1
|
Lambert MR, Gussoni E. Tropomyosin 3 (TPM3) function in skeletal muscle and in myopathy. Skelet Muscle 2023; 13:18. [PMID: 37936227 PMCID: PMC10629095 DOI: 10.1186/s13395-023-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.
Collapse
Affiliation(s)
- Matthias R Lambert
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- The Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Panicucci C, Casalini S, Damasio BM, Brolatti N, Pedemonte M, Biolcati Rinaldi A, Morando S, Doglio L, Raffaghello L, Fiorillo C, Zara F, Tasca G, Bruno C. Long-term clinical and MRI follow-up in two POMT2-related limb girdle muscular dystrophy (LGMDR14) patients. Brain Dev 2023; 45:306-313. [PMID: 36797079 DOI: 10.1016/j.braindev.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION POMT2-related limb girdle muscular dystrophy (LGMDR14) is a rare muscular dystrophy caused by mutations in the POMT2 gene. Thus far only 26 LGMDR14 subjects have been reported and no longitudinal natural history data are available. CASE REPORT We describe two LGMDR14 patients followed for 20 years since infancy. Both patients presented a childhood-onset, slowly progressive pelvic girdle muscular weakness leading to loss of ambulation in the second decade in one patient, and cognitive impairment without detectable brain structural abnormalities. Glutei, paraspinal, and adductor muscles were the primarily involved muscles at MRI. DISCUSSION This report provides natural history data on LGMDR14 subjects, with a focus on longitudinal muscle MRI. We also reviewed the LGMDR14 literature data, providing information on the LGMDR14 disease progression. Considering the high prevalence of cognitive impairment in LGMDR14 patients, a reliable application of functional outcome measures can be challenging, therefore a muscle MRI follow-up to assess disease evolution is recommended.
Collapse
Affiliation(s)
- Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sara Casalini
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Noemi Brolatti
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marina Pedemonte
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Simone Morando
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luca Doglio
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova, Italy
| | - Giorgio Tasca
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova, Italy.
| |
Collapse
|
3
|
Zhao X, Gao C, Li L, Jiang L, Wei Y, Che F, Liu Q. Clinical exome sequencing identifies novel compound heterozygous mutations of the POMT2 gene in patients with limb-girdle muscular dystrophy. Int J Dev Neurosci 2023; 83:23-30. [PMID: 36217604 DOI: 10.1002/jdn.10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Mutations in protein O-mannosyltransferase 2 (POMT2) (MIM#607439) have been identified in severe congenital muscular dystrophy such as Walker-Warburg syndrome (WWS) and milder limb-girdle muscular dystrophy type 2N (LGMD2N). The aim of this study is to investigate the genetic causes in patients with LGMD2N. METHODS Three patients diagnosed with mild limb-girdle muscular dystrophy were recruited. The genetically pathogenic variant was identified by clinical exome sequencing, and healthy controls were verified by Sanger sequencing. RESULTS Novel compound heterozygous mutations c.800A > G and c.1074_1075delinsAT of POMT2 were revealed in one affected individual by clinical exome sequencing. There was no report of these two variants and predicted to be highly damaging to the function of the POMT2. CONCLUSION The novel variants extend the spectrum of POMT2 mutations, which promotes the prognostic value of testing for POMT2 mutations in patients with LGMD2N.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Chunhai Gao
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lin Li
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Liangqian Jiang
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Yuda Wei
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Fengyuan Che
- Department of Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Gangfuß A, Schara-Schmidt U, Roos A. [Genomics and proteomics in the research of neuromuscular diseases]. DER NERVENARZT 2021; 93:114-121. [PMID: 34622318 DOI: 10.1007/s00115-021-01201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Neurological diseases affect 3-5% of children and, apart from cardiovascular diseases and cancer, represent the most prominent cause of morbidity and mortality in adults and particularly in the aged population of western Europe. Neuromuscular disorders are a subgroup of neurological diseases and often have a genetic origin, which leads to familial clustering. Despite the enormous progress in the analysis of the genome, such as by sequence analysis of coding regions of deoxyribonucleic acid or even the entire deoxyribonucleic acid sequence, in approximately 50% of the patients suffering from rare forms of neurological diseases the genetic cause remains unsolved. The reasons for this limited detection rate are presented in this article. If a treatment concept is available, under certain conditions this can have an impact on the adequate and early treatment of these patients. Considering neuromuscular disorders as a paradigm, this article reports on the advantages of the inclusion of next generation sequencing analysis-based DNA investigations as an omics technology (genomics) and the advantage of the integration with protein analyses (proteomics). A special focus is on the combination of genomics and proteomics in the sense of a proteogenomic approach in the diagnostics and research of these diseases. Along this line, this article presents a proteogenomic approach in the context of a multidisciplinary project aiming towards improved diagnostic work-up and future treatment of patients with neuromuscular diseases; "NMD-GPS: gene and protein signatures as a global positioning system in patients suffering from neuromuscular diseases".
Collapse
Affiliation(s)
- Andrea Gangfuß
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Ulrike Schara-Schmidt
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Andreas Roos
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland. .,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Kanada.
| |
Collapse
|
5
|
Chen XY, Song DY, Jiang L, Tan DD, Liu YD, Liu JY, Chang XZ, Xing GG, Toda T, Xiong H. Phenotype and Genotype Study of Chinese POMT2-Related α-Dystroglycanopathy. Front Genet 2021; 12:692479. [PMID: 34413876 PMCID: PMC8370027 DOI: 10.3389/fgene.2021.692479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Objective Alpha-dystroglycanopathy (α-DGP) is a subtype of muscular dystrophy caused by defects in the posttranslational glycosylation of α-dystroglycan (α-DG). Our study aimed to summarize the clinical and genetic features of POMT2-related α-DGP in a cohort of patients in China. Methods Pedigrees, clinical data, and laboratory tests of patients diagnosed with POMT2-related α-DGP were analyzed retrospectively. The pathogenicity of variants in POMT2 were predicted by bioinformatics software. The variants with uncertain significance were verified by further analysis. Results The 11 patients, comprising eight males and three females, were from nine non-consanguineous families. They exhibited different degrees of muscle weakness, ambulation, and intellectual impairment. Among them, three had a muscle-eye-brain disease (MEB)-like phenotype, five presented congenital muscular dystrophy with intellectual disability (CMD-ID), and three presented limb-girdle muscular dystrophy (LGMD). Overall, nine novel variants of POMT2, including two non-sense, one frameshift and six missense variants, were identified. The pathogenicity of two missense variants, c.1891G > C and c.874G > C, was uncertain based on bioinformatics software prediction. In vitro minigene analysis showed that c.1891G > C affects the splicing of POMT2. Immunofluorescence staining with the IIH6C4 antibody of muscle biopsy from the patient carrying the c.874G > C variant showed an apparent lack of expression. Conclusion This study summarizes the clinical and genetic characteristics of a cohort of POMT2-related α-DGP patients in China for the first time, expanding the mutational spectrum of the disease. Further study of the pathogenicity of some missense variants based on enzyme activity detection is needed.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dan-Yu Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dan-Dan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi-Dan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie-Yu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xing-Zhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Babić Božović I, Maver A, Leonardis L, Meznaric M, Osredkar D, Peterlin B. Diagnostic yield of exome sequencing in myopathies: Experience of a Slovenian tertiary centre. PLoS One 2021; 16:e0252953. [PMID: 34106991 PMCID: PMC8189452 DOI: 10.1371/journal.pone.0252953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Our aim was to present the experience of systematic, routine use of next generation sequencing (NGS) in clinical diagnostics of myopathies. METHODS Exome sequencing was performed on patients with high risk for inherited myopathy, which were selected based on the history of the disease, family history, clinical presentation, and diagnostic workup. Exome target capture was performed, followed by sequencing on HiSeq 2500 or MiSeq platforms. Data analysis was performed using internally developed bioinformatic pipeline. RESULTS The study comprised 86 patients, including 22 paediatric cases (26%). The largest group were patients referred with an unspecified myopathy (47%), due to non-specific or incomplete clinical and laboratory findings, followed by congenital myopathies (22%) and muscular dystrophies (22%), congenital myotonias (6%), and mitochondrial myopathies (3%). Altogether, a diagnostic yield was 52%; a high diagnostic rate was present in paediatric patients (64%), while in patients with unspecified myopathies the rate was 35%. We found 51 pathogenic/likely pathogenic variants in 23 genes and two pathogenic copy number variations. CONCLUSION Our results provide evidence that phenotype driven exome analysis diagnostic approach facilitates the diagnostic rate of complex, heterogeneous disorders, such as myopathies, particularly in paediatric patients and patients with unspecified myopathies.
Collapse
Affiliation(s)
- Ivana Babić Božović
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marija Meznaric
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjan Osredkar
- Department of Paediatric Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Foltz SJ, Cui YY, Choo HJ, Hartzell HC. ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 2021; 220:e202007059. [PMID: 33496727 PMCID: PMC7844426 DOI: 10.1083/jcb.202007059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.
Collapse
Affiliation(s)
| | | | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
8
|
François-Heude MC, Walther-Louvier U, Espil-Taris C, Beze-Beyrie P, Rivier F, Baudou E, Uro-Coste E, Rigau V, Martin Negrier ML, Rendu J, Morales RJ, Pégeot H, Thèze C, Lacourt D, Coville AC, Cossée M, Cances C. Evaluating next-generation sequencing in neuromuscular diseases with neonatal respiratory distress. Eur J Paediatr Neurol 2021; 31:78-87. [PMID: 33667896 DOI: 10.1016/j.ejpn.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
With the exception of infantile spinal muscular atrophy (SMA) and congenital myotonic dystrophy 1 (DM1), congenital myopathies and muscular dystrophies with neonatal respiratory distress pose diagnostic challenges. Next-generation sequencing (NGS) provides hope for the diagnosis of these rare diseases. We evaluated the efficiency of next-generation sequencing (NGS) in ventilated newborns with peripheral hypotonia. We compared the results of our previous study in a cohort of 19 patients analysed by Sanger sequencing from 2007 to 2012, with a diagnostic yield of 26% (5/19), and those of a new retrospective study in 28 patients from 2007 to 2018 diagnosed using MyoPanel, a neuromuscular disease panel, with a diagnostic yield of 43% (12/28 patients). Pathogenic variants were found in five genes: ACTA1 (n = 4 patients), RYR1 (n = 2), CACNA1S (n = 1), NEB (n = 3), and MTM1 (n = 2). Myopanel increased the diagnosis of congenital neuromuscular diseases, but more than half the patients remained undiagnosed. Whole exome sequencing did not seem to fully respond to this diagnostic limitation. Therefore, explorations with whole genome sequencing will be the next step.
Collapse
Affiliation(s)
- Marie-Céline François-Heude
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Ulrike Walther-Louvier
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Montpellier University Hospital, Montpellier, France
| | - Caroline Espil-Taris
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Bordeaux University Hospital, Aquitaine, France
| | | | - François Rivier
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Montpellier University Hospital, Montpellier, France
| | - Eloise Baudou
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France; INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France
| | - Valérie Rigau
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Aquitaine, France; Department of Pathology, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | | | - John Rendu
- INSERM U1216, Grenoble Alpes University Hospital, University of Grenoble Alpes, Grenoble, France
| | - Raul Juntas Morales
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France
| | - Henri Pégeot
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Corinne Thèze
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Delphine Lacourt
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Anne Cécile Coville
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Mireille Cossée
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France; Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Claude Cances
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France.
| |
Collapse
|
9
|
Alessi CE, Wu Q, Whitaker CH, Felice KJ. Laing Myopathy: Report of 4 New Families With Novel MYH7 Mutations, Double Mutations, and Severe Phenotype. J Clin Neuromuscul Dis 2020; 22:22-34. [PMID: 32833721 DOI: 10.1097/cnd.0000000000000297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Laing distal myopathy (LDM) is an autosomal dominant disorder caused by mutations in the slow skeletal muscle fiber myosin heavy chain (MYH7) gene on chromosome 14q11.2. The classic LDM phenotype-including early-onset, initial involvement of foot dorsiflexors and great toe extensors, followed by weakness of neck flexors and finger extensors-is well documented. Since the original report by Laing et al in 1995, the spectrum of MYH7-related myopathies has expanded to include congenital myopathies, late-onset myopathies, myosin storage myopathy, and scapuloperoneal myopathies. Most patients with LDM harbor mutations in the midrod domain of the MYH7 gene, but rare cases document disease-associated mutations in the globular head region. In this report, we add to the medical literature by describing the clinicopathological findings in 8 affected family members from 4 new LDM families-including 2 with novel MYH7 mutations (Y162D and A1438P), one with dual mutations (V39M and K1617del), and one family (E1508del) with severe early-onset weakness associated with contractures, respiratory insufficiency, and dilated cardiomyopathy. Our families highlight the ever-expanding clinical spectrum and genetic variation of the skeletal myopathies related to MYH7 gene mutations.
Collapse
Affiliation(s)
| | - Qian Wu
- Pathology and Laboratory Medicine, University of Connecticut School of Medicine, Farmington, CT; and
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| | - Kevin J Felice
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| |
Collapse
|
10
|
Liang WC, Jong YJ, Wang CH, Wang CH, Tian X, Chen WZ, Kan TM, Minami N, Nishino I, Wong LJC. Clinical, pathological, imaging, and genetic characterization in a Taiwanese cohort with limb-girdle muscular dystrophy. Orphanet J Rare Dis 2020; 15:160. [PMID: 32576226 PMCID: PMC7310488 DOI: 10.1186/s13023-020-01445-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background Limb-girdle muscular dystrophy (LGMD) is a genetically heterogeneous, hereditary disease characterized by limb-girdle weakness and histologically dystrophic changes. The prevalence of each subtype of LGMD varies among different ethnic populations. This study for the first time analyzed the phenotypes and genotypes in Taiwanese patients with LGMD in a referral center for neuromuscular diseases (NMDs). Results We enrolled 102 patients clinically suspected of having LGMD who underwent muscle biopsy with subsequent genetic analysis in the previous 10 years. On the basis of different pathological categories, we performed sequencing of target genes or panel for NMDs and then identified patients with type 1B, 1E, 2A, 2B, 2D, 2I, 2G, 2 N, and 2Q. The 1B patients with LMNA mutation presented with mild limb-girdle weakness but no conduction defect at the time. All 1E patients with DES mutation exhibited predominantly proximal weakness along with distal weakness. In our cohort, 2B and 2I were the most frequent forms of LGMD; several common or founder mutations were identified, including c.1097_1099delACA (p.Asn366del) in DES, homozygous c.101G > T (p.Arg34Leu) in SGCA, homozygous c.26_33dup (p.Glu12Argfs*20) in TCAP, c.545A > G (p.Tyr182Cys), and c.948delC (p.Cys317Alafs*111) in FKRP. Clinically, the prevalence of dilated cardiomyopathy in our patients with LGMD2I aged > 18 years was 100%, much higher than that in European cohorts. The only patient with LGMD2Q with PLEC mutation did not exhibit skin lesions or gastrointestinal abnormalities but had mild facial weakness. Muscle imaging of LGMD1E and 2G revealed a more uniform involvement than did other LGMD types. Conclusion Our study revealed that detailed clinical manifestation together with muscle pathology and imaging remain critical in guiding further molecular analyses and are crucial for establishing genotype–phenotype correlations. We also determined the common mutations and prevalence for different subtypes of LGMD in our cohort, which could be useful when providing specific care and personalized therapy to patients with LGMD.
Collapse
Affiliation(s)
- Wen-Chen Liang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Jyh Jong
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chien-Hua Wang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Hua Wang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xia Tian
- Baylor Genetics, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wan-Zi Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Min Kan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Narihiro Minami
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Lee-Jun C Wong
- Baylor Genetics, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurol 2020; 19:522-532. [PMID: 32470424 DOI: 10.1016/s1474-4422(20)30028-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Advances in DNA sequencing technologies have resulted in a near doubling, in under 10 years, of the number of causal genes identified for inherited neuromuscular disorders. However, around half of patients, whether children or adults, do not receive a molecular diagnosis after initial diagnostic workup. Massively parallel technologies targeting RNA, proteins, and metabolites are being increasingly used to diagnose these unsolved cases. The use of these technologies to delineate pathways, biomarkers, and therapeutic targets has led to new approaches entering the drug development pipeline. However, these technologies might give rise to misleading conclusions if used in isolation, and traditional techniques including comprehensive neurological evaluation, histopathology, and biochemistry continue to have a crucial role in diagnostics. For optimal diagnosis, prognosis, and precision medicine, no single ruling technology exists. Instead, an interdisciplinary approach combining novel and traditional neurological techniques with computer-aided analysis and international data sharing is needed to advance the diagnosis and treatment of neuromuscular disorders.
Collapse
|
12
|
Schoonen M, Smuts I, Louw R, Elson JL, van Dyk E, Jonck LM, Rodenburg RJT, van der Westhuizen FH. Panel-Based Nuclear and Mitochondrial Next-Generation Sequencing Outcomes of an Ethnically Diverse Pediatric Patient Cohort with Mitochondrial Disease. J Mol Diagn 2019; 21:503-513. [PMID: 30872186 DOI: 10.1016/j.jmoldx.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/08/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disease (MD) is a group of rare inherited disorders with clinical heterogeneous phenotypes. Recent advances in next-generation sequencing (NGS) allow for rapid genetic diagnostics in patients who experience MD, resulting in significant strides in determining its etiology. This, however, has not been the case in many patient populations. We report on a molecular diagnostic study using mitochondrial DNA and targeted nuclear DNA (nDNA) NGS of an extensive cohort of predominantly sub-Saharan African pediatric patients with clinical and biochemically defined MD. Patients in this novel cohort presented mostly with muscle involvement (73%). Of the original 212 patients, a muscle respiratory chain deficiency was identified in 127 cases. Genetic analyses were conducted for these 127 cases based on biochemical deficiencies, for both mitochondrial (n = 123) and nDNA using panel-based NGS (n = 86). As a pilot investigation, whole-exome sequencing was performed in a subset of African patients (n = 8). These analyses resulted in the identification of a previously reported pathogenic mitochondrial DNA variant and seven pathogenic or likely pathogenic nDNA variants (ETFDH, SURF1, COQ6, RYR1, STAC3, ALAS2, and TRIOBP), most of which were identified via whole-exome sequencing. This study contributes to knowledge of MD etiology in an understudied, ethnically diverse population; highlights inconsistencies in genotype-phenotype correlations; and proposes future directions for diagnostic approaches in such patient populations.
Collapse
Affiliation(s)
- Maryke Schoonen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics and Child Health, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Joanna L Elson
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Etresia van Dyk
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Lindi-Maryn Jonck
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Richard J T Rodenburg
- Department of Pediatrics, Radboudumc Amalia Childrens Hospital, Radboud Center for Mitochondrial Medicine, Nijmegen, the Netherlands
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
13
|
Wang L, Zhang VW, Li S, Li H, Sun Y, Li J, Zhu Y, He R, Lin J, Zhang C. The clinical spectrum and genetic variability of limb-girdle muscular dystrophy in a cohort of Chinese patients. Orphanet J Rare Dis 2018; 13:133. [PMID: 30107846 PMCID: PMC6092860 DOI: 10.1186/s13023-018-0859-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Background Limb-girdle muscular dystrophy (LGMD) is a commonly diagnosed hereditary muscular disorder, characterized by the progressive weakness of the limb-girdle muscles. Although the condition has been well-characterized, clinical and genetic heterogeneity can be observed in patients with LGMD. Here, we aimed to describe the clinical manifestations and genetic variability among a cohort of patients with LGMD in South China. Results We analyzed the clinical information, muscle magnetic resonance imaging (MRI) findings, and genetic results obtained from 30 patients (24 families) with clinically suspected LGMD. In 24 probands, 38 variants were found in total, of which 18 were shown to be novel. Among the 30 patients, the most common subtypes were dysferlinopathy in eight (26.67%), sarcoglycanopathies in eight [26.67%; LGMD 2C in three (10.00%), LGMD 2D in three (10.00%), and LGMD 2F in two (6.67%)], LGMD 2A in seven (23.33%), followed by LGMD 1B in three (10.00%), LGMD 2I in three (10.00%), and early onset recessive Emery-Dreifuss-like phenotype without cardiomyopathy in one (3.33%). Furthermore, we also observed novel clinical presentations for LGMD 1B, 2F, and 2I patients with hypermobility of the joints in the upper limbs, a LGMD 2F patient with delayed language development, and other manifestations. Moreover, distinct distributions of fatty infiltration in patients with LGMD 2A, dysferlinopathy, and the early onset recessive Emery-Dreifuss-like phenotype without cardiomyopathy were also observed based on muscle MRI results. Conclusions In this study, we expanded the clinical spectrum and genetic variability found in patients with LGMD, which provided additional insights into genotype and phenotype correlations in this disease. Electronic supplementary material The online version of this article (10.1186/s13023-018-0859-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Victor Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,AmCare Genomics Lab, Guangzhou, 510300, GD, China
| | - Shaoyuan Li
- AmCare Genomics Lab, Guangzhou, 510300, GD, China
| | - Huan Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Yiming Sun
- Department of Health Care, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, GD, China
| | - Jing Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Yuling Zhu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Ruojie He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Jinfu Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China
| | - Cheng Zhang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2 Road, Guangzhou, 510080, GD, China.
| |
Collapse
|
14
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
15
|
|
16
|
Abstract
PURPOSE OF REVIEW The development of massively parallel sequencing (MPS) has revolutionized molecular genetic diagnostics in monogenic disorders. The present review gives a brief overview of different MPS-based approaches used in clinical diagnostics of neuromuscular disorders (NMDs) and highlights their advantages and limitations. RECENT FINDINGS MPS-based approaches like gene panel sequencing, (whole) exome sequencing, (whole) genome sequencing, and RNA sequencing have been used to identify the genetic cause in NMDs. Although gene panel sequencing has evolved as a standard test for heterogeneous diseases, it is still debated, mainly because of financial issues and unsolved problems of variant interpretation, whether genome sequencing (and to a lesser extent also exome sequencing) of single patients can already be regarded as routine diagnostics. However, it has been shown that the inclusion of parents and additional family members often leads to a substantial increase in the diagnostic yield in exome-wide/genome-wide MPS approaches. In addition, MPS-based RNA sequencing just enters the research and diagnostic scene. SUMMARY Next-generation sequencing increasingly enables the detection of the genetic cause in highly heterogeneous diseases like NMDs in an efficient and affordable way. Gene panel sequencing and family-based exome sequencing have been proven as potent and cost-efficient diagnostic tools. Although clinical validation and interpretation of genome sequencing is still challenging, diagnostic RNA sequencing represents a promising tool to bypass some hurdles of diagnostics using genomic DNA.
Collapse
|