1
|
Fu M, Wang Q, Gao L, Ma Q, Wang J. Dihydroergotamine and Bromocriptine: Potential Drugs for the Treatment of Major Depressive Disorder and Alzheimer's Disease Comorbidity. Mol Neurobiol 2025; 62:2493-2514. [PMID: 39134826 DOI: 10.1007/s12035-024-04416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that is characterized by memory loss and cognitive impairment. Evidence shows that depression is a common co-occurrence in AD patients, and major depressive disorder (MDD) is considered a risk factor for AD. The crosstalk between the biological procedures related to the two disorders makes it very difficult to treat the comorbid conditions caused by them. Considering the common pathophysiological mechanisms underlying AD and MDD, antidepressant drugs may have beneficial therapeutic effects against their concurrence. In this study, we aimed to explore the potential drug candidates for the prevention and treatment of the comorbidity of AD and MDD. First, we screened the potential drugs for treating MDD by evaluating the distances of drug targets to MDD-related genes on the human protein-protein interaction network (PPIN) via a network-based algorithm. Then, the drugs were further screened to identify those that may be effective for AD treatment by analyzing their affinities with tau protein and Aβ42 peptide via molecular docking. Furthermore, the most stable binding modes were identified via molecular dynamics simulations, and the regulatory effects of drug candidates on genes involved in the pathogenesis of AD and MDD were analyzed. A total of 506 MDD-related genes were retrieved, and 831 drug candidates for MDD treatment were screened via the network-based approach. The results from molecular docking and molecular dynamics simulations indicated dihydroergotamine had the lowest binding affinity with tau protein and bromocriptine could form the most stable binding mode with Aβ42 peptide. Further analyses found that both dihydroergotamine and bromocriptine could regulate the expression of genes involved in the pathogenesis of AD and/or MDD in the brain. The exact mechanisms of the two drugs in treating AD and MDD, as well as their comorbidity, are still unclear, and further exploration is needed to evaluate their roles and mechanisms, both in vitro and in vivo. This study revealed that dihydroergotamine and bromocriptine may be the potential drug candidates for the treatment of the comorbidity of AD and MDD, and the therapeutic effects may be achieved by inhibiting the accumulation and aggregation of Aβ42 and tau protein and regulating the expression of disease-related genes in the brain.
Collapse
Affiliation(s)
- Mengjie Fu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Qiuchen Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Lihui Gao
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Qianhui Ma
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Yu W, Zhang R, Zhang A, Mei Y. Deciphering the Functions of Raphe-Hippocampal Serotonergic and Glutamatergic Circuits and Their Deficits in Alzheimer's Disease. Int J Mol Sci 2025; 26:1234. [PMID: 39941002 PMCID: PMC11818420 DOI: 10.3390/ijms26031234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Subcortical innervation of the hippocampus by the raphe nucleus is essential for emotional and cognitive control. The two major afferents from raphe to hippocampus originate from serotonergic and glutamatergic neurons, of which the serotonergic control of hippocampal inhibitory network, theta activity, and synaptic plasticity have been extensively explored in the growing body of literature, whereas those of glutamatergic circuits have received little attention. Notably, both serotonergic and glutamatergic circuits between raphe and hippocampus are disrupted in Alzheimer's disease (AD), which may contribute to initiation and progression of behavioral and psychological symptoms of dementia. Thus, deciphering the mechanism underlying abnormal raphe-hippocampal circuits in AD is crucial to prevent dementia-associated emotional and cognitive symptoms. In this review, we summarize the anatomical, neurochemical, and electrophysiological diversity of raphe nuclei as well as the architecture of raphe-hippocampal circuitry. We then elucidate subcortical control of hippocampal activity by raphe nuclei and their role in regulation of emotion and cognition. Additionally, we present an overview of disrupted raphe-hippocampal circuits in AD pathogenesis and analyze the available therapies that can potentially be used clinically to alleviate the neuropsychiatric symptoms and cognitive decline in AD course.
Collapse
Affiliation(s)
| | | | | | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer’s Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
3
|
Liao MH, Lin YK, Gau FY, Tseng CC, Wu DC, Hsu CY, Chung KH, Li RC, Hu CJ, Then CK, Shen SC. Antidepressant sertraline increases thioflavin-S and Congo red deposition in APPswe/PSEN1dE9 transgenic mice. Front Pharmacol 2024; 14:1260838. [PMID: 38259283 PMCID: PMC10800414 DOI: 10.3389/fphar.2023.1260838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Depression is strongly associated with Alzheimer's disease (AD). Antidepressants are commonly used in patients before and after their diagnosis of AD. To date, the relationship between antidepressants and AD remains unclear. Methods: In our study, we administered sertraline or paroxetine to wild type (WT) and APPswe/PSEN1dE9 (APP/PSEN1) transgenic mouse models for up to 12 months. We quantified the drug concentrations using LC-MS/MS analysis and measured serum serotonin level using an ELISA assay. Additionally, we evaluated the amyloid burdens through thioflavin-S and Congo red stainings, and recognition memory using the novel object recognition test. Results: Our findings revealed that mice treated with paroxetine exhibited a significantly higher level of weight gain compared to the control group and increased mortality in APP/PSEN1 mice. After 12 months of antidepressant treatment, the sertraline level was measured at 289.8 ng/g for cerebellum, while the paroxetine level was 792.9 ng/g for cerebellum. Sertraline significantly increased thioflavin-S and Congo red depositions, along with gliosis, in both isocortex and hippocampus of APP/PSEN1 mice compared to the control group. Both antidepressants also led to a decreased recognition index in APP/PSEN1 mice. Conclusion: These findings suggest a potential role of sertraline in AD pathogenesis, emphasizing the need to reassess the use of these antidepressants in patients with AD.
Collapse
Affiliation(s)
- Ming-Hsuan Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Fong-Ying Gau
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Chun-Che Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Da-Chih Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chu-Yuan Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rung-Chi Li
- Division of Allergy and Immunology, University of Virginia, Charlottesville, VA, United States
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chee Kin Then
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Reyna NC, Clark BJ, Hamilton DA, Pentkowski NS. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models. Front Aging Neurosci 2023; 15:1251075. [PMID: 38076543 PMCID: PMC10699143 DOI: 10.3389/fnagi.2023.1251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Dementia remains one of the leading causes of morbidity and mortality in older adults. Alzheimer's disease (AD) is the most common type of dementia, affecting over 55 million people worldwide. AD is characterized by distinct neurobiological changes, including amyloid-beta protein deposits and tau neurofibrillary tangles, which cause cognitive decline and subsequent behavioral changes, such as distress, insomnia, depression, and anxiety. Recent literature suggests a strong connection between stress systems and AD progression. This presents a promising direction for future AD research. In this review, two systems involved in regulating stress and AD pathogenesis will be highlighted: serotonin (5-HT) and corticotropin releasing factor (CRF). Throughout the review, we summarize critical findings in the field while discussing common limitations with two animal models (3xTg-AD and TgF344-AD), novel pharmacotherapies, and potential early-intervention treatment options. We conclude by highlighting promising future pharmacotherapies and translational animal models of AD and anxiety.
Collapse
Affiliation(s)
- Nicole C. Reyna
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | |
Collapse
|
5
|
Li R, Deng M, Lin Y, Gao W, Liu B, Xia H. Genetically predicted circulating levels of glycine, glutamate, and serotonin in relation to the risks of three major neurodegenerative diseases: A Mendelian randomization analysis. Front Aging Neurosci 2022; 14:938408. [PMID: 36158554 PMCID: PMC9490425 DOI: 10.3389/fnagi.2022.938408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
It has been previously postulated that blood neurotransmitters might affect risks of neurodegenerative diseases. Here, a Mendelian Randomization (MR) study was conducted to explore whether genetically predicted concentrations of glycine, glutamate and serotonin were associated with risks of Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). From three genome-wide association studies of European ancestry, single nucleotide polymorphisms strongly associated with glycine, glutamate and serotonin were selected as genetic instrumental variables. Corresponding summary statistics were also obtained from the latest genome-wide association meta-analyses of AD, PD and ALS. The inverse-variance weighted MR and multiple sensitivity analyses were performed to evaluate causal effects of genetically predicted levels of neurotransmitters on risks of neurodegenerative diseases. The statistical significance threshold was set at P < 0.0056 using the Bonferroni-correction, while 0.0056 < P < 0.05 was considered suggestive evidence for a causal association. There was a causal association of elevated blood glutamate levels with higher AD risks. The odds ratio (OR) of AD was 1.311 [95% confidence interval (CI), 1.087-1.580; P = 0.004] per one standard deviation increase in genetically predicted glutamate concentrations. There was suggestive evidence in support of a protective effect of blood serotonin on AD (OR = 0.607; 95% CI, 0.396-0.932; P = 0.022). Genetically predicted glycine levels were not associated with the risk of AD (OR = 1.145; 95% CI, 0.939-1.396; P = 0.180). Besides, MR analyses indicated no causal roles of three blood neurotransmitters in PD or ALS. In conclusion, the MR study provided evidence supporting the association of elevated blood glutamate levels with higher AD risks and the association of increased blood serotonin levels with lower AD risks. Triangulating evidence across further study designs is still warranted to elucidate the role of blood neurotransmitters in risks of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| | - Mengjuan Deng
- Department of Anesthesiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuhong Lin
- Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Gao
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| | - Bohao Liu
- Xiangya School of Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huimin Xia
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou, China
| |
Collapse
|