1
|
Krause A, Anderson DG, Ferreira-Correia A, Dawson J, Baine-Savanhu F, Li PP, Margolis RL. Huntington disease-like 2: insight into neurodegeneration from an African disease. Nat Rev Neurol 2024; 20:36-49. [PMID: 38114648 DOI: 10.1038/s41582-023-00906-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Huntington disease (HD)-like 2 (HDL2) is a rare genetic disease caused by an expanded trinucleotide repeat in the JPH3 gene (encoding junctophilin 3) that shows remarkable clinical similarity to HD. To date, HDL2 has been reported only in patients with definite or probable African ancestry. A single haplotype background is shared by patients with HDL2 from different populations, supporting a common African origin for the expansion mutation. Nevertheless, outside South Africa, reports of patients with HDL2 in Africa are scarce, probably owing to limited clinical services across the continent. Systematic comparisons of HDL2 and HD have revealed closely overlapping motor, cognitive and psychiatric features and similar patterns of cerebral and striatal atrophy. The pathogenesis of HDL2 remains unclear but it is proposed to occur through several mechanisms, including loss of protein function and RNA and/or protein toxicity. This Review summarizes our current knowledge of this African-specific HD phenocopy and highlights key areas of overlap between HDL2 and HD. Given the aforementioned similarities in clinical phenotype and pathology, an improved understanding of HDL2 could provide novel insights into HD and other neurodegenerative and/or trinucleotide repeat expansion disorders.
Collapse
Affiliation(s)
- Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - David G Anderson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- University of Glasgow, Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Aline Ferreira-Correia
- Department of Psychology, School of Human and Community Development, Faculty of Humanities, University of the Witwatersrand, Johannesburg, South Africa
| | - Jessica Dawson
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Roussakis AA, Gennaro M, Gordon MF, Reilmann R, Borowsky B, Rynkowski G, Lao-Kaim NP, Papoutsou Z, Savola JM, Hayden MR, Owen DR, Kalk N, Lingford-Hughes A, Gunn RN, Searle G, Tabrizi SJ, Piccini P. A PET-CT study on neuroinflammation in Huntington's disease patients participating in a randomized trial with laquinimod. Brain Commun 2023; 5:fcad084. [PMID: 37020532 PMCID: PMC10069663 DOI: 10.1093/braincomms/fcad084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Microglia activation, an indicator of central nervous system inflammation, is believed to contribute to the pathology of Huntington's disease. Laquinimod is capable of regulating microglia. By targeting the translocator protein, 11C-PBR28 PET-CT imaging can be used to assess the state of regional gliosis in vivo and explore the effects of laquinimod treatment. This study relates to the LEGATO-HD, multi-centre, double-blinded, Phase 2 clinical trial with laquinimod (US National Registration: NCT02215616). Fifteen patients of the UK LEGATO-HD cohort (mean age: 45.2 ± 7.4 years; disease duration: 5.6 ± 3.0 years) were treated with laquinimod (0.5 mg, N = 4; 1.0 mg, N = 6) or placebo (N = 5) daily. All participants had one 11C-PBR28 PET-CT and one brain MRI scan before laquinimod (or placebo) and at the end of treatment (12 months apart). PET imaging data were quantified to produce 11C-PBR28 distribution volume ratios. These ratios were calculated for the caudate and putamen using the reference Logan plot with the corpus callosum as the reference region. Partial volume effect corrections (Müller-Gartner algorithm) were applied. Differences were sought in Unified Huntington's Disease Rating Scale scores and regional distribution volume ratios between baseline and follow-up and between the two treatment groups (laquinimod versus placebo). No significant change in 11C-PBR28 distribution volume ratios was found post treatment in the caudate and putamen for both those treated with laquinimod (N = 10) and those treated with placebo (N = 5). Over time, the patients treated with laquinimod did not show a significant clinical improvement. Data from the 11C-PBR28 PET-CT study indicate that laquinimod may not have affected regional translocator protein expression and clinical performance over the studied period.
Collapse
Affiliation(s)
| | - Marta Gennaro
- Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | | | | | | | | - Nicholas P Lao-Kaim
- Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Zoe Papoutsou
- Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital and Research Institute, University of British Columbia, Vancouver V5Z 4H4, Canada
| | - David R Owen
- Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Nicola Kalk
- Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Anne Lingford-Hughes
- Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Roger N Gunn
- Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Invicro, Hammersmith Hospital,, London W12 0NN, UK
| | | | - Sarah J Tabrizi
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Paola Piccini
- Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
3
|
Schroeter T, Gühne F, Schwab M, Drescher R, Axer H. Differentiation of Reversible Hemichorea Due to Vitamin B12 Deficiency From Huntington Disease Via FDG PET. Clin Nucl Med 2022; 47:830-831. [PMID: 35695745 DOI: 10.1097/rlu.0000000000004313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Vitamin B12 deficiency may present with diverse symptoms, complicating the differential diagnosis. Extrapyramidal movement disorders, for instance, are a rare manifestation of vitamin B12 deficiency. MRI of the brain frequently remains without conclusive findings. However, 18 F-FDG PET/CT may reveal characteristic changes in the metabolism of the basal ganglia and thus contribute to an accurate diagnosis. We demonstrate the case of a woman with left-sided hemichoreatic movements due to vitamin B12 deficiency showing a contralateral putaminal hypermetabolism, which normalized after vitamin B12 supplementation, ruling out other deviating causes, particularly Huntington disease.
Collapse
Affiliation(s)
| | - Falk Gühne
- Nuclear Medicine, Jena University Hospital, Jena, Germany
| | | | | | | |
Collapse
|
4
|
Neuroimaging of Mouse Models of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10020305. [PMID: 35203515 PMCID: PMC8869427 DOI: 10.3390/biomedicines10020305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic resonance imaging (MRI) and positron emission tomography (PET) have made great strides in the diagnosis and our understanding of Alzheimer’s Disease (AD). Despite the knowledge gained from human studies, mouse models have and continue to play an important role in deciphering the cellular and molecular evolution of AD. MRI and PET are now being increasingly used to investigate neuroimaging features in mouse models and provide the basis for rapid translation to the clinical setting. Here, we provide an overview of the human MRI and PET imaging landscape as a prelude to an in-depth review of preclinical imaging in mice. A broad range of mouse models recapitulate certain aspects of the human AD, but no single model simulates the human disease spectrum. We focused on the two of the most popular mouse models, the 3xTg-AD and the 5xFAD models, and we summarized all known published MRI and PET imaging data, including contrasting findings. The goal of this review is to provide the reader with broad framework to guide future studies in existing and future mouse models of AD. We also highlight aspects of MRI and PET imaging that could be improved to increase rigor and reproducibility in future imaging studies.
Collapse
|
5
|
Kwak IH, Kim NH, Ma HI, Kim YE. Huntington's Disease Presenting as Adult-Onset Parkinsonism. J Clin Neurol 2022; 18:87-89. [PMID: 35021281 PMCID: PMC8762510 DOI: 10.3988/jcn.2022.18.1.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- In Hee Kwak
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Na Hee Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyeo-Il Ma
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Young Eun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea.
| |
Collapse
|
6
|
Schulze Westhoff M, Osmanovic A, Meissner C, Heck J, Mahmoudi N, Hendrich C, Berding G, Seifert J, Bleich S, Frieling H, Krüger T, Groh A. An unusual presentation of Huntington's disease. Clin Case Rep 2021; 9:e04547. [PMID: 34295499 PMCID: PMC8283861 DOI: 10.1002/ccr3.4547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/13/2021] [Indexed: 01/25/2023] Open
Abstract
We describe the case of a 59-year-old woman who exhibited psychotic symptoms, cognitive dysfunction, and restlessness. While the clinical picture and 18F-FDG PET/CT suggested the presence of a tauopathy, especially frontotemporal dementia or progressive supranuclear palsy, genetic testing eventually revealed Huntington's disease.
Collapse
Affiliation(s)
- Martin Schulze Westhoff
- Department of PsychiatrySocial Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Alma Osmanovic
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Catharina Meissner
- Department of PsychiatrySocial Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Johannes Heck
- Institute for Clinical PharmacologyHannover Medical SchoolHannoverGermany
| | - Nima Mahmoudi
- Department of Diagnostic and Interventional NeuroradiologyHannover Medical SchoolHannoverGermany
| | - Corinna Hendrich
- Institute for Human GeneticsHannover Medical SchoolHannoverGermany
| | - Georg Berding
- Department of Nuclear MedicineHannover Medical SchoolHannoverGermany
| | - Johanna Seifert
- Department of PsychiatrySocial Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Stefan Bleich
- Department of PsychiatrySocial Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Helge Frieling
- Department of PsychiatrySocial Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Tillmann Krüger
- Department of PsychiatrySocial Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| | - Adrian Groh
- Department of PsychiatrySocial Psychiatry and PsychotherapyHannover Medical SchoolHannoverGermany
| |
Collapse
|
7
|
Przybyl L, Wozna-Wysocka M, Kozlowska E, Fiszer A. What, When and How to Measure-Peripheral Biomarkers in Therapy of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22041561. [PMID: 33557131 PMCID: PMC7913877 DOI: 10.3390/ijms22041561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: (L.P.); (A.F.)
| | - Magdalena Wozna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
- Correspondence: (L.P.); (A.F.)
| |
Collapse
|
8
|
Cybulska K, Perk L, Booij J, Laverman P, Rijpkema M. Huntington's Disease: A Review of the Known PET Imaging Biomarkers and Targeting Radiotracers. Molecules 2020; 25:molecules25030482. [PMID: 31979301 PMCID: PMC7038198 DOI: 10.3390/molecules25030482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disease caused by a CAG expansion mutation in the huntingtin gene. As a result, intranuclear inclusions of mutant huntingtin protein are formed, which damage striatal medium spiny neurons (MSNs). A review of Positron Emission Tomography (PET) studies relating to HD was performed, including clinical and preclinical data. PET is a powerful tool for visualisation of the HD pathology by non-invasive imaging of specific radiopharmaceuticals, which provide a detailed molecular snapshot of complex mechanistic pathways within the brain. Nowadays, radiochemists are equipped with an impressive arsenal of radioligands to accurately recognise particular receptors of interest. These include key biomarkers of HD: adenosine, cannabinoid, dopaminergic and glutamateric receptors, microglial activation, phosphodiesterase 10 A and synaptic vesicle proteins. This review aims to provide a radiochemical picture of the recent developments in the field of HD PET, with significant attention devoted to radiosynthetic routes towards the tracers relevant to this disease.
Collapse
Affiliation(s)
- Klaudia Cybulska
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
- Radboud Translational Medicine B.V., Radboud University Medical Center, Geert Grooteplein 21 (route 142), 6525 EZ Nijmegen, The Netherlands;
- Correspondence:
| | - Lars Perk
- Radboud Translational Medicine B.V., Radboud University Medical Center, Geert Grooteplein 21 (route 142), 6525 EZ Nijmegen, The Netherlands;
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
| |
Collapse
|
9
|
de Natale ER, Wilson H, Pagano G, Politis M. Imaging Transplantation in Movement Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:213-263. [PMID: 30473196 DOI: 10.1016/bs.irn.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell replacement therapy with graft transplantation has been tested as a disease-modifying treatment in neurodegenerative diseases characterized by the damage of a predominant cell type, such as substantia nigra dopaminergic neurons in Parkinson's disease (PD) or striatal medium spiny projection neurons in Huntington's disease (HD). The results of these trials are mixed with success in preclinical and pilot open-label trials, which were not consistently reproduced in randomized controlled trials. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) molecular imaging and functional magnetic resonance imaging allow the graft survival, and its relationship with the host tissues to be studied in vivo. In PD, PET with [18F]DOPA showed that graft survival does not necessarily correlate with the clinical improvement and PD patients with worse outcome had lower binding in the ventral striatum and a high serotonin ([11C]DASB PET) to dopamine ([18F]DOPA PET) ratio in the grafted neurons. In HD, PET with [11C]PK11195 showed the graft survival and the clinical responses may be related to the reactive activation of the host inflammatory/immune system. Findings from these studies have been used to refine study protocols and patient selection in current clinical trials, which includes identifying suitable candidates for transplantation using imaging markers and employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
Affiliation(s)
- Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
10
|
Blum D, Chern Y, Domenici MR, Buée L, Lin CY, Rea W, Ferré S, Popoli P. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. J Caffeine Adenosine Res 2018; 8:43-58. [PMID: 30023989 PMCID: PMC6049521 DOI: 10.1089/caff.2018.0006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a mutation in the IT15 gene that encodes for the huntingtin protein. Mutated hungtingtin, although widely expressed in the brain, predominantly affects striato-pallidal neurons, particularly enriched with adenosine A2A receptors (A2AR), suggesting a possible involvement of adenosine and A2AR is the pathogenesis of HD. In fact, polymorphic variation in the ADORA2A gene influences the age at onset in HD, and A2AR dynamics is altered by mutated huntingtin. Basal levels of adenosine and adenosine receptors are involved in many processes critical for neuronal function and homeostasis, including modulation of synaptic activity and excitotoxicity, the control of neurotrophin levels and functions, and the regulation of protein degradation mechanisms. In the present review, we critically analyze the current literature involving the effect of altered adenosine tone and adenosine receptors in HD and discuss why therapeutics that modulate the adenosine system may represent a novel approach for the treatment of HD.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maria Rosaria Domenici
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Chien-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
11
|
Coppen EM, van der Grond J, Hart EP, Lakke EAJF, Roos RAC. The visual cortex and visual cognition in Huntington's disease: An overview of current literature. Behav Brain Res 2018; 351:63-74. [PMID: 29792890 DOI: 10.1016/j.bbr.2018.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
Abstract
The processing of visual stimuli from retina to higher cortical areas has been extensively studied in the human brain. In Huntington's disease (HD), an inherited neurodegenerative disorder, it is suggested that visual processing deficits are present in addition to more characteristic signs such as motor disturbances, cognitive dysfunction, and behavioral changes. Visual deficits are clinically important because they influence overall cognitive performance and have implications for daily functioning. The aim of this review is to summarize current literature on clinical visual deficits, visual cognitive impairment, and underlying visual cortical changes in HD patients. A literature search was conducted using the electronic database of PubMed/Medline. This review shows that changes of the visual system in patients with HD were not the primary focus of currently published studies. Still, early atrophy and alterations of the posterior cerebral cortex was frequently observed, primarily in the associative visual cortical areas such as the lingual and fusiform gyri, and lateral occipital cortex. Changes were even present in the premanifest phase, before clinical onset of motor symptoms, suggesting a primary region for cortical degeneration in HD. Although impairments in visuospatial processing and visual perception were reported in early disease stages, heterogeneous cognitive batteries were used, making a direct comparison between studies difficult. The use of a standardized battery of visual cognitive tasks might therefore provide more detailed information regarding the extent of impairments in specific visual domains. Further research could provide more insight into clinical, functional, and pathophysiological changes of the visual pathway in HD.
Collapse
Affiliation(s)
- Emma M Coppen
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ellen P Hart
- Centre for Human Drug Research, Leiden, The Netherlands.
| | - Egbert A J F Lakke
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|