Collapse
Affiliation(s)
- Chang Shu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| | - Chenguang Zheng
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Da Luo
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Jie Song
- Academy of Medical Engineering and Translational Medicine, Intelligent Medical Engineering, Tianjin University, Tianjin, China
| | - Zhengyi Jiang
- Academy of Medical Engineering and Translational Medicine, Intelligent Medical Engineering, Tianjin University, Tianjin, China
| | - Le Ge
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| |
Collapse
|
2
|
Romano MF, Zhou X, Balachandra AR, Jadick MF, Qiu S, Nijhawan DA, Joshi PS, Mohammad S, Lee PH, Smith MJ, Paul AB, Mian AZ, Small JE, Chin SP, Au R, Kolachalama VB. Deep learning for risk-based stratification of cognitively impaired individuals. iScience 2023; 26:107522. [PMID: 37646016 PMCID: PMC10460987 DOI: 10.1016/j.isci.2023.107522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Quantifying the risk of progression to Alzheimer's disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer's Coordinating Center (NACC, n = 508, validation cohort), subdividing individuals with mild cognitive impairment (MCI) into risk groups based on cerebrospinal fluid amyloid-β levels and identifying differential gray matter patterns. We then created models that fused neural networks with survival analysis, trained using non-parcellated T1-weighted brain MRIs from ADNI data, to predict the trajectories of MCI to AD conversion within the NACC cohort (integrated Brier score: 0.192 [discovery], and 0.108 [validation]). Using modern interpretability techniques, we verified that regions important for model prediction are classically associated with AD. We confirmed AD diagnosis labels using postmortem data. We conclude that our framework provides a strategy for risk-based stratification of individuals with MCI and for identifying regions key for disease prognosis.
Collapse
Affiliation(s)
- Michael F. Romano
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Xiao Zhou
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, Boston, MA, USA
| | - Akshara R. Balachandra
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michalina F. Jadick
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shangran Qiu
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Diya A. Nijhawan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Prajakta S. Joshi
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of General Dentistry, Boston University School of Dental Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shariq Mohammad
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Peter H. Lee
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Maximilian J. Smith
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Aaron B. Paul
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Asim Z. Mian
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Juan E. Small
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Sang P. Chin
- Department of Computer Science, Boston University, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center of Mathematical Sciences & Applications, Harvard University, Cambridge, MA, USA
| | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Vijaya B. Kolachalama
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, Boston, MA, USA
- Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Kim J, Lee H, Lee J, Rhee SY, Shin JI, Lee SW, Cho W, Min C, Kwon R, Kim JG, Yon DK. Quantification of identifying cognitive impairment using olfactory-stimulated functional near-infrared spectroscopy with machine learning: a post hoc analysis of a diagnostic trial and validation of an external additional trial. Alzheimers Res Ther 2023; 15:127. [PMID: 37481573 PMCID: PMC10362671 DOI: 10.1186/s13195-023-01268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/30/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND We aimed to quantify the identification of mild cognitive impairment and/or Alzheimer's disease using olfactory-stimulated functional near-infrared spectroscopy using machine learning through a post hoc analysis of a previous diagnostic trial and an external additional trial. METHODS We conducted two independent, patient-level, single-group, diagnostic interventional trials (original and additional trials) involving elderly volunteers (aged > 60 years) with suspected declining cognitive function. All volunteers were assessed by measuring the oxygenation difference in the orbitofrontal cortex using an open-label olfactory-stimulated functional near-infrared spectroscopy approach, medical interview, amyloid positron emission tomography, brain magnetic resonance imaging, Mini-Mental State Examination, and Seoul Neuropsychological Screening Battery. RESULTS In total, 97 (original trial) and 36 (additional trial) elderly volunteers with suspected decline in cognitive function met the eligibility criteria. The statistical model reported classification accuracies of 87.3% in patients with mild cognitive impairment and Alzheimer's disease in internal validation (original trial) but 63.9% in external validation (additional trial). The machine learning algorithm achieved 92.5% accuracy with the internal validation data and 82.5% accuracy with the external validation data. For the diagnosis of mild cognitive impairment, machine learning performed better than statistical methods with internal (86.0% versus 85.2%) and external validation data (85.4% versus 68.8%). INTERPRETATION In two independent trials, machine learning models using olfactory-stimulated oxygenation differences in the orbitofrontal cortex were superior in diagnosing mild cognitive impairment and Alzheimer's disease compared to classic statistical models. Our results suggest that the machine learning algorithm is stable across different patient groups and increases generalization and reproducibility. TRIAL REGISTRATION Clinical Research Information Service (CRiS) of Republic of Korea; CRIS numbers, KCT0006197 and KCT0007589.
Collapse
Affiliation(s)
- Jaewon Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hayeon Lee
- Department of Biomedical Engineering, Kyung Hee University College of Electronics and Information, Yongin, South Korea
| | - Jinseok Lee
- Department of Biomedical Engineering, Kyung Hee University College of Electronics and Information, Yongin, South Korea
| | - Sang Youl Rhee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Wonyoung Cho
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Chanyang Min
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Rosie Kwon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
- Department of Pediatrics, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|