1
|
Patel AA, Zhu MH, Yan R, Antic SD. Ex vivo propagation of synaptically-evoked cortical depolarizations in a mouse model of Alzheimer's disease at 20 Hz, 40 Hz, or 83 Hz. Sci Rep 2024; 14:23365. [PMID: 39375474 PMCID: PMC11458755 DOI: 10.1038/s41598-024-74262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Sensory stimulations at 40 Hz gamma (but not any other frequency), have shown promise in reversing Alzheimer's disease (AD)-related pathologies. What distinguishes 40 Hz? We hypothesized that stimuli at 40 Hz might summate more efficiently (temporal summation) or propagate more efficiently between cortical layers (vertically), or along cortical laminas (horizontally), compared to inputs at 20 or 83 Hz. To investigate these hypotheses, we used brain slices from AD mouse model animals (5xFAD). Extracellular (synaptic) stimuli were delivered in cortical layer 4 (L4). Leveraging a fluorescent voltage indicator (VSFP) expressed in cortical pyramidal neurons, we simultaneously monitored evoked cortical depolarizations at multiple sites, at 1 kHz sampling frequency. Experimental groups (AD-Female, CTRL-Female, AD-Male, and CTRL-Male) were tested at three stimulation frequencies (20, 40, and 83 Hz). Despite our initial hypothesis, two parameters-temporal summation of voltage waveforms and the strength of propagation through the cortical neuropil-did not reveal any distinct advantage of 40 Hz stimulation. Significant physiological differences between AD and Control mice were found at all stimulation frequencies tested, while the 40 Hz stimulation frequency was not remarkable.
Collapse
Affiliation(s)
- Aayushi A Patel
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
- Touro College of Osteopathic Medicine, Middletown, NY, 10940, USA
| | - Mei Hong Zhu
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Riqiang Yan
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Srdjan D Antic
- Department of Neuroscience, School of Medicine, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Yao J, Zhang L, Zhang C, Chen X, Bao K, Hou S, Yin Y, Liu K, Wen Q, Huang X, Song L. Rhythmic gamma frequency light flickering ameliorates stress-related behaviors and cognitive deficits by modulating neuroinflammatory response through IL-12-Mediated cytokines production in chronic stress-induced mice. Brain Behav Immun 2024; 121:213-228. [PMID: 39043349 DOI: 10.1016/j.bbi.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Chronic stress enhances the risk for psychiatric disorders and induces depression and cognitive impairment. Gamma oscillations are essential for neurocircuit function, emotion, and cognition. However, the influence of gamma entrainment by sensory stimuli on specific aspects of chronic stress-induced responses remains unclear. Mice were subjected to corticosterone (CORT) administration and chronic restraint stress (CRS) for weeks, followed by rhythmic gamma frequency light flickering exposure. Local field potentials (LFPs) were recorded from the V1, CA1, and PFC regions to verify the light flicker on gamma oscillations. Behavioral tests were used to examine stress-related and memory-related behaviors. Golgi staining was performed to observe changes in spine morphology. Synaptosomes were isolated to determine the expression of synapse-related proteins through immunoblotting. RNA sequencing (RNA-seq) was applied to explore specific changes in the transcriptome. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qPCR), and ELISA were used to evaluate microglial activation and cytokine levels. In this study, we demonstrated that rhythmic 40 Hz LF attenuated stress-related behavior and cognitive impairments by ameliorating the microstructural alterations in spine morphology and increasing the expression of GluN2A and GluA1 in chronically stressed mice. Transcriptome analysis revealed that significantly downregulated genes in LF-exposed CRS mice were enriched in neuroimmune-related signaling pathways. Rhythmic 40 Hz LF exposure significantly decreased the number of Iba1-positive microglia in the PFC and hippocampus, and the expression levels of the M1 markers of microglia iNOS and CD68 were reduced significantly in CRS mice. In addition, 40 Hz LF exposure suppressed the secretion of cytokines IL-12, which could regulate the production of IFN-γ and IL-10 in stressed mice. Our results demonstrate that exposure to rhythmic 40 Hz LF induces the neuroimmune response and downregulation of neuroinflammation with attenuated stress-related behaviors and cognitive function in CRS-induced mice. Our findings highlight the importance of sensory-evoked gamma entrainment as a potential therapeutic strategy for stress-related disorders treatment. Abbreviations: CORT, Chronic corticosterone treatment; CRS, Chronic restraint stress; IACUC, Institutional Animal Care and Use Committee; LF, light flickers; FST, Forced swim test; NSFT, Novelty-suppressed feeding test; SPT, Sucrose preference test; NSFT, Novelty-suppressed feeding; qPCR, Quantitative real-time polymerase chain reaction; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; PVDF, polyvinylidene fluoride; PBS, phosphate-buffered saline; PBS-T, phosphate-buffered saline plus 0.1% Tween 20; PVDF, polyvinylidene fluoride; GFAP, Glial fibrillary acidic protein; DAPI, 4',6-Diamid- ino-2-phenylindole; Iba1, Ionized calcium-binding adaptor molecule 1; iNOS, Inducible nitric oxide synthase; IL-10, Interleukin-10; IL6, Interleukin 6; IL-1β, Interleukin 1β; IL-12, Interleukin 12; TNF-α, Tumor necrosis factor alpha; IFN-γ, Interferon-gamma; TLR6 and 9, Toll-like Receptor 6 and 9.
Collapse
Affiliation(s)
- Junqi Yao
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China; Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing 100850, China
| | - Chunkui Zhang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xing Chen
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Ke Bao
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Shaojun Hou
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Yongyu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing 100850, China
| | - Kun Liu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Qing Wen
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China.
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China.
| |
Collapse
|
3
|
Hu J, Huang B, Chen K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer's disease. Front Aging Neurosci 2024; 16:1444716. [PMID: 39233828 PMCID: PMC11371602 DOI: 10.3389/fnagi.2024.1444716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.
Collapse
Affiliation(s)
- Junhui Hu
- School of Physical Education, West Anhui University, Lu'an, China
| | - Baiqing Huang
- School of Physical Education, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
4
|
Li KY, Chien CF, Huang LC, Lim K, Yang YH. Exploring the impact of 40 Hz multi-luminaire light exposure in Alzheimer's dementia: insights from a convenient sampling, non-randomized case-control study. J Neurol 2024; 271:5425-5432. [PMID: 38884789 DOI: 10.1007/s00415-024-12486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Recent studies propose 40 Hz neural activity induction as a promising approach for managing Alzheimer's dementia (AD). However, traditional flickering light is suboptimal in addressing cognitive and neuropsychiatric symptoms (NPS) of AD. This study aims to investigate the clinical efficacy of a novel multi-luminaire lighting technology, with reduced perceptible flickering, for treating AD NPS. METHODS This study is a prospective, convenient sampling, non-randomized case-control investigation involving seventy-eight clinically diagnosed AD patients from 7 daycare centers. Thirty-five were exposed to 40 Hz light through Delta M + BrainCare Light (M +), 4 h daily, 5 days/week, for 12 weeks. The other 43 patients served as controls. Sum of boxes of the Clinical Dementia Rating (CDR-SB) scale, Neuropsychiatric Inventory (NPI), and Zarit Burden Interview (ZBI) were assessed at baseline and the 13th week. RESULTS At baseline, the cases had worse cognitive function, lower cognitive score (Mini-Mental State Examination, p = 0.04; Cognitive Abilities Screening Instrument, p = 0.04), and advanced caregiver burden with higher ZBI scores (p < 0.01) than the controls. After the intervention, the cases had significant improvements in NPS as assessed using the NPI (p = 0.02), especially depression and euphoria symptoms (p = 0.04 and < 0.01, respectively) and less caregiver burden (ZBI score, p < 0.01). In global function, the control group showed a significant decline in CDR-SB score (p < 0.01), while the cases did not. CONCLUSIONS Results suggest M + may slow global function decline, preserve cognitive function, improve NPS, and reduce caregiver burden in AD patients. Larger studies with biomarkers are needed to explore underlying mechanisms.
Collapse
Affiliation(s)
- Kuan-Ying Li
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fang Chien
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Chun Huang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kelly Lim
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Ávila FJ. An Arduino-Powered Device for the Study of White Perception beyond the Visual Chromatic Critical Flicker Fusion Frequency. J Imaging 2024; 10:163. [PMID: 39057734 PMCID: PMC11277791 DOI: 10.3390/jimaging10070163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Arduino microcontrollers are used for a wide range of technological and biomedical applications, such as image classification, computer vision, brain-computer interaction and vision experiments. Here, we present a new cost-effective mini-device based on RGB LED flicker stimulation for the assessment of the chromatic temporal resolution of the visual function based on the concept of critical flicker fusion frequency (CFF). The assembly of the device and its testing in thirty young subjects demonstrate the steady white visual perception of a trichromatic flicker stimulus (mixture of red, green and blue stimuli) beyond the CFF. Macular function as measured by photo-stress recovery time (PRT) was found to be independent of the CFF measurements for red, green and blue lights. However, a statistical correlation was found between the contrast modulation for CFF for red and green stimuli and PRT. Finally, wavefront measurements demonstrate that high-order aberrations improve the temporal resolution of the visual function.
Collapse
Affiliation(s)
- Francisco J Ávila
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Hou TW, Yang CC, Lai TH, Wu YH, Yang CP. Light Therapy in Chronic Migraine. Curr Pain Headache Rep 2024; 28:621-626. [PMID: 38865075 DOI: 10.1007/s11916-024-01258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE OF REVIEW This review assesses the effectiveness and safety of light therapy, particularly green light therapy, as an emerging non-pharmacological treatment for chronic migraine (CM). It aims to highlight alternative or complementary approaches to traditional pharmacological remedies, focusing the need for diverse treatment options. RECENT FINDINGS Despite sensitivity to light being a defining feature of migraine, light therapy has shown promising signs in providing substantial symptom relief. Studies have provided insights into green light therapy's role in managing CM. These studies consistently demonstrate its efficacy in reducing the frequency, severity, and symptoms of migraines. Additional benefits observed include improvements in sleep quality and reductions in anxiety. Importantly, green light therapy has been associated with minimal side effects, indicating its potential as a suitable option for migraine sufferers. In addition to green light, other forms of light therapy, such as infrared polarized light, low-level laser therapy (LLLT), and intravascular irradiation of blood (ILIB), are also being explored with potential therapeutic effects. Light therapies, especially green light therapy, are recognized as promising, safe, and non-pharmacological interventions for treating CM. They have been shown to be effective in decreasing headache frequency and enhancing the overall quality of life. However, current studies, often limited by small sample sizes, prompt more extensive clinical trials to better understand the full impact of light therapies. The exploration of other light-based treatments, such as LLLT and ILIB, warrants further research to broaden the scope of effective migraine management strategies.
Collapse
Affiliation(s)
- Tsung-Wei Hou
- Department of Neurology, Taichung Veteran General Hospital, Taichung, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Tzu-Hsien Lai
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Hui Wu
- Department of Family Medicine, Kuang-Tien General Hospital, Taichung, Taiwan.
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
7
|
Liu Y, Li X, Liu S, Liang T, Wu Y, Wang X, Li Y, Xu Y. Study on Gamma sensory flicker for Insomnia. Int J Neurosci 2024:1-11. [PMID: 38629395 DOI: 10.1080/00207454.2024.2342974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES Insomnia has been the subject of much systematic research because it is a risk factor for a variety of diseases. There is some evidence that gamma sensory stimulation therapy has also been demonstrated to improve sleep quality for people with Alzheimer's disease. However, it is unclear whether this method is effective for treating insomnia. The principal objective of this project was to investigate the efficacy and safety of gamma sensory flicker in improving the sleep quality of insomnia patients. METHODS Thirty-seven participants with insomnia were recruited for this prospective observational study. For a duration of 8 weeks, participants were exposed to flicker stimulation through a light and sound device. RESULTS During the main phase of the study, adherence rates averaged 92.21%. Additionally, no severe adverse events were reported for flicker treatment. Analysis of sleep diaries indicated that 40 Hz flickers can enhance sleep quality by reducing sleep onset latencies, and arousals, and increasing total sleep duration. CONCLUSIONS Gamma sensory flicker improves sleep quality in people suffering from insomnia.
Collapse
Affiliation(s)
- Yakun Liu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinrong Li
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, Taiyuan, Shanxi, China
| | - Sha Liu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, Taiyuan, Shanxi, China
| | - Tailing Liang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Wu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaopan Wang
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Li
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yong Xu
- Department of Psychiatry, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Hablitz L, Nedergaard M. Synchronized neuronal activity drives waste fluid flow. Nature 2024; 627:44-45. [PMID: 38418726 DOI: 10.1038/d41586-024-00422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
9
|
Henney MA, Carstensen M, Thorning-Schmidt M, Kubińska M, Grønberg MG, Nguyen M, Madsen KH, Clemmensen LKH, Petersen PM. Brain stimulation with 40 Hz heterochromatic flicker extended beyond red, green, and blue. Sci Rep 2024; 14:2147. [PMID: 38273009 PMCID: PMC10810780 DOI: 10.1038/s41598-024-52679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is associated with electrophysiological changes in the brain. Pre-clinical and early clinical trials have shown promising results for the possible therapy of AD with 40 Hz neurostimulation. The most notable findings used stroboscopic flicker, but this technique poses an inherent barrier for human applications due to its visible flickering and resulting high level of perceived discomfort. Therefore, alternative options should be investigated for entraining 40 Hz brain activity with light sources that appear less flickering. Previously, chromatic flicker based on red, green, and blue (RGB) have been studied in the context of brain-computer interfaces, but this is an incomplete representation of the colours in the visual spectrum. This study introduces a new kind of heterochromatic flicker based on spectral combinations of blue, cyan, green, lime, amber, and red (BCGLAR). These combinations are investigated by the steady-state visually evoked potential (SSVEP) response from the flicker with an aim of optimising the choice of 40 Hz light stimulation with spectrally similar colour combinations in BCGLAR space. Thirty healthy young volunteers were stimulated with heterochromatic flicker in an electroencephalography experiment with randomised complete block design. Responses were quantified as the 40 Hz signal-to-noise ratio and analysed using mixed linear models. The size of the SSVEP response to heterochromatic flicker is dependent on colour combinations and influenced by both visual and non-visual effects. The amber-red flicker combination evoked the highest SSVEP, and combinations that included blue and/or red consistently evoked higher SSVEP than combinations only with mid-spectrum colours. Including a colour from either extreme of the visual spectrum (blue and/or red) in at least one of the dyadic phases appears to be more important than choosing pairs of colours that are far from each other on the visual spectrum. Spectrally adjacent colour pairs appear less flickering to the perceiver, and thus the results motivate investigations into the limits for how alike the two phases can be and still evoke a 40 Hz response. Specifically, combining a colour on either extreme of the visual spectrum with another proximal colour might provide the best trade-off between flickering sensation and SSVEP magnitude.
Collapse
Affiliation(s)
- Mark Alexander Henney
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark.
- OptoCeutics ApS, Copenhagen, 1610, Denmark.
| | - Marcus Carstensen
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Martin Thorning-Schmidt
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Marta Kubińska
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Manja Gersholm Grønberg
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Mai Nguyen
- OptoCeutics ApS, Copenhagen, 1610, Denmark
| | - Kristoffer Hougaard Madsen
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, 2650, Denmark
| | | | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
10
|
Yang YL, Lai TW. Chronic Visual Stimulation with LED Light Flickering at 24, 40, or 80 Hz Failed to Reduce Amyloid β Load in the 5XFAD Alzheimer's Disease Mouse Model. eNeuro 2023; 10:ENEURO.0189-23.2023. [PMID: 37550065 PMCID: PMC10408781 DOI: 10.1523/eneuro.0189-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
A single 1-h session (or 7 d of daily 1-h sessions) of noninvasive visual stimulation with LED light flickering at 40 Hz, but not at 20 or 80 Hz, was reported to increase microglial size and decrease amyloid β (Aβ) load in the 5xFAD mouse model of Alzheimer's disease. To achieve better therapeutic benefits, we explored the effects of daily 1-h sessions of visual stimulation with continuous light or LED light flickering at 24, 40, or 80 Hz for a period of five weeks in 5xFAD mice. As expected, 33-week-old 5xFAD mice but not control wild-type mice of the same age exhibited an abundance of swollen microglia and Aβ plaques in the visual cortex and hippocampus. Unexpectedly, however, compared with similar session of stimulation with continuous light or a light flickering at 24 or 80 Hz, daily sessions of stimulation with LED light flickering at 40 Hz for five weeks failed to further increase the microglial size and could not noticeably decrease the Aβ load in the visual cortex and hippocampus of the 5xFAD mice. In conclusion, contrary to previous findings based on shorter treatment periods, our data showed that daily noninvasive exposure to a light flickering at 40 Hz for a period of five weeks is not effective in reducing Aβ load in the 5xFAD mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Ya Lan Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
| | - Ted Weita Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404333, Taiwan
- Drug Development Center, China Medical University, Taichung 404333, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|